Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Artificial Intelligence in Breast Imaging: A Special Focus on Advances in Digital Mammography & Digital Breast Tomosynthesis

Author(s): Daly Avendaño, Carmelo Sofia, Pedro Zapata, Antonio Portaluri, Alessia Angela Maria Orlando, Pablo Avalos, Alfredo Blandino, Giorgio Ascenti, Servando Cardona-Huerta and Maria Adele Marino*

Volume 19, Issue 8, 2023

Published on: 27 January, 2023

Article ID: e281122211291 Pages: 8

DOI: 10.2174/1573405619666221128102209

Price: $65

Abstract

Breast cancer accounts for 30% of female cancers and is the second leading cause of cancerrelated deaths in women. The rate is rising at 0.4% per year. Early detection is crucial to improve treatment efficacy and overall survival of women diagnosed with breast cancer. Digital Mammography and Digital Breast Tomosynthesis have widely demonstrated their role as a screening tool. However, screening mammography is limited by radiologist’s experience, unnecessarily high recalls, overdiagnosis, overtreatment and, in the case of Digital Breast Tomosynthesis, long reporting time. This is compounded by an increasing shortage of manpower and resources issue, especially among breast imaging specialists. Recent advances in image analysis with the use of artificial intelligence (AI) in breast imaging have the potential to overcome some of these needs and address the clinical challenges in cancer detection, assessment of treatment response, and monitoring disease progression.

This article focuses on the most important clinical implication and future application of AI in the field of digital mammography and digital breast tomosynthesis, providing the readers with a comprehensive overview of AI impact in cancer detection, diagnosis, reduction of workload and breast cancer risk stratification.

Graphical Abstract

[1]
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc 2020; 92(4): 807-12.
[http://dx.doi.org/10.1016/j.gie.2020.06.040] [PMID: 32565184]
[2]
Giger ML, Chan HP, Boone J. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM. Med Phys 2008; 35(12): 5799-820.
[http://dx.doi.org/10.1118/1.3013555] [PMID: 19175137]
[3]
Lehman CD, Wellman RD, Buist DSM, Kerlikowske K, Tosteson ANA, Miglioretti DL. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med 2015; 175(11): 1828-37.
[http://dx.doi.org/10.1001/jamainternmed.2015.5231] [PMID: 26414882]
[4]
Geras KJ, Mann RM, Moy L. Artificial intelligence for mammography and digital breast tomosynthesis: Current concepts and future perspectives. Radiology 2019; 293(2): 246-59.
[http://dx.doi.org/10.1148/radiol.2019182627] [PMID: 31549948]
[5]
Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc Neurol 2017; 2(4): 230-43.
[http://dx.doi.org/10.1136/svn-2017-000101] [PMID: 29507784]
[6]
Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ. Artificial intelligence in breast imaging. Clin Radiol 2019; 74(5): 357-66.
[http://dx.doi.org/10.1016/j.crad.2019.02.006] [PMID: 30898381]
[7]
Yoon JH, Kim EK. Deep learning-based artificial intelligence for mammography. Korean J Radiol 2021; 22(8): 1225-39.
[http://dx.doi.org/10.3348/kjr.2020.1210] [PMID: 33987993]
[8]
Shur JD, Doran SJ, Kumar S, et al. Radiomics in oncology: A practical guide. Radiographics 2021; 41(6): 1717-32.
[http://dx.doi.org/10.1148/rg.2021210037] [PMID: 34597235]
[9]
Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C, Pinker K. AI-enhanced breast imaging: Where are we and where are we heading? Eur J Radiol 2021; 142: 109882.
[http://dx.doi.org/10.1016/j.ejrad.2021.109882] [PMID: 34392105]
[10]
Hickman SE, Baxter GC, Gilbert FJ. Adoption of artificial intelligence in breast imaging: Evaluation, ethical constraints and limitations. Br J Cancer 2021; 125(1): 15-22.
[http://dx.doi.org/10.1038/s41416-021-01333-w] [PMID: 33772149]
[11]
Morgan MB, Mates JL. Applications of artificial intelligence in breast imaging. Radiol Clin North Am 2021; 59(1): 139-48.
[http://dx.doi.org/10.1016/j.rcl.2020.08.007] [PMID: 33222996]
[12]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[13]
Pfeiffer RM, Webb-Vargas Y, Wheeler W, Gail MH. Proportion of U.S. trends in breast cancer incidence attributable to long-term changes in risk factor distributions. Cancer Epidemiol Biomarkers Prev 2018; 27(10): 1214-22.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0098] [PMID: 30068516]
[14]
Lauby-Secretan B, Scoccianti C, Loomis D, et al. Breast-cancer screening - viewpoint of the IARC Working Group. N Engl J Med 2015; 372(24): 2353-8.
[http://dx.doi.org/10.1056/NEJMsr1504363] [PMID: 26039523]
[15]
Tabár L, Yen AMF, Wu WYY, et al. Insights from the breast cancer screening trials: How screening affects the natural history of breast cancer and implications for evaluating service screening programs. Breast J 2015; 21(1): 13-20.
[http://dx.doi.org/10.1111/tbj.12354] [PMID: 25413699]
[16]
Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: An independent review. Lancet 2012; 380(9855): 1778-86.
[http://dx.doi.org/10.1016/S0140-6736(12)61611-0] [PMID: 23117178]
[17]
Wallis MG. Artificial intelligence for the real world of breast screening. Eur J Radiol 2021; 144: 109661.
[http://dx.doi.org/10.1016/j.ejrad.2021.109661] [PMID: 34598013]
[18]
Kerlikowske K, Ma L, Scott CG, et al. Combining quantitative and qualitative breast density measures to assess breast cancer risk. Breast Cancer Res 2017; 19(1): 97.
[http://dx.doi.org/10.1186/s13058-017-0887-5] [PMID: 28830497]
[19]
Phi XA, Saadatmand S, De Bock GH, et al. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: Individual patient data meta-analysis. Br J Cancer 2016; 114(6): 631-7.
[http://dx.doi.org/10.1038/bjc.2016.32] [PMID: 26908327]
[20]
Chong A, Weinstein SP, McDonald ES, Conant EF. Digital breast tomosynthesis: Concepts and clinical practice. Radiology 2019; 292(1): 1-14.
[http://dx.doi.org/10.1148/radiol.2019180760] [PMID: 31084476]
[21]
Korhonen KE, Weinstein SP, McDonald ES, Conant EF. Strategies to increase cancer detection: Review of true-positive and false-negative results at digital breast tomosynthesis screening. Radiographics 2016; 36(7): 1954-65.
[http://dx.doi.org/10.1148/rg.2016160049] [PMID: 27715711]
[22]
Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 2013; 267(1): 47-56.
[http://dx.doi.org/10.1148/radiol.12121373] [PMID: 23297332]
[23]
Tagliafico AS, Calabrese M, Bignotti B, et al. Accuracy and reading time for six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts. Eur Radiol 2017; 27(12): 5179-84.
[http://dx.doi.org/10.1007/s00330-017-4918-5] [PMID: 28643094]
[24]
Wing P, Langelier MH. Workforce shortages in breast imaging: Impact on mammography utilization. AJR Am J Roentgenol 2009; 192(2): 370-8.
[http://dx.doi.org/10.2214/AJR.08.1665] [PMID: 19155396]
[25]
Rimmer A. Radiologist shortage leaves patient care at risk, warns royal college. BMJ 2017; 359: j4683.
[http://dx.doi.org/10.1136/bmj.j4683] [PMID: 29021184]
[26]
Pacilè S, Lopez J, Chone P, Bertinotti T, Grouin JM, Fillard P. Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool. Radiol Artif Intell 2020; 2(6): e190208.
[http://dx.doi.org/10.1148/ryai.2020190208] [PMID: 33937844]
[27]
Sasaki M, Tozaki M, Rodríguez-Ruiz A, et al. Artificial intelligence for breast cancer detection in mammography: Experience of use of the ScreenPoint Medical Transpara system in 310 Japanese women. Breast Cancer 2020; 27(4): 642-51.
[http://dx.doi.org/10.1007/s12282-020-01061-8] [PMID: 32052311]
[28]
Conant EF, Toledano AY, Periaswamy S, et al. Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol Artif Intell 2019; 1(4): e180096.
[http://dx.doi.org/10.1148/ryai.2019180096] [PMID: 32076660]
[29]
Watanabe AT, Lim V, Vu HX, et al. Improved cancer detection using artificial intelligence: A retrospective evaluation of missed cancers on mammography. J Digit Imaging 2019; 32(4): 625-37.
[http://dx.doi.org/10.1007/s10278-019-00192-5] [PMID: 31011956]
[30]
Rodríguez-Ruiz A, Krupinski E, Mordang JJ, et al. Detection of breast cancer with mammography: Effect of an artificial intelligence support system. Radiology 2019; 290(2): 305-14.
[http://dx.doi.org/10.1148/radiol.2018181371] [PMID: 30457482]
[31]
Romero-Martín S, Elías-Cabot E, Raya-Povedano JL, Gubern-Mérida A, Rodríguez-Ruiz A, Álvarez-Benito M. Stand-alone use of artificial intelligence for digital mammography and digital breast tomosynthesis screening: A retrospective evaluation. Radiology 2022; 302(3): 535-42.
[http://dx.doi.org/10.1148/radiol.211590] [PMID: 34904872]
[32]
Wu N, Phang J, Park J, et al. Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging 2020; 39(4): 1184-94.
[http://dx.doi.org/10.1109/TMI.2019.2945514] [PMID: 31603772]
[33]
Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study. Lancet Digit Health 2020; 2(3): e138-48.
[http://dx.doi.org/10.1016/S2589-7500(20)30003-0] [PMID: 33334578]
[34]
Schaffter T, Buist DSM, Lee CI, et al. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw Open 2020; 3(3): e200265.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.0265] [PMID: 32119094]
[35]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology 2016; 278(2): 563-77.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
[36]
Woodard GA, Ray KM, Joe BN, Price ER. Qualitative radiogenomics: Association between oncotype DX test recurrence score and BI-RADS mammographic and breast MR imaging features. Radiology 2018; 286(1): 60-70.
[http://dx.doi.org/10.1148/radiol.2017162333] [PMID: 28885890]
[37]
Elias SG, Adams A, Wisner DJ, et al. Imaging features of HER2 overexpression in breast cancer: A systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2014; 23(8): 1464-83.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1170] [PMID: 24807204]
[38]
Shi B, Grimm LJ, Mazurowski MA, et al. Prediction of occult invasive disease in ductal carcinoma in situ using deep learning features. J Am Coll Radiol 2018; 15(3): 527-34.
[http://dx.doi.org/10.1016/j.jacr.2017.11.036] [PMID: 29398498]
[39]
Li J, Song Y, Xu S, et al. Predicting underestimation of ductal carcinoma in situ: A comparison between radiomics and conventional approaches. Int J CARS 2019; 14(4): 709-21.
[http://dx.doi.org/10.1007/s11548-018-1900-x] [PMID: 30569330]
[40]
Stelzer PD, Steding O, Raudner MW, Euller G, Clauser P, Baltzer PAT. Combined texture analysis and machine learning in suspicious calcifications detected by mammography: Potential to avoid unnecessary stereotactical biopsies. Eur J Radiol 2020; 132: 109309.
[http://dx.doi.org/10.1016/j.ejrad.2020.109309] [PMID: 33010682]
[41]
Li H, Mendel KR, Lan L, Sheth D, Giger ML. Digital mammography in breast cancer: Additive value of radiomics of breast parenchyma. Radiology 2019; 291(1): 15-20.
[http://dx.doi.org/10.1148/radiol.2019181113] [PMID: 30747591]
[42]
Rodriguez-Ruiz A, Lång K, Gubern-Merida A, et al. Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists. J Natl Cancer Inst 2019; 111(9): 916-22.
[http://dx.doi.org/10.1093/jnci/djy222] [PMID: 30834436]
[43]
Lång K, Dustler M, Dahlblom V, Åkesson A, Andersson I, Zackrisson S. Identifying normal mammograms in a large screening population using artificial intelligence. Eur Radiol 2021; 31(3): 1687-92.
[http://dx.doi.org/10.1007/s00330-020-07165-1] [PMID: 32876835]
[44]
Yala A, Schuster T, Miles R, Barzilay R, Lehman C. A deep learning model to triage screening mammograms: A simulation study. Radiology 2019; 293(1): 38-46.
[http://dx.doi.org/10.1148/radiol.2019182908] [PMID: 31385754]
[45]
Kyono T, Gilbert FJ, van der Schaar M. Improving workflow efficiency for mammography using machine learning. J Am Coll Radiol 2020; 17(1): 56-63.
[http://dx.doi.org/10.1016/j.jacr.2019.05.012] [PMID: 31153798]
[46]
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature 2020; 577(7788): 89-94.
[http://dx.doi.org/10.1038/s41586-019-1799-6] [PMID: 31894144]
[47]
Dembrower K, Wåhlin E, Liu Y, et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study. Lancet Digit Health 2020; 2(9): e468-74.
[http://dx.doi.org/10.1016/S2589-7500(20)30185-0] [PMID: 33328114]
[48]
Raya-Povedano JL, Romero-Martín S, Elías-Cabot E, Gubern-Mérida A, Rodríguez-Ruiz A, Álvarez-Benito M. AI-based strategies to reduce workload in breast cancer screening with mammography and tomosynthesis: A retrospective evaluation. Radiology 2021; 300(1): 57-65.
[http://dx.doi.org/10.1148/radiol.2021203555] [PMID: 33944627]
[49]
Hickman SE, Woitek R, Le EPV, et al. Machine learning for workflow applications in screening mammography: Systematic review and meta-analysis. Radiology 2022; 302(1): 88-104.
[http://dx.doi.org/10.1148/radiol.2021210391] [PMID: 34665034]
[50]
Shoshan Y, Bakalo R, Gilboa-Solomon F, et al. Artificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesis. Radiology 2022; 303(1): 69-77.
[http://dx.doi.org/10.1148/radiol.211105] [PMID: 35040677]
[51]
Martin LJ, Boyd NF. Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: Hypotheses based on epidemiological evidence. Breast Cancer Res 2008; 10(S1): 201.
[http://dx.doi.org/10.1186/bcr1831] [PMID: 18226174]
[52]
Byng JW, Yaffe MJ, Jong RA, et al. Analysis of mammographic density and breast cancer risk from digitized mammograms. Radiographics 1998; 18(6): 1587-98.
[http://dx.doi.org/10.1148/radiographics.18.6.9821201] [PMID: 9821201]
[53]
McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15(6): 1159-69.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0034] [PMID: 16775176]
[54]
Pettersson A, Graff RE, Ursin G, et al. Mammographic density phenotypes and risk of breast cancer: A meta-analysis. J Natl Cancer Inst 2014; 106(5): dju078.
[http://dx.doi.org/10.1093/jnci/dju078] [PMID: 24816206]
[55]
Byrne C. Mammographic density. Acad Radiol 2002; 9(3): 253-5.
[http://dx.doi.org/10.1016/S1076-6332(03)80367-7] [PMID: 11887941]
[56]
Boyd NF, Rommens JM, Vogt K, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 2005; 6(10): 798-808.
[http://dx.doi.org/10.1016/S1470-2045(05)70390-9] [PMID: 16198986]
[57]
Lee CI, Bassett LW, Lehman CD. Breast density legislation and opportunities for patient-centered outcomes research. Radiology 2012; 264(3): 632-6.
[http://dx.doi.org/10.1148/radiol.12120184] [PMID: 22919037]
[58]
Gierach GL, Ichikawa L, Kerlikowske K, et al. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst 2012; 104(16): 1218-27.
[http://dx.doi.org/10.1093/jnci/djs327] [PMID: 22911616]
[59]
Kopans DB. Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk. Radiology 2008; 246(2): 348-53.
[http://dx.doi.org/10.1148/radiol.2461070309] [PMID: 18227535]
[60]
Vachon CM, van Gils CH, Sellers TA, et al. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res 2007; 9(6): 217.
[http://dx.doi.org/10.1186/bcr1829] [PMID: 18190724]
[61]
Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 2003; 138(3): 168-75.
[http://dx.doi.org/10.7326/0003-4819-138-3-200302040-00008] [PMID: 12558355]
[62]
Kerlikowske K, Hubbard RA, Miglioretti DL, et al. Comparative effectiveness of digital versus film-screen mammography in community practice in the United States: A cohort study. Ann Intern Med 2011; 155(8): 493-502.
[http://dx.doi.org/10.7326/0003-4819-155-8-201110180-00005] [PMID: 22007043]
[63]
Sartor H, Lång K, Rosso A, Borgquist S, Zackrisson S, Timberg P. Measuring mammographic density: Comparing a fully automated volumetric assessment versus European radiologists’ qualitative classification. Eur Radiol 2016; 26(12): 4354-60.
[http://dx.doi.org/10.1007/s00330-016-4309-3] [PMID: 27011371]
[64]
Lehman CD, Yala A, Schuster T, et al. Mammographic breast density assessment using deep learning: Clinical implementation. Radiology 2019; 290(1): 52-8.
[http://dx.doi.org/10.1148/radiol.2018180694] [PMID: 30325282]
[65]
Wanders AJT, Mees W, Bun PAM, et al. Interval cancer detection using a neural network and breast density in women with negative screening mammograms. Radiology 2022; 303(2): 269-75.
[http://dx.doi.org/10.1148/radiol.210832] [PMID: 35133194]
[66]
American Cancer Society. Can I Lower My Risk of Breast Cancer? Available from: https://www.cancer.org/cancer/breast-cancer/risk-and-prevention/can-i-lower-my-risk.html (Accessed on: 25 Feb 2022).
[67]
Brentnall AR, Evans DG, Cuzick J. Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK. Br J Cancer 2014; 110(3): 827-8.
[http://dx.doi.org/10.1038/bjc.2013.747] [PMID: 24448363]
[68]
Matsuno RK, Costantino JP, Ziegler RG, et al. Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. J Natl Cancer Inst 2011; 103(12): 951-61.
[http://dx.doi.org/10.1093/jnci/djr154] [PMID: 21562243]
[69]
Gail MH. Twenty-five years of breast cancer risk models and their applications. J Natl Cancer Inst 2015; 107(5): djv042.
[http://dx.doi.org/10.1093/jnci/djv042] [PMID: 25722355]
[70]
Boggs DA, Rosenberg L, Adams-Campbell LL, Palmer JR. Prospective approach to breast cancer risk prediction in African American women: The black women’s health study model. J Clin Oncol 2015; 33(9): 1038-44.
[http://dx.doi.org/10.1200/JCO.2014.57.2750] [PMID: 25624428]
[71]
Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 2019; 292(1): 60-6.
[http://dx.doi.org/10.1148/radiol.2019182716] [PMID: 31063083]
[72]
Dembrower K, Liu Y, Azizpour H, et al. Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction. Radiology 2020; 294(2): 265-72.
[http://dx.doi.org/10.1148/radiol.2019190872] [PMID: 31845842]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy