Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Recent Progress on the Application of the Polyaniline-Pd Catalysts for C-C Cross-coupling Bond Forming Reactions: Trend and Future Analysis

Author(s): Moumita Roy*

Volume 9, Issue 2, 2022

Published on: 17 November, 2022

Page: [74 - 93] Pages: 20

DOI: 10.2174/2213346110666221117162351

Price: $65

Abstract

In this review, recent progress on the application of the polyaniline-supported palladium catalysts in different organic transformations focusing on different C-C bond-forming reactions such as Suzuki coupling, Heck reactions, oxidative Heck coupling, Ullmann coupling, Sonogashira coupling, and related chemistry are covered. Effect of catalyst preparation, characteristic of the support and supported palladium species on the outcome of the catalyst efficiency are also highlighted. Finally, the emerging trend is summarized for the future of this unique modular catalytic system.

« Previous
Graphical Abstract

[1]
Johansson Seechurn, C.C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed., 2012, 51(21), 5062-5085.
[http://dx.doi.org/10.1002/anie.201107017] [PMID: 22573393]
[2]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[3]
Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J. Organomet. Chem., 1999, 576(1-2), 147-168.
[http://dx.doi.org/10.1016/S0022-328X(98)01055-9]
[4]
Kotha, S.; Lahiri, K.; Kashinath, D. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron, 2002, 58(48), 9633-9695.
[http://dx.doi.org/10.1016/S0040-4020(02)01188-2]
[5]
Littke, A.F.; Fu, G.C. Palladium-catalyzed coupling reactions of aryl chlorides. Angew. Chem. Int. Ed., 2002, 41(22), 4176-4211.
[http://dx.doi.org/10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U] [PMID: 12434342]
[6]
Bolm, C.; Hildebrand, J.P.; Muñiz, K.; Hermanns, N. Catalyzed asymmetric arylation reactions. Angew. Chem. Int. Ed., 2001, 40(18), 3284-3308.
[http://dx.doi.org/10.1002/1521-3773(20010917)40:18<3284::AID-ANIE3284>3.0.CO;2-U] [PMID: 11592131]
[7]
Jagtap, S. Heck reaction—state of the art. Catalysts, 2017, 7(9), 267.
[http://dx.doi.org/10.3390/catal7090267]
[8]
Heck, R.F.; Nolley, J.P., Jr Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37(14), 2320-2322.
[http://dx.doi.org/10.1021/jo00979a024]
[9]
Heck, R.F. Palladium Reagents in Organic Synthesis; Academic Press Inc: London, 1985.
[10]
Beller, M.; Reirmeier, T.H.; Stark, G. Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 1998, p. 208.
[11]
De Vries, R.A.; Vosejpka, P.C.; Ash, M.L. Catalysis of Organic Reactions; CRC Press: Boca Raton, 1998.
[12]
Danishefsky, S.J.; Masters, J.J.; Young, W.B.; Link, J.T.; Snyder, L.B.; Magee, T.V.; Jung, D.K.; Isaacs, R.C.A.; Bornmann, W.G.; Alaimo, C.A.; Coburn, C.A.; Di Grandi, M.J. Total Synthesis of Baccatin III and Taxol. J. Am. Chem. Soc., 1996, 118(12), 2843-2859.
[http://dx.doi.org/10.1021/ja952692a]
[13]
Overman, L.E. Application of intramolecular Heck reactions for forming congested quaternary carbon centers in complex molecule total synthesis. Pure Appl. Chem., 1994, 66(7), 1423-1430.
[http://dx.doi.org/10.1351/pac199466071423]
[14]
Su, Y.; Jiao, N. Palladium-catalyzed oxidative heck reaction. Curr. Org. Chem., 2011, 15(18), 3362-3388.
[http://dx.doi.org/10.2174/138527211797248030]
[15]
Cho, C.S.; Uemura, S. Palladium-catalyzed cross-coupling of aryl and alkenyl boronic acids with alkenes via oxidative addition of a carbon-boron bond to palladium(O). J. Organomet. Chem., 1994, 465(1-2), 85-92.
[http://dx.doi.org/10.1016/0022-328X(94)87040-3]
[16]
Khan, F.; Dlugosch, M.; Liu, X.; Banwell, M.G. The palladium-catalyzed ullmann cross-coupling reaction: A modern variant on a time-honored process. Acc. Chem. Res., 2018, 51(8), 1784-1795.
[http://dx.doi.org/10.1021/acs.accounts.8b00169] [PMID: 30010313]
[17]
[18]
Kamahori, K.; Ito, K.; Itsuno, S. Asymmetric diels−alder reaction of methacrolein with cyclopentadiene using polymer-supported catalysts: Design of highly enantioselective polymeric catalysts. J. Org. Chem., 1996, 61(23), 8321-8324.
[http://dx.doi.org/10.1021/jo960518e] [PMID: 11667827]
[19]
Pugin, B. Immobilized catalysts for enantioselective hydrogenation: The effect of site-isolation. J. Mol. Catal. Chem., 1996, 107(1-3), 273-279.
[http://dx.doi.org/10.1016/1381-1169(95)00174-3]
[20]
Deschenaux, R.; Stille, J.K. Transition-metal-catalyzed asymmetric organic synthesis via polymer-attached optically active phosphine ligands. 13, Asymmetric hydrogenation with polymer catalysts containing primary and chiral secondary pendant alcohols. J. Org. Chem., 1985, 50(13), 2299-2302.
[http://dx.doi.org/10.1021/jo00213a020]
[21]
Rostamnia, S.; Zeynizadeh, B.; Doustkhah, E.; Hosseini, H.G. Exfoliated Pd decorated graphene oxide nanosheets (PdNP–GO/P123): Non-toxic, ligandless and recyclable in greener Hiyama cross-coupling reaction. J. Colloid Interface Sci., 2015, 451, 46-52.
[http://dx.doi.org/10.1016/j.jcis.2015.03.040] [PMID: 25875491]
[22]
Rostamnia, S.; Lamei, K.; Pourhassan, F. Generation of uniform and small particle size of palladium onto the SH-decorated SBA-15 pore-walls: SBA-15/(SH) X Pd–NP Y as a recoverable nanocatalyst for Suzuki–Miyaura coupling reaction in air and water. RSC Advances, 2014, 4(103), 59626-59631.
[http://dx.doi.org/10.1039/C4RA09157D]
[23]
Rostamnia, S.; Taghavi, R. Schiff-base post-synthetic modification of irmof-3 to encapsulate pd nanoparticles: It’s application in C-C bond formation cross-coupling suzuki reaction. Chem. Methodol., 2022, 6(8), 629-638.
[http://dx.doi.org/10.22034/chemm.2022.339192.1496]
[24]
Rostamnia, S.; Rahmani, T.; Xin, H. Pd(PrSO3)2@SBA-15 and Pd-NPs(PrSO3)@SBA-15 hybrid materials: A highly active, reusable, and selective interface catalyst for C–X activations in air and water. J. Ind. Eng. Chem., 2015, 32, 218-224.
[http://dx.doi.org/10.1016/j.jiec.2015.08.019]
[25]
Rostamnia, S.; Rahmani, T. Ordered mesoporous SBA-15/PrSO3 Pd and SBA-15/PrSO3PdNP as active, reusable and selective phosphine-free catalysts in C-X activation Heck coupling process. Appl. Organomet. Chem., 2015, 29(7), 471-474.
[http://dx.doi.org/10.1002/aoc.3319]
[26]
Rostamnia, S.; Golchin, H.H.; Doustkhah, E. Homoleptic chelating N-heterocyclic carbene complexes of palladium immobilized within the pores of SBA-15/IL (NHC–Pd@SBA-15/IL) as heterogeneous catalyst for Hiyama reaction. J. Organomet. Chem., 2015, 791, 18-23.
[http://dx.doi.org/10.1016/j.jorganchem.2015.05.019]
[27]
Rostamnia, S.; Doustkhah, E.; Zeynizadeh, B. Cationic modification of SBA-15 pore walls for Pd supporting: Pd@SBA-15/ILDABCO as a catalyst for Suzuki coupling in water medium. Microporous Mesoporous Mater., 2016, 222, 87-93.
[http://dx.doi.org/10.1016/j.micromeso.2015.09.045]
[28]
Rostamnia, S.; Alamgholiloo, H.; Liu, X. Pd-grafted open metal site copper-benzene-1,4-dicarboxylate metal organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable Suzuki coupling. J. Colloid Interface Sci., 2016, 469, 310-317.
[http://dx.doi.org/10.1016/j.jcis.2016.02.021] [PMID: 26897567]
[29]
Doustkhah, E.; Rostamnia, S.; Imura, M.; Ide, Y.; Mohammadi, S.; Hyland, C.J.T.; You, J.; Tsunoji, N.; Zeynizadeh, B.; Yamauchi, Y. Thiourea bridged periodic mesoporous organosilica with ultra-small Pd nanoparticles for coupling reactions. RSC Advances, 2017, 7(89), 56306-56310.
[http://dx.doi.org/10.1039/C7RA11711F]
[30]
Alamgholiloo, H.; Rostamnia, S.; Hassankhani, A.; Khalafy, J.; Baradarani, M.M.; Mahmoudi, G.; Liu, X. Stepwise post-modification immobilization of palladium Schiff-base complex on to the OMS-Cu (BDC) metal-organic framework for Mizoroki-Heck cross-coupling reaction. Appl. Organomet. Chem., 2018, 32(11), e4539.
[http://dx.doi.org/10.1002/aoc.4539]
[31]
Alamgholiloo, H.; Rostamnia, S.; Pesyan, N.N. Anchoring and stabilization of colloidal PdNPs on exfoliated bis-thiourea modified graphene oxide layers with super catalytic activity in water and PEG. Colloids Surf. A Physicochem. Eng. Asp., 2020, 602, 125130.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125130]
[32]
Nouruzi, N.; Dinari, M.; Gholipour, B.; Afshari, M.; Rostamnia, S. In situ organized Pd and Au nanoparticles in a naphthalene-based imine-linked covalent triazine framework for catalytic suzuki reactions and H2 generation from formic acid. ACS Appl. Nano Mater., 2022, 5(5), 6241-6248. https://pubs.acs.org/doi/10.1021/acsanm.2c00285
[http://dx.doi.org/10.1021/acsanm.2c00285]
[33]
Blaser, H.U.; Indolese, A.; Schnyder, A.; Steiner, H.; Studer, M. Supported palladium catalysts for fine chemicals synthesis. J. Mol. Catal. Chem., 2001, 173(1-2), 3-18.
[http://dx.doi.org/10.1016/S1381-1169(01)00143-1]
[34]
Rostamnia, S.; Liu, X.; Zheng, D. Ordered interface mesoporous immobilized Pd pre-catalyst: En/Pd complexes embedded inside the SBA-15 as an active, reusable and selective phosphine-free hybrid catalyst for the water medium Heck coupling process. J. Colloid Interface Sci., 2014, 432, 86-91.
[http://dx.doi.org/10.1016/j.jcis.2014.06.011] [PMID: 25084229]
[35]
Rostamnia, S.; Xin, H. Pd(OAc)2@SBA-15/PrEn nanoreactor: A highly active, reusable and selective phosphine-free catalyst for Suzuki-Miyauracross-coupling reaction in aqueous media. Appl. Organomet. Chem., 2013, 27(6), 348-352.
[http://dx.doi.org/10.1002/aoc.2986]
[36]
H.S., Nalwa Handbook of Organic Conductive Molecules and Polymers; John Wiley and Sons: Chichester, 1997, Vols 1-4, .
[37]
Skoheim, T.A.; Elsenbaumer, R.L.; Reynolds, J.R. Handbook of Conducting Polymers, 2nd ed; Marcel Dekker: New York, 1998.
[38]
Rostamnia, S.; Kholdi, S. Polymeric hybrid mesoporous silica hollow nanospheres as a support for palladium and application of the PdNPs@PANI/HNS nanocomposite for aerobic benzyl alcohol oxidation. Adv. Powder Technol., 2018, 29(5), 1167-1174.
[http://dx.doi.org/10.1016/j.apt.2018.02.008]
[39]
Rostamnia, S.; Kholdi, S. Synthesis of hybrid interfacial silica-based nanospheres composite as a support for ultra-small palladium nanoparticle and application of PdNPs/HSN in Mizoroki-Heck reaction. J. Phys. Chem. Solids, 2017, 111, 47-53.
[http://dx.doi.org/10.1016/j.jpcs.2017.07.012]
[40]
Chen, S.A.; Lin, L.C. Doping of polyaniline via pseudoprotonation by an ionic salt. Adv. Mater., 1995, 7(5), 473-475.
[http://dx.doi.org/10.1002/adma.19950070514]
[41]
Cai, L.T.; Yao, S.B.; Zhou, S.M. Improved conductivity and electrical properties of polyaniline in the presence of rare-earth cations and magnetic field. Synth. Met., 1997, 88(3), 205-208.
[http://dx.doi.org/10.1016/S0379-6779(97)03851-4]
[42]
Hasik, M.; Drelinkiewicz, A.; Wenda, E. Interactions between polyanilines and palladium ions: Similarities and differences. Synth. Met., 2001, 119(1-3), 335-336.
[http://dx.doi.org/10.1016/S0379-6779(00)00877-8]
[43]
Paloheimo, J.; Laakso, K.; Isotalo, H.; Stubb, H. Conductivity, thermoelectric power and field-effect mobility in self-assembled films of polyanilines and oligoanilines. Synth. Met., 1995, 68(3), 249-257.
[http://dx.doi.org/10.1016/0379-6779(94)02308-L]
[44]
Epstein, A.J.; Smallfield, J.A.O.; Guan, H.; Fahlman, M. Corrosion protection of aluminum and aluminum alloys by polyanilines: A potentiodynamic and photoelectron spectroscopy study. Synth. Met., 1999, 102(1-3), 1374-1376.
[http://dx.doi.org/10.1016/S0379-6779(98)00383-X]
[45]
Higuchi, M.; Ikeda, I.; Hirao, T. A novel synthetic metal catalytic system. J. Org. Chem., 1997, 62(4), 1072-1078.
[http://dx.doi.org/10.1021/jo9617575]
[46]
Price, W.E.; Ralph, S.F.; Wallace, G.G. Current chemistry: Separation and recovery of gold and other metals using conducting polymers. Aust. J. Chem., 2001, 54(10), 615-619.
[http://dx.doi.org/10.1071/CH01167]
[47]
Hasik, M.; Drelinkiewicz, A.; Choczyriski, M.; Quillard, S.; Proń, A. Polyaniline containing palladium — new conjugated polymer supported catalysts. Synth. Met., 1997, 84(1-3), 93-94.
[http://dx.doi.org/10.1016/S0379-6779(96)03852-0]
[48]
Das, B.C.; Iqbal, J. Polyaniline supported cobalt(II) catalyst: Oxidation of alkenes with molecular oxygen. Tetrahedron Lett., 1997, 38(7), 1235-1238.
[http://dx.doi.org/10.1016/S0040-4039(97)00045-2]
[49]
Prabhakaran, E.N.; Iqbal, J. Polyaniline-supported cobalt catalyst: A three-component condensation route to β-amino acid derivatives. J. Org. Chem., 1999, 64(9), 3339-3341.
[http://dx.doi.org/10.1021/jo981239p] [PMID: 11674441]
[50]
Pielichowski, J.; Kowalski, G. A new polyaniline-based catalyst for the oxidation of alkenes. Synlett, 2002, 12(12), 2107-2109.
[http://dx.doi.org/10.1055/s-2002-35566]
[51]
Velusamy, S.; Ahamed, M.; Punniyamurthy, T. Novel polyaniline-supported molybdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones. Org. Lett., 2004, 6(26), 4821-4824.
[http://dx.doi.org/10.1021/ol048195t] [PMID: 15606075]
[52]
Pielichowski, K.; Pielichowski, J.; Iqbal, J.; Gurtat, P. Polyaniline-based catalysts characterized by dynamic DSC. Appl. Catal. A Gen., 1997, 161(1-2), L25-L28.
[http://dx.doi.org/10.1016/S0926-860X(97)00145-2]
[53]
Orecchia, P.; Petkova, D.S.; Goetz, R.; Rominger, F.; Hashmi, A.S.K.; Schaub, T. Pd-Catalysed Suzuki–Miyaura cross-coupling of aryl chlorides at low catalyst loadings in water for the synthesis of industrially important fungicides. Green Chem., 2021, 23(20), 8169-8180.
[http://dx.doi.org/10.1039/D1GC02602J]
[54]
Houdayer, A.; Schneider, R.; Billaud, D.; Ghanbaja, J.; Lambert, J. Heck and Suzuki-Miyaura couplings catalyzed by nanosized palladium in polyaniline. Appl. Organomet. Chem., 2005, 19(12), 1239-1248.
[http://dx.doi.org/10.1002/aoc.999]
[55]
Choudary, B.M.; Roy, M.; Roy, S.; Kantam, M.L.; Sreedhar, B.; Kumar, K.V. Preparation, characterization and catalytic properties of polyaniline-supported metal complexes. Adv. Synth. Catal., 2006, 348(12-13), 1734-1742.
[http://dx.doi.org/10.1002/adsc.200606077]
[56]
Kantam, M.L.; Roy, M.; Roy, S.; Sreedhar, B.; Madhavendra, S.S.; Choudary, B.M.; De, R.L. Polyaniline supported palladium catalyzed Suzuki–Miyaura cross-coupling of bromo- and chloroarenes in water. Tetrahedron, 2007, 63(33), 8002-8009.
[http://dx.doi.org/10.1016/j.tet.2007.05.064]
[57]
Gallon, B.J.; Kojima, R.W.; Kaner, R.B.; Diaconescu, P.L. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. Angew. Chem. Int. Ed., 2007, 46(38), 7251-7254.
[http://dx.doi.org/10.1002/anie.200701389] [PMID: 17657750]
[58]
Lemke, W.M.; Kaner, R.B.; Diaconescu, P.L. A mechanistic study of cross-coupling reactions catalyzed by palladium nanoparticles supported on polyaniline nanofibers. Inorg. Chem. Front., 2015, 2(1), 35-41.
[http://dx.doi.org/10.1039/C4QI00130C]
[59]
Islam, R.U.; Witcomb, M.J.; van der Lingen, E.; Scurrell, M.S.; Van Otterlo, W.; Mallick, K. In-situ synthesis of a palladium-polyaniline hybrid catalyst for a Suzuki coupling reaction. J. Organomet. Chem., 2011, 696(10), 2206-2210.
[http://dx.doi.org/10.1016/j.jorganchem.2010.11.039]
[60]
Dutt, S.; Kumar, R.; Siril, P.F. Green synthesis of a palladium–polyaniline nanocomposite for green Suzuki–Miyaura coupling reactions. RSC Adv., 2015, 5(43), 33786-33791.
[http://dx.doi.org/10.1039/C5RA05007C]
[61]
Wang, G.; Wu, Z.; Liang, Y.; Liu, W.; Zhan, H.; Song, M.; Sun, Y. Exploring the coordination confinement effect of divalent palladium/zero palladium doped polyaniline-networking: As an excellent-performance nanocomposite catalyst for C-C coupling reactions. J. Catal., 2020, 384, 177-188.
[http://dx.doi.org/10.1016/j.jcat.2020.02.021]
[62]
Patel, H.A.; Patel, A.L.; Bedekar, A.V. Polyaniline-anchored palladium catalyst-mediated Mizoroki-Heck and Suzuki-Miyaura reactions and one-pot Wittig-Heck and Wittig-Suzuki reactions. Appl. Organomet. Chem., 2015, 29(1), 1-6.
[http://dx.doi.org/10.1002/aoc.3234]
[63]
Patel, H.A.; Patel, A.L.; Bedekar, A.V. Polyaniline coated on celite, a heterogeneous support for palladium: Applications in catalytic Suzuki and one-pot Suzuki–aldol reactions. New J. Chem., 2016, 40(10), 8935-8945.
[http://dx.doi.org/10.1039/C6NJ02402E]
[64]
Chaicharoenwimolkul, L.; Chairam, S.; Namkajorn, M.; Khamthip, A.; Kamonsatikul, C.; Tewasekson, U.; Jindabot, S.; Pon-On, W.; Somsook, E. Effect of ferrocene substituents and ferricinium additive on the properties of polyaniline derivatives and catalytic activities of palladium-doped poly(m-ferrocenylaniline)-catalyzed Suzuki-Miyaura cross-coupling reactions. J. Appl. Polym. Sci., 2013, 130(3), 1489-1497.
[http://dx.doi.org/10.1002/app.39279]
[65]
Chen, Y.; Lu, S.; Liu, W.; Han, J. Redox-induced in situ formation of Pd nanoparticles on surfaces of Fe3O4/PANI core/shell hybrids as high-performance catalysts for Suzuki cross-coupling reactions. Colloid Polym. Sci., 2015, 293(8), 2301-2309.
[http://dx.doi.org/10.1007/s00396-015-3619-3]
[66]
Nie, G.; Zhang, L.; Cui, Y. Preparation of Pd nanoparticles deposited on a polyaniline/multiwall carbon nanotubes nanocomposite and their application in the Heck reaction. React. Kinet. Mech. Catal., 2013, 108(1), 193-204.
[http://dx.doi.org/10.1007/s11144-012-0506-5]
[67]
Yu, L.; Huang, Y.; Wei, Z.; Ding, Y.; Su, C.; Xu, Q. Heck reactions catalyzed by ultrasmall and uniform PD nanoparticles supported on polyaniline. J. Org. Chem., 2015, 80(17), 8677-8683.
[http://dx.doi.org/10.1021/acs.joc.5b01358] [PMID: 26274575]
[68]
Likhar, P.R.; Roy, M.; Roy, S.; Subhas, M.S.; Kantam, M.L.; Sreedhar, B. Highly efficient and reusable polyaniline-supported palladium catalysts for open-air oxidative heck reactions under base- and ligand-free conditions. Adv. Synth. Catal., 2008, 350(13), 1968-1974.
[http://dx.doi.org/10.1002/adsc.200800329]
[69]
Yu, L.; Han, Z.; Ding, Y. Gram-scale preparation of Pd@PANI: A practical catalyst reagent for copper-free and ligand-free sonogashira couplings. Org. Process Res. Dev., 2016, 20(12), 2124-2129.
[http://dx.doi.org/10.1021/acs.oprd.6b00322]
[70]
Liu, Y.; Tang, D.; Cao, K.; Yu, L.; Han, J.; Xu, Q. Probing the support effect at the molecular level in the polyaniline-supported palladium nanoparticle-catalyzed Ullmann reaction of aryl iodides. J. Catal., 2018, 360, 250-260.
[http://dx.doi.org/10.1016/j.jcat.2018.01.026]
[71]
Zhang, D.; Wu, F.; Wan, Z.; Wang, Y.; He, X.; Guo, B.; You, H.; Chen, F-E. A palladium polyaniline complex: A simple and efficient catalyst for batch and flow Suzuki–Miyaura cross-couplings. Chem. Commun. (Camb.), 2022, 58(77), 10845-10848.
[http://dx.doi.org/10.1039/D2CC04051D]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy