Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Synthesis of New Bi-Triazoles with Plasmocide Action Against Plasmodium falciparum

Author(s): Dinesh Addla, Cristiane Diniz, Quelli Larissa Oliveira de Santana, Leandro do Nascimento Martinez, Marcinete Latorre Almeida, Minelly Azevedo da Silva, Welington da Silva Paula do Nascimento, Aurileya de Jesus Gouveia, Saara Neri Fialho, Amália dos Santos Ferreira, Ana Paula de Azevedo dos Santos, Carlos Roland Kaiser, Carolina Bioni Garcia Teles and Sabrina Baptista Ferreira*

Volume 19, Issue 6, 2023

Published on: 18 January, 2023

Article ID: e171122210995 Pages: 11

DOI: 10.2174/1573407219666221117113556

Price: $65

Abstract

Background: A series of bi-triazoles conjugates 1,2,3 and 1,2,4 was synthesized with an aim to study the evaluation of the antimalarial profile of families of triazole derivatives. The study used the W2 strain of Plasmodium falciparum (Chloroquine-Resistant), to determine the inhibitory concentration of 50% of the parasites (IC50) and HepG2 cells to describe the cytotoxic concentration for 50% of the cells (CC50). Among the study classes, bi-triazoles stood out with IC50 values between 8.9 to 0.45 μM; highlighted the compound 14d (IC50 of 0.45 ± 0.02 μM) with the most promising result. Regarding the cytotoxic concentration, all compounds that presented IC50 values ≤ 100 μM were evaluated. Three compounds stood out as the highest selectivity index (SI) values, 14b (SI ˃111.1), 13d (SI ˃111.1) and 14d (SI ˃1.111). Such results expose the importance of working with classes of molecules that allow rapid synthesis and dispositions for structural changes. Highlighting the evolution of the IC50 values of the compounds, when adding the second triazole block. Thus, the results found in this study, have the possibility of choosing new molecules for the treatment of malaria.

Objective: This work was to synthesize a series of bi-triazole conjugates 1,2,3 and 1,2,4-triazole moiety and evaluate their activities against Plasmodium falciparum.

Methods: The bi-triazole was synthesized in a 3-step route in moderated yields, and their structures were confirmed by NMR spectral data analyses. For the in vitro antiplasmodial assays, the SYBR Green fluorimetric technique and the W2 strain were used, where an IC50 (Inhibitory Concentration) value was obtained for each compound. The compounds were also evaluated for their stagespecificity and speed of action (W2 strain). Safety tests were performed to determine the hemolytic and cytotoxic action of the evaluated compounds. In these tests, the cell lines HepG2 and VERO were used, and the cytotoxicity was evaluated by the MTT technique. This allowed the CC50 values to be obtained (Cytotoxic Concentration). Subsequently, the Selectivity Index (SI) was calculated for each compound.

Results: The newly synthesized bi-triazole compounds could serve as potent leads for the development of novel antimalarial compounds. In general, the bi-triazoles with trifluoromethyl group present at 1,2,4-triazole moiety proved to be more potent regarding antiplasmodial activity.

Conclusion: The synthesized bi-triazole compounds could serve as potent leads for the development of novel antimalarial agents.

Graphical Abstract

[1]
World Health Organization - WHO. World malaria report. 2020. Available from: https://www.who.int/publications/i/item/9789240015791
[2]
Neves, D.; Melo, A.; Linardi, P.; Vitor, R. Parasitologia Humana, 11th ed; Atheneu: São Paulo, 2005.
[3]
Imwong, M.; Hien, T.T.; Thuy-Nhien, N.T.; Dondorp, A.M.; White, N.J. Spread of a single multidrug resistant malaria parasite lineage] (PfPailin) to Vietnam. Lancet Infect. Dis., 2017, 17(10), 1022-1023.
[http://dx.doi.org/10.1016/S1473-3099(17)30524-8] [PMID: 28948924]
[4]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M.; Sankaranarayanan, M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. Eur. J. Med. Chem., 2020, 195, 112275-112284.
[http://dx.doi.org/10.1016/j.ejmech.2020.112275] [PMID: 32283298]
[5]
Kumar, S.; Khokra, S.L.; Yadav, A. Triazole analogues as potential pharmacological agents: A brief review. Future J. Pharm. Sci., 2021, 7(1), 106.
[http://dx.doi.org/10.1186/s43094-021-00241-3] [PMID: 34056014]
[6]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[7]
Kaur, P.; Chawla, A. 1,2,4-triazole: A review of pharmacological activities. Int. Res. J. Pharm., 2017, 8(7), 10-29.
[http://dx.doi.org/10.7897/2230-8407.087112]
[8]
Oliveira de Santana, Q.L.; Santos Evangelista, T.C.; Imhof, P.; Ferreira, S.B.; Fernández-Bolaños, J.G.; Sydnes, M.O.; Lopéz, Ó.; Lindbäck, E. Tacrine-sugar mimetic conjugates as enhanced cholinesterase inhibitors. Org. Biomol. Chem., 2021, 19(10), 2322-2337.
[http://dx.doi.org/10.1039/D0OB02588G] [PMID: 33645607]
[9]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; Ferreira, M.L.G.; da Silva, F.C.; Bastos, M.M.; Costa, M.S.; Lourenço, M.C.S.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.C.; Bezerra, F.A.F.M.; Camilo, A.L.S.; da Silva, G.P.; Costa, C.C.P. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem., 2011, 54(17), 5988-5999.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[10]
Paprocka, R.; Wiese, M.; Eljaszewicz, A.; Helmin-Basa, A.; Gzella, A.; Modzelewska-Banachiewicz, B.; Michalkiewicz, J. Synthesis and anti-inflammatory activity of new 1,2,4-triazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(13), 2664-2667.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.079] [PMID: 25978961]
[11]
da Silva, I.F.; Martins, P.R.C.; da Silva, E.G.; Ferreira, S.B.; Ferreira, V.F.; da Costa, K.R.; de Vasconcellos, M.C.; Lima, E.S.; da Silva, F.C. Synthesis of 1H-1,2,3-triazoles and study of their antifungal and cytotoxicity activities. Med. Chem., 2013, 9(8), 1085-1090.
[http://dx.doi.org/10.2174/1573406411309080010] [PMID: 23432315]
[12]
Cui, P.; Li, X.; Zhu, M.; Wang, B.; Liu, J.; Chen, H. Design, synthesis and antimicrobial activities of thiouracil derivatives containing triazolo-thiadiazole as SecA inhibitors. Eur. J. Med. Chem., 2017, 127, 159-165.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.053] [PMID: 28039774]
[13]
Ferreira, S.B.; Sodero, A.C.R.; Cardoso, M.F.C.; Lima, E.S.; Kaiser, C.R.; Silva, F.P., Jr; Ferreira, V.F. Synthesis, biological activity, and molecular modeling studies of 1H-1,2,3-triazole derivatives of carbohydrates as alpha-glucosidases inhibitors. J. Med. Chem., 2010, 53(6), 2364-2375.
[http://dx.doi.org/10.1021/jm901265h] [PMID: 20170190]
[14]
Faidallah, H.M.; Panda, S.S.; Serrano, J.C.; Girgis, A.S.; Khan, K.A.; Alamry, K.A.; Therathanakorn, T.; Meyers, M.J.; Sverdrup, F.M.; Eickhoff, C.S.; Getchell, S.G.; Katritzky, A.R. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg. Med. Chem., 2016, 24(16), 3527-3539.
[http://dx.doi.org/10.1016/j.bmc.2016.05.060] [PMID: 27298002]
[15]
Wang, G.; Peng, Z.; Wang, J.; Li, J.; Li, X. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole–1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(23), 5719-5723.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.057] [PMID: 27810241]
[16]
Banday, A.H.; Shameem, S.A.; Ganai, B.A. Antimicrobial studies of unsymmetrical bis-1,2,3-triazoles. Org. Med. Chem. Lett., 2012, 2(1), 13-17.
[http://dx.doi.org/10.1186/2191-2858-2-13] [PMID: 22475037]
[17]
Ferreira, V.F.; da Rocha, D.R.; da Silva, F.C.; Ferreira, P.G.; Boechat, N.A.; Magalhães, J.L. Novel 1 H -1,2,3-, 2 H -1,2,3-, 1 H -1,2,4- and 4 H -1,2,4-triazole derivatives: A patent review (2008-2011). Expert Opin. Ther. Pat., 2013, 23(3), 319-331.
[http://dx.doi.org/10.1517/13543776.2013.749862] [PMID: 23289412]
[18]
Zheng, Z.J.; Wang, D.; Xu, Z.; Xu, L.W. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry. Beilstein J. Org. Chem., 2015, 11, 2557-2576.
[http://dx.doi.org/10.3762/bjoc.11.276] [PMID: 26734102]
[19]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[20]
Miguel-Blanco, C.; Molina, I.; Bardera, A.I.; Díaz, B.; de las Heras, L.; Lozano, S.; González, C.; Rodrigues, J.; Delves, M.J.; Ruecker, A.; Colmenarejo, G.; Viera, S.; Martínez-Martínez, M.S.; Fernández, E.; Baum, J.; Sinden, R.E.; Herreros, E. Hundreds of dual-stage antimalarial molecules discovered by a functional gametocyte screen. Nat. Commun., 2017, 8(1), 15160-15168.
[http://dx.doi.org/10.1038/ncomms15160] [PMID: 28513586]
[21]
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193(4254), 673-675.
[http://dx.doi.org/10.1126/science.781840] [PMID: 781840]
[22]
Lambros, C.; Vanderberg, J.P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol., 1979, 65(3), 418-420.
[http://dx.doi.org/10.2307/3280287] [PMID: 383936]
[23]
Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol., 2006, 106(3), 290-302.
[http://dx.doi.org/10.1016/j.jep.2006.04.003] [PMID: 16698208]
[24]
do Céu de Madureira, M.; Paula Martins, A.; Gomes, M.; Paiva, J.; Proença da Cunha, A.; do Rosário, V. Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Príncipe islands. J. Ethnopharmacol., 2002, 81(1), 23-29.
[http://dx.doi.org/10.1016/S0378-8741(02)00005-3]
[25]
Calvocalle, J.M.; Moreno, A.; Eling, W.M.C.; Nardin, E.H. In vitro development of infectious liver stages of P. yoelii and P. berghei malaria in human cell lines. Exp. Parasitol., 1994, 79(3), 362-373.
[http://dx.doi.org/10.1006/expr.1994.1098] [PMID: 7957756]
[26]
Nogueira, F.; Rosário, V.E. Methods for assessment of antimalarial activity in the different phases of the Plasmodium life cycle. Rev. Panamazonica Saude, 2010, 1(3), 109-124.
[http://dx.doi.org/10.5123/S2176-62232010000300015]
[27]
Katsuno, K.; Burrows, J.N.; Duncan, K.; van Huijsduijnen, R.H.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov., 2015, 14(11), 751-758.
[http://dx.doi.org/10.1038/nrd4683] [PMID: 26435527]
[28]
Lopyrev, V.A.; Rakhmatullina, T.N. Synthesis of 3(5)-trifluoromethyl-5(3)-amino-1,2,4-triazole. Zhurnal Obshchei Khimii., 1983, 53, 1684-1687.
[29]
Shao, C.; Wang, X.; Zhang, Q.; Luo, S.; Zhao, J.; Hu, Y. Acid-base jointly promoted copper(I)-catalyzed azide-alkyne cycloaddition. J. Org. Chem., 2011, 76(16), 6832-6836.
[http://dx.doi.org/10.1021/jo200869a] [PMID: 21793533]
[30]
Testa, B.; Carrupt, P.A.; Gaillard, P.; Billois, F.; Weber, P. Lipophilicity in molecular modeling. Pharm. Res., 1996, 13(3), 335-343.
[http://dx.doi.org/10.1023/A:1016024005429] [PMID: 8692723]
[31]
Bazzini, P.; Wermuth, C.G. Substituent Groups. The Practice of Medicinal Chemistry; Academic Press: San Diego, 2008, pp. 431-463.
[32]
Böhm, H.J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. Fluorine in medicinal chemistry. ChemBioChem, 2004, 5(5), 637-643.
[http://dx.doi.org/10.1002/cbic.200301023] [PMID: 15122635]
[33]
Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00258] [PMID: 26200936]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy