Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Physical Characterization and Safety Evaluation of Folic Acid-conjugated Mesoporous Silica Nanoparticles Loaded with Rhodojaponin III

Author(s): Qingyun Yang, Chuncao Zhao, Jian Yang, Jingyi Zhao, Yi Feng*, Minchen Liu* and Jiquan Zhang*

Volume 20, Issue 10, 2023

Published on: 15 December, 2022

Page: [1559 - 1568] Pages: 10

DOI: 10.2174/1567201820666221108121347

Price: $65

Abstract

Background: Rhodojaponin III (RJ-III), a characteristic diterpene of Rhododendron molle G. Don, has a wide range of pharmacological activities including anti-inflammatory, antihypertensive, and analgesic effects. However, further research and development have been limited because of its intense acute toxicity and poor pharmacokinetic profile.

Objective: In this study, we propose the construction of folic acid–conjugated mesoporous silica nanoparticles (FA-MSNs) as carriers to deliver RJ-III in an attempt to reduce acute toxicity and improve biomedical applications by prolonging drug release and targeting delivery.

Methods: FA-MSNs were synthesized and characterized. RJ-III was then loaded into FA-MSNs (RJIII@ FA-MSNs), and the in vitro drug release profile was assessed. Subsequently, the RJ-III@FAMSNs’ cytotoxicity and targeting efficiency were explored in lipopolysaccharide-activated RAW 264.7 cells, and their acute toxicity was investigated in mice.

Results: Spherical FA-MSNs were approximately 122 nm in size. Importantly, the RJ-III@FA-MSNs showed prolonged RJ-III release in vitro. Moreover, in lipopolysaccharide-activated RAW 264.7 cells, RJ-III@FA-MSNs not only reduced the cytotoxicity of RJ-III (P < 0.01), but also showed a good targeting effect from the results of cellular uptake. Additionally, the acute toxicity results demonstrated that RJ-III@FA-MSNs improved the LD50 value of RJ-III in mice by intraperitoneal injection 10-fold.

Conclusion: This is the first study to use FA-MSNs as carriers of RJ-III to reduce the acute toxicity of RJ-III. The results confirm the potential for targeted delivery of RJ-III in inflammatory cells to enhance efficacy, as well as providing data for future investigations on anti-inflammatory activity.

Graphical Abstract

[1]
Popescu, R.; Kopp, B. The genus Rhododendron: An ethnopharmacological and toxicological review. J. Ethnopharmacol., 2013, 147(1), 42-62.
[http://dx.doi.org/10.1016/j.jep.2013.02.022]
[2]
Zhou, J.; Liu, T.; Zhang, H.; Zheng, G.; Qiu, Y.; Deng, M.; Zhang, C.; Yao, G. Anti-inflammatory Grayanane Diterpenoids from the Leaves of Rhododendron molle. J. Nat. Prod., 2018, 81(1), 151-161.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00799] [PMID: 29272126]
[3]
Cai, Y.Q.; Hu, J.H.; Qin, J.; Sun, T.; Li, X.L. Rhododendron Molle (Ericaceae): phytochemistry, pharmacology, and toxicology. Chin. J. Nat. Med., 2018, 16(6), 401-410.
[http://dx.doi.org/10.1016/S1875-5364(18)30073-6] [PMID: 30047461]
[4]
Zhi, X.; Xiao, L.; Liang, S.; Yi, F.; Ruan, K.F. Chemical constituents of Rhododendron molle. Chemistry of Natural Compounds, 2013, 49(3), 454-456.
[http://dx.doi.org/10.1007/s10600-013-0637-6]
[5]
Zou, H.Y.; Luo, J.; Xu, D.R.; Kong, L.Y. Tandem solid-phase extraction followed by HPLC-ESI/QTOF/MS/MS for rapid screening and structural identification of trace diterpenoids in flowers of rhododendron molle. Phytochemical. Analysis., 2014, 25(3), 255-26.
[http://dx.doi.org/10.1002/pca.2501]
[6]
Dong, X.L.; Zhong, G.H.; Hu, M.Y.; Yi, X.; Zhao, H.M.; Wang, H.D. Molecular cloning and functional identification of an insect odorant receptor gene in Spodoptera litura (F.) for the botanical insecticide rhodojaponin III. J. Insect Physiol., 2013, 59(1), 26-32.
[http://dx.doi.org/10.1016/j.jinsphys.2012.11.004]
[7]
Mao, H.Y.; Li, C.Y.; Cui, J.J.; Feng, Y.B.; Hu, W.S.; Guo, Q.G.; Jiang, M.X. Rhomotoxin pharmacologic action in lowering blood pressure and slowing heart rate. Chin. Med. J. (Engl.), 1982, 95(5), 311-318.
[PMID: 6814841]
[8]
He, Y.C.; Yao, Y.M.; Xue, Q.W.; Fang, X.; Liang, S. Anti-rheumatoid arthritis potential of diterpenoid fraction derived from Rhododendron molle fruits. Chin. J. Nat. Med., 2021, 19(3), 181-187.
[http://dx.doi.org/10.1016/S1875-5364(21)60019-5] [PMID: 33781451]
[9]
Li, Y.; Liu, Y.B.; Zhang, J.J.; Liu, Y.; Ma, S.G.; Qu, J.; Lv, H.N.; Yu, S.S. Antinociceptive grayanoids from the roots of rhododendron molle. J. Nat. Prod., 2015, 78(12), 2887-2895.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00456]
[10]
Mao, H.; Li, C.; Feng, Y.; Guo, Q. Acute toxicity of rhomotoxin: an experimental study in animals. J. Wuhan Med. Coll., 1981, (1), 88-90.
[11]
Cheng, H.; Ding, B.; Zhang, N.; Chen, L.; Huang, Z. Extraction of Rhomotoxin and Its LD50. China Pharmaceuticals, 2010, 19(15), 10-11.
[12]
Dong, L.C.; Zhang, X.H.; Ma, J.; Luo, N.; Song, W.; Li, P.; Li, H.J. The integrated pharmacokinetics of major rhodojaponins correlates with the cardiotoxicity after oral administration of Rhododendri mollis flos extract in rats. J. Ethnopharmacol., 2014, 157, 69.
[http://dx.doi.org/10.1016/j.jep.2014.09.021]
[13]
Zhang, J.Q.; Zhao, C.C.; Yang, Q.Y.; Liang, S.; Wu, F.; Ma, B.L.; Feng, Y. Pharmacokinetics, bioavailability and tissue distribution studies of rhodojaponin III in mice using QTRAP LC–MS/MS. Biomed. Chromatogr., 2019, 33(11), e4649.
[http://dx.doi.org/10.1002/bmc.4649] [PMID: 31301694]
[14]
Zhu, X.; Kong, Q.; Niu, X.; Chen, L.; Ge, C. Mapping intellectual structure and research performance for the nanoparticles in pancreatic cancer field. Int. J. Nanomedicine, 2020, 15, 5503-5516.
[http://dx.doi.org/10.2147/IJN.S253599] [PMID: 32801702]
[15]
Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Abdul Samad, N.; Alitheen, N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomedicine, 2020, 15, 2439-2483.
[http://dx.doi.org/10.2147/IJN.S227805] [PMID: 32346289]
[16]
Hong, D.; Jo, E. J.; Kim, K.; Song, M. B.; Kim, M. G. Ru(bpy)(3) (2+)-loaded mesoporous silica nanoparticles as electrochemiluminescentprobes of a lateral flow immunosensor for highly sensitive and quantitative detection of troponin I Small (Weinheim an der Bergstrasse,Germany), 2020, e2004535.
[http://dx.doi.org/10.1002/smll.202004535]
[17]
Li, T.; Shi, S.; Goel, S.; Shen, X.; Xie, X.; Chen, Z.; Zhang, H.; Li, S.; Qin, X.; Yang, H.; Wu, C.; Liu, Y. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater., 2019, 89, 1-13.
[http://dx.doi.org/10.1016/j.actbio.2019.02.031] [PMID: 30797106]
[18]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590-2605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[19]
He, Q.; Shi, J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater., 2014, 26(3), 391-411.
[http://dx.doi.org/10.1002/adma.201303123] [PMID: 24142549]
[20]
Khatoon, S.; Han, H.S.; Lee, M.; Lee, H.; Jung, D.W.; Thambi, T.; Ikram, M.; Kang, Y.M.; Yi, G.R.; Park, J.H. Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy. Acta Biomater., 2016, 40, 282-292.
[http://dx.doi.org/10.1016/j.actbio.2016.04.011] [PMID: 27063494]
[21]
Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550.
[http://dx.doi.org/10.1021/nn100690m] [PMID: 20731437]
[22]
Liu, M.; Fu, M.; Yang, X.; Jia, G.; Shi, X.; Ji, J.; Liu, X.; Zhai, G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111284.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111284] [PMID: 32771817]
[23]
Péraudeau, E.; Cronier, L.; Monvoisin, A.; Poinot, P.; Mergault, C.; Guilhot, F.; Tranoy-Opalinski, I.; Renoux, B.; Papot, S.; Clarhaut, J. Enhancing tumor response to targeted chemotherapy through up-regulation of folate receptor α expression induced by dexamethasone and valproic acid. J. Control. Release, 2018, 269, 36-44.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.011] [PMID: 29129656]
[24]
Narayan, R.; Nayak, U.; Raichur, A.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics, 2018, 10(3), 118.
[http://dx.doi.org/10.3390/pharmaceutics10030118] [PMID: 30082647]
[25]
Alexa, I.F.; Pastravanu, C.G.; Ignat, M.; Popovici, E. A comparative study on long-term MTX controlled release from intercalated nanocomposites for nanomedicine applications. Colloids Surf. B Biointerfaces, 2013, 106, 135-139.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.022] [PMID: 23434702]
[26]
Nguyen, V.D.; Min, H.K.; Kim, C.S.; Han, J.; Park, J.O.; Choi, E. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf. B Biointerfaces, 2019, 173, 539-548.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.013] [PMID: 30343218]
[27]
Lake, A.D.; Hardwick, R.N.; Leamon, C.P.; Low, P.S.; Cherrington, N.J. Folate receptor-beta expression as a diagnostic target in human & rodent nonalcoholic steatohepatitis. Toxicol. Appl. Pharmacol., 2019, 368, 49-54.
[http://dx.doi.org/10.1016/j.taap.2019.02.009] [PMID: 30794826]
[28]
Jones, P.; Lucock, M.; Scarlett, C.J.; Veysey, M.; Beckett, E.L. Folate and inflammation - links between folate and features of inflammatory conditions. J. Nutr. Intermed. Metab., 2019, 18, 100104.
[http://dx.doi.org/10.1016/j.jnim.2019.100104]
[29]
Kim, T.H.; Kang, M.S.; Mandakhbayar, N.; El-Fiqi, A.; Kim, H.W. Anti-inflammatory actions of folate-functionalized bioactive ion-releasing nanoparticles imply drug-free nanotherapy of inflamed tissues. Biomaterials, 2019, 207, 23-38.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.034] [PMID: 30952042]
[30]
Frigerio, B.; Bizzoni, C.; Jansen, G.; Leamon, C.P.; Peters, G.J.; Low, P.S.; Matherly, L.H.; Figini, M. Folate receptors and transporters: biological role and diagnostic/therapeutic targets in cancer and other diseases. J. Exp. Clin. Cancer Res., 2019, 38(1), 125.
[http://dx.doi.org/10.1186/s13046-019-1123-1] [PMID: 30867007]
[31]
Low, P.; Antony, A.C. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev., 2004, 56(8), 1055-1058.
[http://dx.doi.org/10.1016/j.addr.2004.02.003] [PMID: 15094205]
[32]
Van Der Heijden, J.W.; Oerlemans, R.; Dijkmans, B.A.C.; Qi, H.; Laken, C.J.V.D.; Lems, W.F.; Jackman, A.L.; Kraan, M.C.; Tak, P.P.; Ratnam, M.; Jansen, G. Folate receptor β as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum., 2009, 60(1), 12-21.
[http://dx.doi.org/10.1002/art.24219] [PMID: 19116913]
[33]
Wu, X.J.; Xu, D. Soft template synthesis of yolk/silica shell particles. Adv. Mater., 2010, 22(13), 1516-1520.
[http://dx.doi.org/10.1002/adma.200903879] [PMID: 20437501]
[34]
Kwon, D.; Cha, B.G.; Cho, Y.; Min, J.; Park, E.B.; Kang, S.J.; Kim, J. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett., 2017, 17(5), 2747-2756.
[http://dx.doi.org/10.1021/acs.nanolett.6b04130] [PMID: 28422506]
[35]
Rosenholm, J.M.; Lindén, M. Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J. Control. Release, 2008, 128(2), 157-164.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.013] [PMID: 18439699]
[36]
Li, J.; Miao, X.; Hao, Y.; Zhao, J.; Sun, X.; Wang, L. Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI). J. Colloid Interface Sci., 2008, 318(2), 309-314.
[http://dx.doi.org/10.1016/j.jcis.2007.09.093] [PMID: 18036539]
[37]
Das, S.; Samanta, A.; Mondal, S.; Roy, D.; Nayak, A.K. Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer. Sensors International, 2021, 2, 100077.
[38]
Yan, F.; Zhong, Z.; Wang, Y.; Feng, Y.; Mei, Z.; Li, H.; Chen, X.; Cai, L.; Li, C. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J. Nanobiotechnology, 2020, 18(1), 115.
[http://dx.doi.org/10.1186/s12951-020-00675-6] [PMID: 32819405]
[39]
Bai, K.; Hong, B.; He, J.; Hong, Z.; Tan, R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int. J. Nanomedicine, 2017, 12, 4527-4539.
[http://dx.doi.org/10.2147/IJN.S129958] [PMID: 28684913]
[40]
Vallet-Regí, M.; Schüth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem. Soc. Rev., 2022, 51(13), 5365-5451.
[http://dx.doi.org/10.1039/D1CS00659B] [PMID: 35642539]
[41]
Zhang, L.; Feng, G.; Yang, S.; Liu, B.; Niu, Y.; Fan, P.; Liu, Z.; Chen, J.; Cui, L.; Zhou, G.; Jing, H.; Liu, J.; Shen, Y. Polyethylenimine-modified mesoporous silica nanoparticles induce a survival mechanism in vascular endothelial cells via microvesicle-mediated autophagosome release. ACS Nano, 2021, 15(6), 10640-10658.
[http://dx.doi.org/10.1021/acsnano.1c03456] [PMID: 34080832]
[42]
García-Fernández, A.; Sancenón, F.; Martínez-Máñez, R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv. Drug Deliv. Rev., 2021, 177, 113953.
[http://dx.doi.org/10.1016/j.addr.2021.113953] [PMID: 34474094]
[43]
Szczęśniak,, B.; Choma, J.; Jaroniec, M. Major advances in the development of ordered mesoporous materials. Chem. Commun. (Camb.), 2020, 56(57), 7836-7848.
[http://dx.doi.org/10.1039/D0CC02840A] [PMID: 32520012]
[44]
Rosenholm, J.M.; Duchanoy, A.; Linden, M. Hyperbranching surface polymerization as a tool for preferential functionalization of the outer surface of mesoporous silica. Chem. Mater., 2008, 20(3), 1126-1133.
[http://dx.doi.org/10.1021/cm7021328]
[45]
Keck, C.M.; Müller, R.H. Nanotoxicological classification system (NCS) - A guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm., 2013, 84(3), 445-448.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.001] [PMID: 23333302]
[46]
Tonbul, H.; Sahin, A.; Tavukcuoglu, E.; Ultav, G.; Akbas, S.; Aktas, Y.; Esendaglı, G.; Capan, Y. Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. J. Drug Deliv. Sci. Technol., 2021, 63, 102535.
[http://dx.doi.org/10.1016/j.jddst.2021.102535]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy