Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Study of the Protective Properties of 2-Ethyl-6-Methyl-3-Hydroxypyridine Malate in the Model of In vitro-Induced Oxidative Stress in Myoblast Cell Culture

Author(s): Vladimir A. Furalyov, Vladimir G. Kukes, Albina А. Gazdanova, Olga K. Parfenova, Nikita G. Sidorov and Roman V. Kurkin*

Volume 19, Issue 6, 2023

Published on: 18 January, 2023

Article ID: e221122211123 Pages: 6

DOI: 10.2174/1573407219666221122122346

Price: $65

Abstract

Background: A cellular model of oxidative stress induced by hydrogen peroxide in the primary culture of myoblasts was obtained by in vitro experiments, and the possibility of exogenous regulation of the cytotoxic effect using 2-ethyl-6-methyl-3-hydroxypyridine malate (ethoxidol) was studied. Moreover, the influence of oxidative stress and the effect of ethoxidol on the intracellular expression of such an important biomarker as myostatin was investigated.

Methods: Hydrogen peroxide was used to induce oxidative stress. The effect of hydrogen peroxide on the rate of myoblast proliferation was studied by measuring the reduction level of (3-(4,5- dimethylthiazole-2-yl))-2,5-diphenyltetrazolium bromide. To measure the expression of myostatin, a real-time polymerase chain reaction (PCR-RV) method was used.

Results: During the work, it was clearly demonstrated that hydrogen peroxide has a significant cytostatic effect on myoblasts in vitro, inhibiting their proliferation. Ethoxidol in physiological concentration did not show toxic effects and did not inhibit cell proliferation. This antioxidant revealed a statistically significant protective effect on the cytostatic effect of hydrogen peroxide on myoblasts. In addition, this compound inhibited the expression of myostatin mRNA caused by exposure to hydrogen peroxide as a negative regulator of growth and differentiation of muscle tissue that occurs in response to exposure to reactive oxygen species.

Conclusion: Hydrogen peroxide is one of the highly active forms of oxygen and has a significant cytostatic effect on myoblasts in vitro, suppressing their proliferation. 2-ethyl-6-methyl-3- hydroxypyridine malate neutralizes the toxic effect of peroxide, thereby indirectly having a positive effect on the rate of myoblast proliferation in vitro.

Graphical Abstract

[1]
Checa, J.; Aran, J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res., 2020, 13, 1057-1073.
[http://dx.doi.org/10.2147/JIR.S275595] [PMID: 33293849]
[2]
Jackson, M.J.; Stretton, C.; McArdle, A. Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: What do concentrations tell us about potential mechanisms? Redox Biol., 2020, 35101484
[http://dx.doi.org/10.1016/j.redox.2020.101484] [PMID: 32184060]
[3]
Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med., 2016, 100, 14-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.001] [PMID: 27085844]
[4]
Hyslop, P.A.; Chaney, M.O. Mechanism of GAPDH redox signaling by H2O2 activation of a two-cysteine switch. Int. J. Mol. Sci., 2022, 23(9), 4604.
[http://dx.doi.org/10.3390/ijms23094604] [PMID: 35562998]
[5]
Sousa, T.; Oliveira, S.; Afonso, J.; Morato, M.; Patinha, D.; Fraga, S.; Carvalho, F.; Albino-Teixeira, A. Role of H2O2 in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br. J. Pharmacol., 2012, 166(8), 2386-2401.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01957.x] [PMID: 22452317]
[6]
Chen, L.; Liu, L.; Yin, J.; Luo, Y.; Huang, S. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int. J. Biochem. Cell Biol., 2009, 41(6), 1284-1295.
[http://dx.doi.org/10.1016/j.biocel.2008.10.029] [PMID: 19038359]
[7]
Xu, L.; He, S.S.; Li, D.Y.; Mei, C.; Hou, X.L.; Jiang, L.S.; Liu, F.H. Hydrogen peroxide induces oxidative stress and the mitochondrial pathway of apoptosis in RAT intestinal epithelial cells (IEC-6) Mol. Biol. (Mosk.), 2016, 50(2), 311-319.
[http://dx.doi.org/10.7868/S0026898416020269] [PMID: 27239852]
[8]
Razquin, C.; Martinez, J.A.; Martinez-Gonzalez, M.A.; Mitjavila, M.T.; Estruch, R.; Marti, A.A. 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur. J. Clin. Nutr., 2009, 63(12), 1387-1393.
[http://dx.doi.org/10.1038/ejcn.2009.106] [PMID: 19707219]
[9]
Nazarov, P.A.; Osterman, I.A.; Tokarchuk, A.V.; Karakozova, M.V.; Korshunova, G.A.; Lyamzaev, K.G.; Skulachev, M.V.; Kotova, E.A.; Skulachev, V.P.; Antonenko, Y.N. Mitochondria-targeted antioxidants as highly effective antibiotics. Sci. Rep., 2017, 7(1), 1394.
[http://dx.doi.org/10.1038/s41598-017-00802-8] [PMID: 28469140]
[10]
Sriram, S.; Subramanian, S.; Sathiakumar, D.; Venkatesh, R.; Salerno, M.S.; McFarlane, C.D.; Kambadur, R.; Sharma, M. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell, 2011, 10(6), 931-948.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00734.x] [PMID: 21771249]
[11]
Glass, D.J.; Spiegelman, B.M. Se-Jin Lee, myostatin discoverer, elected to the National Academy of Science. Skelet. Muscle, 2012, 2(1), 11.
[http://dx.doi.org/10.1186/2044-5040-2-11] [PMID: 22676848]
[12]
Baig, M.H.; Ahmad, K.; Moon, J.S.; Park, S.Y.; Ho Lim, J.; Chun, H.J.; Qadri, A.F.; Hwang, Y.C.; Jan, A.T.; Ahmad, S.S.; Ali, S.; Shaikh, S.; Lee, E.J.; Choi, I. Myostatin and its regulation: A comprehensive review of myostatin inhibiting strategies. Front. Physiol., 2022, 13876078
[http://dx.doi.org/10.3389/fphys.2022.876078] [PMID: 35812316]
[13]
Kukes, V.G.; Gazdanova, A.A.; Furalev, V.A.; Marinin, V.F.; Perkov, A.V.; Lenkova, N.I.; Solovyeva, S.A.; Ryazantseva, O.V. Modern conception of myostatin biological role and clinical significance as the main regulator of muscle growth and differentiation. Med. News North Caucasus, 2021, 16(3), 327-332.
[http://dx.doi.org/10.14300/mnnc.2021.16079]
[14]
Consitt, L.A.; Clark, B.C. The vicious cycle of myostatin signaling in sarcopenic obesity: Myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials. J. Frailty Aging, 2017, 7(1), 1-7.
[http://dx.doi.org/10.14283/jfa.2017.33] [PMID: 29412438]
[15]
Gazdanova, A.A.; Kukes, V.G.; Parfenova, O.K.; Sidorov, N.G.; Perkov, A.V.; Solovieva, S.A.; Ryazantseva, O.V.; Lenkova, N.I. Myostatin - a modern understanding of the physiological role and significance in the development of age-associated diseases. Adv. Gerontol., 2021, 34(5), 701-706.
[PMID: 34998007]
[16]
Petersen, A.M.W.; Magkos, F.; Atherton, P.; Selby, A.; Smith, K.; Rennie, M.J.; Pedersen, B.K.; Mittendorfer, B. Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle. Am. J. Physiol. Endocrinol. Metab., 2007, 293(3), E843-E848.
[http://dx.doi.org/10.1152/ajpendo.00301.2007] [PMID: 17609255]
[17]
Yaden, B.C.; Croy, J.E.; Wang, Y.; Wilson, J.M.; Datta-Mannan, A.; Shetler, P.; Milner, A.; Bryant, H.U.; Andrews, J.; Dai, G.; Krishnan, V. Follistatin: A novel therapeutic for the improvement of muscle regeneration. J. Pharmacol. Exp. Ther., 2014, 349(2), 355-371.
[http://dx.doi.org/10.1124/jpet.113.211169] [PMID: 24627466]
[18]
Parfenova, O.K.; Kukes, V.G.; Grishin, D.V. Follistatin-like proteins: Structure, functions and biomedical importance. Biomedicines, 2021, 9(8), 999.
[http://dx.doi.org/10.3390/biomedicines9080999] [PMID: 34440203]
[19]
Smith, R.C.; Lin, B.K. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr. Opin. Support. Palliat. Care, 2013, 7(4), 352-360.
[http://dx.doi.org/10.1097/SPC.0000000000000013] [PMID: 24157714]
[20]
Liu, J.; Pan, M.; Huang, D.; Guo, Y.; Yang, M.; Zhang, W.; Mai, K. Myostatin-1 inhibits cell proliferation by inhibiting the mTOR signal pathway and MRFs, and activating the ubiquitin-proteasomal system in skeletal muscle cells of Japanese flounder Paralichthys olivaceus. Cells, 2020, 9(11), 2376.
[http://dx.doi.org/10.3390/cells9112376] [PMID: 33138208]
[21]
Delafontaine, P.; Akao, M. Angiotensin II as candidate of cardiac cachexia. Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9(3), 220-224.
[http://dx.doi.org/10.1097/01.mco.0000222103.29009.70] [PMID: 16607120]
[22]
Enroth, S.; Maturi, V.; Berggrund, M.; Enroth, S.B.; Moustakas, A.; Johansson, Å.; Gyllensten, U. Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases. Sci. Rep., 2018, 8(1), 5531.
[http://dx.doi.org/10.1038/s41598-018-23860-y] [PMID: 29615742]
[23]
Kukes, V.G.; Olefir, Yu.V.; Romanov, B.K.; Prokofiev, A.B.; Parfenova, E.V.; Boldyreva, M.A.; Goroshko, O.A.; Parfenova, O.K.; Gazdanova, A.A.; Demchenkova, E.Yu. The mechanism of action of Follistatin-like Protein-1 (FSTL-1). Bull. Sci. Centre Expert Eval. Med. Prod., 2019, 9(4), 256-260.
[http://dx.doi.org/10.30895/1991-2919-2019-9-4-256-260]
[24]
Rando, T.A.; Blau, H.M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol., 1994, 125(6), 1275-1287.
[http://dx.doi.org/10.1083/jcb.125.6.1275] [PMID: 8207057]
[25]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods, 1986, 89(2), 271-277.
[http://dx.doi.org/10.1016/0022-1759(86)90368-6] [PMID: 3486233]
[26]
Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc.,, 2018, 2018(6) pdb.prot095505.
[http://dx.doi.org/10.1101/pdb.prot095505] [PMID: 29858338]
[27]
Artaza, J.N.; Bhasin, S.; Magee, T.R.; Reisz-Porszasz, S.; Shen, R.; Groome, N.P.; Fareez, M.M.; Gonzalez-Cadavid, N.F. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology, 2005, 146(8), 3547-3557.
[http://dx.doi.org/10.1210/en.2005-0362] [PMID: 15878958]
[28]
Hayot, M.; Rodriguez, J.; Vernus, B.; Carnac, G.; Jean, E.; Allen, D.; Goret, L.; Obert, P.; Candau, R.; Bonnieu, A. Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli. Mol. Cell. Endocrinol., 2011, 332(1-2), 38-47.
[http://dx.doi.org/10.1016/j.mce.2010.09.008] [PMID: 20884321]
[29]
Kukes, V.G.; Parfenova, O.K.; Romanov, B.K.; Prokofiev, A.B.; Parfenova, E.V.; Sidorov, N.G.; Gazdanova, A.A.; Pavlova, L.I.; Zozina, V.I.; Andreev, A.D.; Aleksandrova, T.V.; Chernova, S.V.; Ramenskaya, G.V. The mechanism of action of ethoxidol on oxidative stress indices in heart failure and hypotension. Sovrem. Tekhnologii Med., 2020, 12(2), 67-72.
[http://dx.doi.org/10.17691/stm2020.12.2.08] [PMID: 34513055]
[30]
Goroshko, O.A.; Novikov, K.N.; Kukes, V.G.; Voeikov, V.L.; Arkhipov, V.V.; Buravleva, E.V.; Berdnikova, N.G.; Zhestovskaya, A.S. Correction of oxidative stress in patients with chronic cerebral ischemia. Klin. Med. (Mosk.), 2016, 94(7), 549-553.
[http://dx.doi.org/10.18821/0023-2149-2016-94-7-549-553] [PMID: 30289222]
[31]
Furalyov, V.A.; Kukes, V.G.; Gazdanova, A.A. A study of cytotoxic effect of the uremic toxin indoxyl sulfate on myoblasts in vitro, the expression of myostatin mRNA in myoblast cell culture, and the possibility of exogenous regulation. Nephrol. Dial., 2021, 23(2), 219-224.
[http://dx.doi.org/10.28996/2618-9801-2021-2-219-224]
[32]
Parfenova, E.V.; Zubkova, E.S.; Boldyreva, M.A.; Tsokolaeva, Z.I.; Olefir, Yu.V.; Romanov, B.K.; Prokofiev, A.B.; Kukes, V.G.; Goroshko, O.A.; Aleksandrova, T.V.; Gazdanova, A.A.; Parfenova, O.K.; Sidorov, N.G.; Andreev, A.D. Study of the influence of etoxidol on expression of follistatin-like protein-1 (FSTL-1) in myocardium after experimental infarction in rats. Biomed. Khim., 2020, 66(3), 250-256.
[http://dx.doi.org/10.18097/PBMC20206603250] [PMID: 32588831]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy