Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanodiamond: Insight from Introduction to Application

Author(s): Pankaj G. Jain, Afsar S. Pathan*, Yashshri S. Jadhav and Sanjay J. Surana

Volume 19, Issue 6, 2023

Published on: 29 December, 2022

Page: [817 - 824] Pages: 8

DOI: 10.2174/1573413719666221128161648

Price: $65

Abstract

Nanomaterials are a promising and popular research topic for many scientists. Nanodiamond is a branch of nanotechnology in nanoscience. Nanodiamond is a newly emerging type of nanoparticle because of its small size, i.e., 3-4 nm size and shape, and a wide variety of applications such as bioimaging, gene therapy, and new targeted drug delivery for various drugs. Bio applications must meet a number of requirements, such as being safe and effective. In the past, nanodiamond was made in a number of ways, such as by detonation, laser ablation, high pressure and high temperature (HPHT), and explosives. In this review, we cover the following: introduction, features, types, synthesis, future prospects, and application.

Graphical Abstract

[1]
Mishra, R.; Chhalodia, A.K.; Tiwari, S.K.; Mochalin, V.; Bogdanowicz, R.; Pichot, V.; Bogdanowicz, R.; Chang, H.C.; Huang, Q.; Schell, A.; Alkahtani, M.; Alkahtani, M. Recent progress in nanodiamonds: Synthesis, properties and their potential applications. Veruscript Funct. Nanomater., 2018, 2(December), 1-23.
[http://dx.doi.org/10.22261/8W2EG0]
[2]
Bondon, N. Nanodiamonds for bioapplications, recent developments. J. Mater. Chem., 2020, 8(48), 10878-10896.
[3]
Aleksenskiy, A.E.; Eydelman, E.D.; Vul’, A.Y. Deagglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett., 2011, 3(1), 68-74.
[http://dx.doi.org/10.1166/nnl.2011.1122]
[4]
Kharisov, B.I.; Kharissova, O.V.; Chávez, G.L. “Synthesis techniques, properties, and applications of nanodiamonds,” Synth. React. Inorganic, Met. Nano-Metal Chem., 2010, 40(2), 84-101.
[http://dx.doi.org/10.3109/10799890903555665]
[5]
Kong, X.; Cheng, P. Application of nanodiamonds in biomolecular mass spectrometry. Materials, 2010, 3(3), 1845-1862.
[http://dx.doi.org/10.3390/ma3031845]
[6]
Yu, S.J.; Kang, M.W.; Chang, H.C.; Chen, K.M.; Yu, Y.C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc., 2005, 127(50), 17604-17605.
[http://dx.doi.org/10.1021/ja0567081] [PMID: 16351080]
[7]
Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol., 2012, 7(1), 11-23.
[http://dx.doi.org/10.1038/nnano.2011.209] [PMID: 22179567]
[8]
Vaijayanthimala, V.; Chang, H.C. Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine, 2009, 4(1), 47-55.
[http://dx.doi.org/10.2217/17435889.4.1.47] [PMID: 19093895]
[9]
Maze, J.R.; Stanwix, P.L.; Hodges, J.S.; Hong, S.; Taylor, J.M.; Cappellaro, P.; Jiang, L.; Dutt, M.V.G.; Togan, E.; Zibrov, A.S.; Yacoby, A.; Walsworth, R.L.; Lukin, M.D. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455(7213), 644-647.
[http://dx.doi.org/10.1038/nature07279] [PMID: 18833275]
[10]
Shenderova, O.; Vargas, A.; Turner, S.; Ivanov, D.M.; Ivanov, M.G. Nanodiamond-based nanolubricants: Investigation of friction surfaces. Tribol. Trans., 2014, 57(6), 1051-1057.
[http://dx.doi.org/10.1080/10402004.2014.933933]
[11]
Nunn, N.; Torelli, M.; McGuire, G.; Shenderova, O. Nanodiamond: A high impact nanomaterial. Curr. Opin. Solid State Mater. Sci., 2017, 21(1), 1-9.
[http://dx.doi.org/10.1016/j.cossms.2016.06.008]
[12]
Waldermann, F.C.; Olivero, P.; Nunn, J.; Surmacz, K.; Wang, Z.Y.; Jaksch, D.; Taylor, R.A.; Walmsley, I.A.; Draganski, M.; Reichart, P.; Greentree, A.D.; Jamieson, D.N.; Prawer, S. Creating diamond color centers for quantum optical applications. Diamond Related Materials, 2007, 16(11), 1887-1895.
[http://dx.doi.org/10.1016/j.diamond.2007.09.009]
[13]
Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem., 2014, 65(1), 83-105.
[http://dx.doi.org/10.1146/annurev-physchem-040513-103659] [PMID: 24274702]
[14]
Chow, E.K.; Zhang, X.Q.; Chen, M.; Lam, R.; Robinson, E.; Huang, H.; Schaffer, D.; Osawa, E.; Goga, A.; Ho, D. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med., 2011, 3(73), 73ra21.
[http://dx.doi.org/10.1126/scitranslmed.3001713] [PMID: 21389265]
[15]
Badea, I.; Kaur, R. Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems. Int. J. Nanomedicine, 2013, 8, 203-220.
[http://dx.doi.org/10.2147/IJN.S37348] [PMID: 23326195]
[16]
Fu, C.C.; Lee, H.Y.; Chen, K.; Lim, T.S.; Wu, H.Y.; Lin, P.K.; Wei, P.K.; Tsao, P.H.; Chang, H.C.; Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 727-732.
[http://dx.doi.org/10.1073/pnas.0605409104] [PMID: 17213326]
[17]
Chang, Y.R.; Lee, H.Y.; Chen, K.; Chang, C.C.; Tsai, D.S.; Fu, C.C.; Lim, T.S.; Tzeng, Y.K.; Fang, C.Y.; Han, C.C.; Chang, H.C.; Fann, W. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol., 2008, 3(5), 284-288.
[http://dx.doi.org/10.1038/nnano.2008.99] [PMID: 18654525]
[18]
Hsiao, W.W.W.; Hui, Y.Y.; Tsai, P.C.; Chang, H.C. Fluorescent nanodiamond: A versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res., 2016, 49(3), 400-407.
[http://dx.doi.org/10.1021/acs.accounts.5b00484] [PMID: 26882283]
[19]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[20]
Cui, B.; Wu, C.; Chen, L.; Ramirez, A.; Bearer, E.L.; Li, W.P.; Mobley, W.C.; Chu, S. One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13666-13671.
[http://dx.doi.org/10.1073/pnas.0706192104] [PMID: 17698956]
[21]
Shvidchenko, A.V.; Eidelman, E.D.; Vul’, A.Y.; Kuznetsov, N.M.; Stolyarova, D.Y.; Belousov, S.I.; Chvalun, S.N. Colloids of detonation nanodiamond particles for advanced applications. Adv. Colloid Interface Sci., 2019, 268, 64-81.
[http://dx.doi.org/10.1016/j.cis.2019.03.008] [PMID: 30953976]
[22]
Hanada, K. Detonation nanodiamond: Perspective and applications. Surf. Eng., 2009, 25(7), 487-489.
[http://dx.doi.org/10.1179/174329409X433939]
[23]
Zou, Q.; Li, Y.G.; Zou, L.H.; Wang, M.Z. Characterization of structures and surface states of the nanodiamond synthesized by detonation. Mater. Charact., 2009, 60(11), 1257-1262.
[http://dx.doi.org/10.1016/j.matchar.2009.05.008]
[24]
Edgington, R.; Spillane, K.M.; Papageorgiou, G.; Wray, W.; Ishiwata, H.; Labarca, M.; Leal, O.S.; Reid, G.; Webb, M.; Foord, J.; Melosh, N.; Schaefer, A.T. Functionalisation of detonation nanodiamond for monodispersed, soluble DNA-nanodiamond conjugates using mixed silane bead-assisted sonication disintegration. Sci. Rep., 2018, 8(1), 728.
[http://dx.doi.org/10.1038/s41598-017-18601-6] [PMID: 29335424]
[25]
Qin, J.X.; Yang, X.G.; Lv, C.F.; Li, Y.Z.; Liu, K.K.; Zang, J.H.; Yang, X.; Dong, L.; Shan, C.X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des., 2021, 210, 110091.
[http://dx.doi.org/10.1016/j.matdes.2021.110091]
[26]
Osipov, V.Y.; Shakhov, F.M.; Bogdanov, K.V.; Takai, K.; Hayashi, T.; Treussart, F.; Baldycheva, A.; Hogan, B.T.; Jentgens, C. High-quality green-emitting nanodiamonds fabricated by HPHT sintering of polycrystalline shockwave diamonds. Nanoscale Res. Lett., 2020, 15(1), 209.
[http://dx.doi.org/10.1186/s11671-020-03433-7] [PMID: 33169178]
[27]
Basso, L.; Cazzanelli, M.; Orlandi, M.; Miotello, A. Nanodiamonds: Synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space. Appl. Sci., 2020, 10(12), 4094.
[http://dx.doi.org/10.3390/app10124094]
[28]
Shenderova, O.; Nunn, N. Production and purification of nanodiamonds. In: Nanodiamonds, 6th ed; Elsevier Inc: Germany, 2017.
[http://dx.doi.org/10.1016/B978-0-32-343029-6.00002-7]
[29]
Khan, M.B.; Khan, Z.H. Nanodiamonds: Synthesis and applications. In: Nanomaterials and Their Applications. Advanced Structured Materials; Khan, Z., Ed.; Springer: Singapore, 2018; p. 84.
[http://dx.doi.org/10.1007/978-981-10-6214-8_1]
[30]
Cao, L.; Gao, C.; Sun, H.; Zou, G.; Zhang, Z.; Zhang, X.; He, M.; Zhang, M.; Li, Y.; Zhang, J.; Dai, D.; Sun, L.; Wang, W. Synthesis of diamond from carbon nanotubes under high pressure and high temperature. Carbon, 2001, 39(2), 311-314.
[http://dx.doi.org/10.1016/S0008-6223(00)00243-8]
[31]
Yang, G.W. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog. Mater. Sci., 2007, 52(4), 648-698.
[http://dx.doi.org/10.1016/j.pmatsci.2006.10.016]
[32]
Stratakis, E.; Barberoglou, M.; Fotakis, C.; Viau, G.; Garcia, C.; Shafeev, G.A. Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Opt. Express, 2009, 17(15), 12650-12659.
[http://dx.doi.org/10.1364/OE.17.012650] [PMID: 19654669]
[33]
Weissker, U.; Hampel, S.; Leonhardt, A.; Büchner, B. Carbon nanotubes filled with ferromagnetic materials. Materials, 2010, 3(8), 4387-4427.
[http://dx.doi.org/10.3390/ma3084387] [PMID: 28883334]
[34]
Wang, X.; You, H.; Liu, F.; Li, M.; Wan, L.; Li, S.; Li, Q.; Xu, Y.; Tian, R.; Yu, Z.; Xiang, D.; Cheng, J. Large-scale synthesis of few-layered graphene using CVD. Chem. Vap. Depos., 2009, 15(1-3), 53-56.
[http://dx.doi.org/10.1002/cvde.200806737]
[35]
Novoselov, K.S. Room-temperature quantum hall. Science, 2007, 315(5817), 2007.
[36]
Terranova, M.L.; Rossi, M.; Tamburri, E. Nanocrystalline sp 2 and sp 3 carbons: CVD synthesis and applications. Crystallogr. Rep., 2016, 61(6), 897-906.
[http://dx.doi.org/10.1134/S1063774516060158]
[37]
Frenklach, M.; Kematick, R.; Huang, D.; Howard, W.; Spear, K.E.; Phelps, A.W.; Koba, R. Homogeneous nucleation of diamond powder in the gas phase. J. Appl. Phys., 1989, 66(1), 395-399.
[http://dx.doi.org/10.1063/1.343890]
[38]
May, P.W.; Ashfold, M.N.R.; Mankelevich, Y.A. Microcrystalline, nanocrystalline, and ultrananocrystalline diamond chemical vapor deposition: Experiment and modeling of the factors controlling growth rate, nucleation, and crystal size. J. Appl. Phys., 2007, 101(5), 053115.
[http://dx.doi.org/10.1063/1.2696363]
[39]
Fang, X.; Mao, J.; Levin, E.M.; Schmidt, R.K. Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy. J. Am. Chem. Soc., 2009, 131(4), 1426-1435.
[http://dx.doi.org/10.1021/ja8054063] [PMID: 19133766]
[40]
Datta, A.; Fu, Y.; Kirca, M.; To, A. Structure and surface properties of nanodiamonds: A first-principles multiscale approach. Proc. ASME 1st Glob. Congr. Nanoeng. Med. Biol., 2010, pp. 233-235.
[http://dx.doi.org/10.1115/NEMB2010-13266]
[41]
Raty, J.Y.; Galli, G. First principle study of nanodiamond optical and electronic properties. Comput. Phys. Commun., 2005, 169(1-3), 14-19.
[http://dx.doi.org/10.1016/j.cpc.2005.03.005]
[42]
Galli, G. Structure, stability and electronic properties of nanodiamonds. In: Computer-Based Modeling of Novel Carbon Systems and Their Properties. Carbon Materials: Chemistry and Physics; Colombo, L.; Fasolino, A., Eds.; Springer: Germany, 2010; pp. 37-56.
[http://dx.doi.org/10.1007/978-1-4020-9718-8_2]
[43]
Badziag, P.; Verwoerd, W.S.; Ellis, W.P.; Greiner, N.R. Nanometre-sized diamonds are more stable than graphite. Nature, 1990, 343(6255), 244-245.
[http://dx.doi.org/10.1038/343244a0]
[44]
Lee, S.C.; Hwang, N.M.; Yu, B.D.; Kim, D.Y. Effect of the substrate temperatures on the epitaxial rearrangement of the deposited Au nanoclusters. Met. Mater. Int., 2002, 8(5), 423-426.
[http://dx.doi.org/10.1007/BF03027237]
[45]
Brannon, P.L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., 2004, 56(11), 1649-1659.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[46]
Schrand, A.M.; Huang, H.; Carlson, C.; Schlager, J.J.; Eiji, O. Are diamond nanoparticles cytotoxic? J. Phys. Chem., 2007, 111, 2-7.
[47]
Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol., 2005, 39(5), 1378-1383.
[http://dx.doi.org/10.1021/es048729l] [PMID: 15787380]
[48]
Torbati, S.; Bioreactivity, B.; Angeles, L.; Angeles, L.; Science, B.; June, R. Bioconjugate chemistry. Anal. Chem., 1995, 67(5), 159A-159A.
[http://dx.doi.org/10.1021/ac00101a705]
[49]
Vial, S.; Mansuy, C.; Sagan, S.; Irinopoulou, T.; Burlina, F.; Boudou, J.P.; Chassaing, G.; Lavielle, S. Peptide-grafted nanodiamonds: Preparation, cytotoxicity and uptake in cells. ChemBioChem, 2008, 9(13), 2113-2119.
[http://dx.doi.org/10.1002/cbic.200800247] [PMID: 18677739]
[50]
Uthappa, U.T.; Arvind, O.R.; Sriram, G.; Losic, D.; Ho, Y.J.; Kigga, M.; Kurkuri, M.D. Nanodiamonds and their surface modification strategies for drug delivery applications. J. Drug Deliv. Sci. Technol., 2020, 60(March), 101993.
[http://dx.doi.org/10.1016/j.jddst.2020.101993]
[51]
Ho, D.; Ho, D. Beyond the sparkle: The impact of nanodiamonds as biolabeling and therapeutic agents. ACS Nano, 2009, 3(12), 3825-3829.
[http://dx.doi.org/10.1021/nn9016247] [PMID: 20025300]
[52]
Shimkunas, R.A.; Robinson, E.; Lam, R.; Lu, S.; Xu, X.; Zhang, X.Q.; Huang, H.; Osawa, E.; Ho, D. Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials, 2009, 30(29), 5720-5728.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.004] [PMID: 19635632]
[53]
Vaijayanthimala, V.; Lee, D.K.; Kim, S.V.; Yen, A.; Tsai, N.; Ho, D.; Chang, H.C.; Shenderova, O. Nanodiamond-mediated drug delivery and imaging: Challenges and opportunities. Expert Opin. Drug Deliv., 2015, 12(5), 735-749.
[http://dx.doi.org/10.1517/17425247.2015.992412] [PMID: 25510332]
[54]
Chauhan, S.; Jain, N.; Nagaich, U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal., 2020, 10(1), 1-12.
[http://dx.doi.org/10.1016/j.jpha.2019.09.003] [PMID: 32123595]
[55]
Lim, D.G.; Prim, R.E.; Kim, K.H.; Kang, E.; Park, K.; Jeong, S.H. Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int. J. Pharm., 2016, 514(1), 41-51.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.004] [PMID: 27863681]
[56]
Szunerits, S.; Barras, A.; Boukherroub, R. Antibacterial applications of nanodiamonds. Int. J. Environ. Res. Public Health, 2016, 13(4), 413.
[http://dx.doi.org/10.3390/ijerph13040413] [PMID: 27077871]
[57]
Wehling, J.; Dringen, R.; Zare, R.N.; Maas, M.; Rezwan, K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano, 2014, 8(6), 6475-6483.
[http://dx.doi.org/10.1021/nn502230m] [PMID: 24861876]
[58]
Chatterjee, A.; Perevedentseva, E.; Jani, M.; Cheng, C.Y.; Ye, Y.S.; Chung, P.H.; Cheng, C.L. Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J. Biomed. Opt., 2014, 20(5), 051014.
[http://dx.doi.org/10.1117/1.JBO.20.5.051014] [PMID: 25500913]
[59]
Alkahtani, M.H.; Alghannam, F.; Jiang, L.; Almethen, A.; Rampersaud, A.A.; Brick, R.; Gomes, C.L.; Scully, M.O.; Hemmer, P.R. Fluorescent nanodiamonds: Past, present, and future. Nanophotonics, 2018, 7(8), 1423-1453.
[http://dx.doi.org/10.1515/nanoph-2018-0025]
[60]
Laporte, G.; Psaltis, D. STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers. Biomed. Opt. Express, 2016, 7(1), 34-44.
[http://dx.doi.org/10.1364/BOE.7.000034] [PMID: 26819815]
[61]
Kuo, Y.; Hsu, T.Y.; Wu, Y.C.; Hsu, J.H.; Chang, H.C. Fluorescence lifetime imaging microscopy of nanodiamonds in vivo. Adv. Photonics Quantum Comput. Mem. Commun. VI, 2013, 8635, 863503.
[http://dx.doi.org/10.1117/12.2004494]
[62]
Kumar, S.; Nehra, M.; Kedia, D.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Nanodiamonds: Emerging face of future nanotechnology. Carbon, 2019, 143, 678-699.
[http://dx.doi.org/10.1016/j.carbon.2018.11.060]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy