Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

FASN Inhibitors Enhance Bestatin-Related Tumor Cell Apoptosis Through Upregulating PEPT1

Author(s): Jun Ni, Yue Shang, Wen-die Wang, Chen Wang, Ai-min Wang, Gao-jie Li and Shu-zhen Chen*

Volume 16, Issue 7, 2023

Published on: 18 January, 2023

Article ID: e211122211071 Pages: 16

DOI: 10.2174/1874467216666221121121549

Price: $65

Abstract

Background: Fatty acid synthase (FASN) is generally over-expressed in human tumor tissues and catalyzes de novo synthesis of fatty acids on which tumor cells depend. Bestatin, an inhibitor of aminopeptidase/CD13, is one of the dipeptide substrates for the human oligopeptide transporter 1 (PEPT1).

Objectives: In the current study, we aimed to uncover the role of FASN inhibitors in bestatininduced tumor cell apoptosis and the underlying mechanism, extending our understanding of the correlations between FASN and PEPT1 in cancer and providing a new strategy for tumor targeted treatment.

Methods: Cerulenin, orlistat and siRNAs were applied to inhibit FASN. The cell viability and apoptosis were assessed with MTT (thiazolyl blue tetrazolium bromide) assays and annexin VFITC/ PI staining with flow cytometry analysis. Western blot and qRT-PCR analysis were used to detect the protein levels and mRNA levels of the indicated genes in tumor cells, respectively. Protein degradation or stability was examined with cycloheximide chase assays. CD13 activity was detected by gelatin zymography. The HT1080 and C26 xenografts models were conducted to assess the efficacy in vivo.

Results: In the current study, we found that inhibiting FASN by cerulenin and orlistat both augmented the effects of bestatin in decreasing tumor cell viability. Cerulenin increased the apoptosis rates and enhanced the cleavage of PARP caused by bestatin. Furthermore, cerulenin, orlistat and siFASNs markedly elevated PEPT1 protein levels. Indeed, cerulenin induced the upregulation of PEPT1 mRNA expression rather than affecting the protein level after the cells were treated with CHX. And Gly-Sar, a typical competitive substrate of PEPT1, could attenuate the augment of bestatin-induced cell killing by cerulenin. Moreover, synergistic restrain of tumor growth accompanied by a reduction of Ki-67 and increment of TUNEL was significantly achieved in the xenograft models. Interestingly, no clear correlation was observed between the CD13 with FASN and/or PEPT1 in tumor cells.

Conclusion: FASN inhibitors facilitate tumor cells susceptible to bestatin-induced apoptosis involving the up-regulation of PEPT1 at the mRNA translation level and the transport of bestatin by PEPT1, emerging as a promising strategy for tumor targeted therapy.

Graphical Abstract

[1]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[2]
Nakagawa, T.; Lanaspa, M.A.; Millan, I.S.; Fini, M.; Rivard, C.J.; Sanchez-Lozada, L.G.; Andres-Hernando, A.; Tolan, D.R.; Johnson, R.J. Fructose contributes to the Warburg effect for cancer growth. Cancer Metab., 2020, 8(1), 16.
[http://dx.doi.org/10.1186/s40170-020-00222-9] [PMID: 32670573]
[3]
Warburg, O. On respiratory impairment in cancer cells. Science, 1956, 124(3215), 269-270.
[http://dx.doi.org/10.1126/science.124.3215.269] [PMID: 13351639]
[4]
Veigel, D.; Wagner, R.; Stübiger, G.; Wuczkowski, M.; Filipits, M.; Horvat, R.; Benhamú, B.; López-Rodríguez, M.L.; Leisser, A.; Valent, P.; Grusch, M.; Hegardt, F.G.; García, J.; Serra, D.; Auersperg, N.; Colomer, R.; Grunt, T.W. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int. J. Cancer, 2015, 136(9), 2078-2090.
[http://dx.doi.org/10.1002/ijc.29261] [PMID: 25302649]
[5]
Buckley, D.; Duke, G.; Heuer, T.S.; O’Farrell, M.; Wagman, A.S.; McCulloch, W.; Kemble, G. Fatty acid synthase – Modern tumor cell biology insights into a classical oncology target. Pharmacol. Ther., 2017, 177, 23-31.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.021] [PMID: 28202364]
[6]
Rahman, M.T.; Nakayama, K.; Ishikawa, M.; Rahman, M.; Katagiri, H.; Katagiri, A.; Ishibashi, T.; Iida, K.; Miyazaki, K. Fatty acid synthase is a potential therapeutic target in estrogen receptor-/progesterone receptor-positive endometrioid endometrial cancer. Oncology, 2013, 84(3), 166-173.
[http://dx.doi.org/10.1159/000342967] [PMID: 23306391]
[7]
Jones, S.F.; Infante, J.R. Molecular pathways: Fatty acid synthase. Clin. Cancer Res., 2015, 21(24), 5434-5438.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0126] [PMID: 26519059]
[8]
Zhao, Y.; Butler, E.B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis., 2013, 4(3), e532.
[http://dx.doi.org/10.1038/cddis.2013.60] [PMID: 23470539]
[9]
Agostini, M.; Almeida, L.Y.; Bastos, D.C.; Ortega, R.M.; Moreira, F.S.; Seguin, F.; Zecchin, K.G.; Raposo, H.F.; Oliveira, H.C.F.; Amoêdo, N.D.; Salo, T.; Coletta, R.D.; Graner, E. The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas. Mol. Cancer Ther., 2014, 13(3), 585-595.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1136] [PMID: 24362464]
[10]
Jafari, N.; Drury, J.; Morris, A.J.; Onono, F.O.; Stevens, P.D.; Gao, T.; Liu, J.; Wang, C.; Lee, E.Y.; Weiss, H.L.; Evers, B.M.; Zaytseva, Y.Y. De Novo fatty acid synthesis-driven sphingolipid metabolism promotes metastatic potential of colorectal cancer. Mol. Cancer Res., 2019, 17(1), 140-152.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0199] [PMID: 30154249]
[11]
Murata, S.; Yanagisawa, K.; Fukunaga, K.; Oda, T.; Kobayashi, A.; Sasaki, R.; Ohkohchi, N. Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice. Cancer Sci., 2010, 101(8), 1861-1865.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01596.x] [PMID: 20491775]
[12]
Schcolnik-Cabrera, A.; Chávez-Blanco, A.; Domínguez-Gómez, G.; Taja-Chayeb, L.; Morales-Barcenas, R.; Trejo-Becerril, C.; Perez-Cardenas, E.; Gonzalez-Fierro, A.; Dueñas-González, A. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin. Investig. Drugs, 2018, 27(5), 475-489.
[http://dx.doi.org/10.1080/13543784.2018.1471132] [PMID: 29723075]
[13]
Rae, C.; Fragkoulis, G.I.; Chalmers, A.J. Cytotoxicity and radiosensitizing activity of the fatty acid synthase inhibitor C75 is enhanced by blocking fatty acid uptake in prostate cancer cells. Adv. Radiat. Oncol., 2020, 5(5), 994-1005.
[http://dx.doi.org/10.1016/j.adro.2020.06.022] [PMID: 33083663]
[14]
Du, Y.; Tian, C.; Wang, M.; Huang, D.; Wei, W.; Liu, Y.; Li, L.; Sun, B.; Kou, L.; Kan, Q.; Liu, K.; Luo, C.; Sun, J.; He, Z. Dipeptide-modified nanoparticles to facilitate oral docetaxel delivery: New insights into PepT1-mediated targeting strategy. Drug Deliv., 2018, 25(1), 1403-1413.
[http://dx.doi.org/10.1080/10717544.2018.1480675] [PMID: 29890854]
[15]
Wang, C.Y.; Liu, S.; Xie, X.N.; Tan, Z.R. Regulation profile of the intestinal peptide transporter 1 (PepT1). Drug Des. Devel. Ther., 2017, 11, 3511-3517.
[http://dx.doi.org/10.2147/DDDT.S151725] [PMID: 29263649]
[16]
Newstead, S. Recent advances in understanding proton coupled peptide transport via the POT family. Curr. Opin. Struct. Biol., 2017, 45, 17-24.
[http://dx.doi.org/10.1016/j.sbi.2016.10.018] [PMID: 27865112]
[17]
Minhas, G.S.; Newstead, S. Recent advances in understanding prodrug transport through the SLC15 family of proton-coupled transporters. Biochem. Soc. Trans., 2020, 48(2), 337-346.
[http://dx.doi.org/10.1042/BST20180302] [PMID: 32219385]
[18]
Xie, Y.; Hu, Y.; Smith, D.E. The proton-coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5-aminolevulinic acid. Br. J. Pharmacol., 2016, 173(1), 167-176.
[http://dx.doi.org/10.1111/bph.13356] [PMID: 26444978]
[19]
Fujiwara, K.; Shin, M.; Yoshizaki, Y.; Miyazaki, T.; Saita, T. Immunocytochemistry for bestatin and its application to drug accumulation studies in rat intestine and kidney. J. Mol. Histol., 2011, 42(6), 589-596.
[http://dx.doi.org/10.1007/s10735-011-9365-z] [PMID: 22006287]
[20]
Tamai, I.; Nakanishi, T.; Hayashi, K.; Terao, T.; Sai, Y.; Shiraga, T.; Miyamoto, K.I.; Takeda, E.; Higashida, H.; Tsuji, A. The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of beta-lactam antibiotics in the rat small intestine. J. Pharm. Pharmacol., 2011, 49(8), 796-801.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06115.x] [PMID: 9379359]
[21]
Zietek, T.; Giesbertz, P.; Ewers, M.; Reichart, F.; Weinmüller, M.; Urbauer, E.; Haller, D.; Demir, I.E.; Ceyhan, G.O.; Kessler, H.; Rath, E. Organoids to study intestinal nutrient transport, drug uptake and metabolism – update to the human model and expansion of applications. Front. Bioeng. Biotechnol., 2020, 8, 577656.
[http://dx.doi.org/10.3389/fbioe.2020.577656] [PMID: 33015026]
[22]
Abe, F.; Alvord, G.; Koyama, M.; Matsuda, A.; Talmadge, J. Pharmacokinetics of bestatin and oral activity for treatment of experimental metastases. Cancer Immunol. Immunother., 1989, 28(1), 29-33.
[http://dx.doi.org/10.1007/BF00205797] [PMID: 2909281]
[23]
Lkhagvaa, B.; Tani, K.; Sato, K.; Toyoda, Y.; Suzuka, C.; Sone, S. Bestatin, an inhibitor for aminopeptidases, modulates the production of cytokines and chemokines by activated monocytes and macrophages. Cytokine, 2008, 44(3), 386-391.
[http://dx.doi.org/10.1016/j.cyto.2008.10.011] [PMID: 19036603]
[24]
Ni, J.; Wang, X.; Shang, Y.; Li, Y.; Chen, S. CD13 inhibition augments DR4-induced tumor cell death in a p-ERK1/2-independent manner. Cancer Biol. Med., 2021, 18(2), 569-586.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0196] [PMID: 33710811]
[25]
Lv, X.; Liu, F.; Shang, Y.; Chen, S.Z. Honokiol exhibits enhanced antitumor effects with chloroquine by inducing cell death and inhibiting autophagy in human non-small cell lung cancer cells. Oncol. Rep., 2015, 34(3), 1289-1300.
[http://dx.doi.org/10.3892/or.2015.4091] [PMID: 26136140]
[26]
Guha, S.; Alvarez, S.; Majumder, K. Transport of dietary anti-inflammatory peptide, γ-Glutamyl Valine (γ-EV), across the Intestinal Caco-2 Monolayer. Nutrients, 2021, 13(5), 1448.
[http://dx.doi.org/10.3390/nu13051448] [PMID: 33923345]
[27]
Mitsuoka, K.; Kato, Y.; Miyoshi, S.; Murakami, Y.; Hiraiwa, M.; Kubo, Y.; Nishimura, S.; Tsuji, A. Inhibition of oligopeptide transporter suppress growth of human pancreatic cancer cells. Eur. J. Pharm. Sci., 2010, 40(3), 202-208.
[http://dx.doi.org/10.1016/j.ejps.2010.03.010] [PMID: 20307658]
[28]
Liang, W.; Gao, B.; Xu, G.; Weng, D.; Xie, M.; Qian, Y. Possible contribution of aminopeptidase N (APN/CD13) to migration and invasion of human osteosarcoma cell lines. Int. J. Oncol., 2014, 45(6), 2475-2485.
[http://dx.doi.org/10.3892/ijo.2014.2664] [PMID: 25340499]
[29]
Sawafuji, K.; Miyakawa, Y.; Weisberg, E.; Griffin, J.D.; Ikeda, Y.; Kizaki, M. Aminopeptidase inhibitors inhibit proliferation and induce apoptosis of K562 and STI571-resistant K562 cell lines through the MAPK and GSK-3beta pathways. Leuk. Lymphoma, 2003, 44(11), 1987-1996.
[http://dx.doi.org/10.1080/1042819031000122033] [PMID: 14738154]
[30]
Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Molecules, 2020, 25(17), 3935.
[http://dx.doi.org/10.3390/molecules25173935] [PMID: 32872164]
[31]
Krejčí, A. Metabolic sensors and their interplay with cell signalling and transcription. Biochem. Soc. Trans., 2012, 40(2), 311-323.
[http://dx.doi.org/10.1042/BST20110767] [PMID: 22435805]
[32]
Omoto, K.; Matsuda, R.; Nakai, Y.; Tatsumi, Y.; Nakazawa, T.; Tanaka, Y.; Shida, Y.; Murakami, T.; Nishimura, F.; Nakagawa, I.; Motoyama, Y.; Nakamura, M.; Fujimoto, K.; Hiroyuki, N. Expression of peptide transporter 1 has a positive correlation in protoporphyrin IX accumulation induced by 5-aminolevulinic acid with photodynamic detection of non-small cell lung cancer and metastatic brain tumor specimens originating from non-small cell lung cancer. Photodiagn. Photodyn. Ther., 2019, 25, 309-316.
[http://dx.doi.org/10.1016/j.pdpdt.2019.01.009] [PMID: 30639584]
[33]
Nakanishi, T.; Tamai, I.; Sai, Y.; Sasaki, T.; Tsuji, A. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080. Cancer Res., 1997, 57(18), 4118-4122.
[PMID: 9307302]
[34]
Gonzalez, D.E.; Covitz, K.M.; Sadée, W.; Mrsny, R.J. An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res., 1998, 58(3), 519-525.
[PMID: 9458100]
[35]
Gong, Y.; Wu, X.; Wang, T.; Zhao, J.; Liu, X.; Yao, Z.; Zhang, Q.; Jian, X. Targeting PEPT1: A novel strategy to improve the antitumor efficacy of doxorubicin in human hepatocellular carcinoma therapy. Oncotarget, 2017, 8(25), 40454-40468.
[http://dx.doi.org/10.18632/oncotarget.17117] [PMID: 28465466]
[36]
Sun, B.W.; Zhao, X.C.; Wang, G.J.; Li, N.; Li, J.S. Hormonal regulation of dipeptide transporter (PepT1) in Caco-2 cells with normal and anoxia/reoxygenation management. World J. Gastroenterol., 2003, 9(4), 808-812.
[http://dx.doi.org/10.3748/wjg.v9.i4.808] [PMID: 12679938]
[37]
Otsuki, T.; Nakashima, T.; Hamada, H.; Takayama, Y.; Akita, S.; Masuda, T.; Horimasu, Y.; Miyamoto, S.; Iwamoto, H.; Fujitaka, K.; Miyata, Y.; Miyake, M.; Kohno, N.; Okada, M.; Hattori, N. Aminopeptidase N/CD13 as a potential therapeutic target in malignant pleural mesothelioma. Eur. Respir. J., 2018, 51(5), 1701610.
[http://dx.doi.org/10.1183/13993003.01610-2017] [PMID: 29519924]
[38]
Wei, L.I.; Yao, Z.Q.; Liu, Z.Q.; Qi-Hua, H.E.; Xiao-Jing, Y.U.; Fan, Z.G.; Oncology, D.O. Clinical effect of ubenimex capsules combined with SOX chemotherapy on treatment of advanced gastric cancer. Xiandai Shengwu Yixue Jinzhan, 2017, 17, 4495-4497.
[39]
Yamashita, M.; Wada, H.; Eguchi, H.; Ogawa, H.; Yamada, D.; Noda, T.; Asaoka, T.; Kawamoto, K.; Gotoh, K.; Umeshita, K.; Doki, Y.; Mori, M.A. CD13 inhibitor, ubenimex, synergistically enhances the effects of anticancer drugs in hepatocellular carcinoma. Int. J. Oncol., 2016, 49(1), 89-98.
[http://dx.doi.org/10.3892/ijo.2016.3496] [PMID: 27121124]
[40]
Geillinger, K.E.; Kipp, A.P.; Schink, K.; Röder, P.V.; Spanier, B.; Daniel, H. Nrf2 regulates the expression of the peptide transporter PEPT1 in the human colon carcinoma cell line Caco-2. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(6), 1747-1754.
[http://dx.doi.org/10.1016/j.bbagen.2013.12.026] [PMID: 24380877]
[41]
McWalter, G.K.; Higgins, L.G.; McLellan, L.I.; Henderson, C.J.; Song, L.; Thornalley, P.J.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Transcription factor Nrf2 is essential for induction of NAD(P)H:quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. J. Nutr., 2004, 134(12)(Suppl.), 3499S-3506S.
[http://dx.doi.org/10.1093/jn/134.12.3499S] [PMID: 15570060]
[42]
Spanier, B.; Rohm, F. Proton coupled oligopeptide transporter 1 (PepT1) Function, regulation, and influence on the intestinal homeostasis. Compr. Physiol., 2018, 8(2), 843-869.
[http://dx.doi.org/10.1002/cphy.c170038] [PMID: 29687907]
[43]
Bi, Y.; Lin, G.X.; Millecchia, L.; Ma, Q. Superinduction of metallothionein I by inhibition of protein synthesis: Role of a labile repressor in MTF-1 mediated gene transcription. J. Biochem. Mol. Toxicol., 2006, 20(2), 57-68.
[http://dx.doi.org/10.1002/jbt.20116] [PMID: 16615093]
[44]
Ohh, M.; Takei, F. Regulation of ICAM-1 mRNA stability by cycloheximide: Role of serine/threonine phosphorylation and protein synthesis. J. Cell. Biochem., 1995, 59(2), 202-213.
[http://dx.doi.org/10.1002/jcb.240590210] [PMID: 8904315]
[45]
Sato, S.; Aoyama, H.; Miyachi, H.; Naito, M.; Hashimoto, Y. Demonstration of direct binding of cIAP1 degradation-promoting bestatin analogs to BIR3 domain: Synthesis and application of fluorescent bestatin ester analogs. Bioorg. Med. Chem. Lett., 2008, 18(11), 3354-3358.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.031] [PMID: 18448338]
[46]
Sekine, K.; Takubo, K.; Kikuchi, R.; Nishimoto, M.; Kitagawa, M.; Abe, F.; Nishikawa, K.; Tsuruo, T.; Naito, M. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J. Biol. Chem., 2008, 283(14), 8961-8968.
[http://dx.doi.org/10.1074/jbc.M709525200] [PMID: 18230607]
[47]
Wang, A.; Liu, J.; Yang, Y.; Chen, Z.; Gao, C.; Wang, Z.; Fu, C.; Zou, L.; Wang, S. Shikonin promotes ubiquitination and degradation of cIAP1/2-mediated apoptosis and necrosis in triple negative breast cancer cells. Chin. Med., 2021, 16(1), 16.
[http://dx.doi.org/10.1186/s13020-021-00426-1] [PMID: 33526051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy