Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

PVA Based Nanofiber Containing GO Modified with Cu Nanoparticles and Loaded Curcumin; High Antibacterial Activity with Acceleration Wound Healing

Author(s): Narges Ajalli, Mehrab Pourmadadi, Fatemeh Yazdian*, Majid Abdouss, Hamid Rashedi and Abbas Rahdar*

Volume 20, Issue 10, 2023

Published on: 16 November, 2022

Page: [1569 - 1583] Pages: 15

DOI: 10.2174/1567201820666221014090334

Price: $65

Abstract

Background: The skin is one of the most essential organs of the body that plays a vital role. Protecting the skin from damage is a critical challenge. Therefore, the ideal wound dressing that has antibacterial, mechanical, biodegradable, and non-toxic properties can protect the skin against injury and accelerate and heal the wound.

Objective: In this study, a nano-wound dressing is designed for the first time. This work is aimed to optimize and act as a dressing to speed up the wound healing process.

Methods: Graphene Oxide (GO) was produced by the hummer method. In the next step, GO-copper (Cu) nanohybrid was prepared, then GO-Cu -Curcumin (Cur) nanohybrid was synthesized. Using the electrospinning method, polyvinyl alcohol (PVA)/GO-Cu -Cur were spun, and finally, related analyses were performed to investigate the properties and synthesized chemicals.

Results: The results showed that the nanocomposite was synthesized correctly, and the diameter of the nanofibers was 328 nm. The use of PVA improved the mechanical properties. In addition, the wound dressing had biodegradable, antimicrobial, and non-toxic properties. The results of the scratch test and animal model showed that this nanocomposite accelerated wound healing and after 14 days showed 92.25% wound healing.

Conclusion: The synthesized nanocomposite has the individual properties and characteristics of an ideal wound dressing and replaces traditional methods for wound healing.

[1]
Maheswary, T.; Nurul, A.A.; Fauzi, M.B. The insights of microbes’ roles in wound healing: A comprehensive review. Pharmaceutics, 2021, 13(7), 981.
[http://dx.doi.org/10.3390/pharmaceutics13070981] [PMID: 34209654]
[2]
Luo, M.; Wang, M.; Niu, W.; Chen, M.; Cheng, W.; Zhang, L.; Xie, C.; Wang, Y.; Guo, Y.; Leng, T.; Zhang, X.; Lin, C.; Lei, B. Injectable self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration. Chem. Eng. J., 2021, 412, 128471.
[http://dx.doi.org/10.1016/j.cej.2021.128471]
[3]
Miguel, S.P.; Ribeiro, M.P.; Otero, A.; Coutinho, P. Application of microalgae and microalgal bioactive compounds in skin regeneration. Algal Res., 2021, 58, 102395.
[http://dx.doi.org/10.1016/j.algal.2021.102395]
[4]
Nowak, A.; Ossowicz-Rupniewska, P.; Rakoczy, R.; Konopacki, M.; Perużyńska, M.; Droździk, M.; Makuch, E.; Duchnik, W.; Kucharski, Ł.; Wenelska, K.; Klimowicz, A. Bacterial cellulose membrane containing Epilobium angustifolium L. extract as a promising material for the topical delivery of antioxidants to the skin. Int. J. Mol. Sci., 2021, 22(12), 6269.
[http://dx.doi.org/10.3390/ijms22126269] [PMID: 34200927]
[5]
Abolghasemzade, S.; Pourmadadi, M.; Rashedi, H.; Yazdian, F.; Kianbakht, S.; Navaei-Nigjeh, M. PVA based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(3), 658-676.
[http://dx.doi.org/10.1039/D0TB01747G] [PMID: 33320924]
[6]
Esmaeili, E.; Eslami-Arshaghi, T.; Hosseinzadeh, S.; Elahirad, E.; Jamalpoor, Z.; Hatamie, S.; Soleimani, M. The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: Antimicrobial performance and cutaneous wound healing. Int. J. Biol. Macromol., 2020, 152, 418-427.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.295] [PMID: 32112830]
[7]
Yang, Y.; Liang, Y.; Chen, J.; Duan, X.; Guo, B. Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact. Mater., 2022, 8, 341-354.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.014] [PMID: 34541405]
[8]
Rawson, T.M.; Wilson, R.C.; O’Hare, D.; Herrero, P.; Kambugu, A.; Lamorde, M.; Ellington, M.; Georgiou, P.; Cass, A.; Hope, W.W.; Holmes, A.H. Optimizing antimicrobial use: Challenges, advances and opportunities. Nat. Rev. Microbiol., 2021, 19(12), 747-758.
[http://dx.doi.org/10.1038/s41579-021-00578-9] [PMID: 34158654]
[9]
Li, M.; Liang, Y.; He, J.; Zhang, H.; Guo, B. Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem. Mater., 2020, 32(23), 9937-9953.
[http://dx.doi.org/10.1021/acs.chemmater.0c02823]
[10]
Campa-Siqueiros, P.I.; Madera-Santana, T.J.; Castillo-Ortega, M.M.; López-Cervantes, J.; Ayala-Zavala, J.F.; Ortiz-Vazquez, E.L. Electrospun and co-electrospun biopolymer nanofibers for skin wounds on diabetic patients: An overview. RSC Advances, 2021, 11(25), 15340-15350.
[http://dx.doi.org/10.1039/D1RA02986J] [PMID: 35424077]
[11]
Mahendhran, K.; Ramanathan, M. Biopolymer-based nanomaterials for biomedical applications: Biomedical applications of electrospun nanofibers. In: Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer; IGI Global, 2021; pp. 29-55.
[http://dx.doi.org/10.4018/978-1-7998-5049-6.ch002]
[12]
Gholamali, I.; Yadollahi, M. Bio-nanocomposite polymer hydrogels containing nanoparticles for drug delivery: A review. Regen. Eng. Transl. Med., 2021, 7(2), 129-146.
[http://dx.doi.org/10.1007/s40883-021-00207-0]
[13]
Samadi, A.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Navaei-Nigjeh, M.; Eufrasio-da-silva, T. Ameliorating quercetin constraints in cancer therapy with pH-responsive agarose-polyvinylpyrrolidone -hydroxyapatite nanocomposite encapsulated in double nanoemulsion. Int. J. Biol. Macromol., 2021, 182, 11-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.146] [PMID: 33775763]
[14]
Nematollahi, E.; Pourmadadi, M.; Yazdian, F.; Fatoorehchi, H.; Rashedi, H.; Nigjeh, M.N. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin. Int. J. Biol. Macromol., 2021, 183, 600-613.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.160] [PMID: 33932424]
[15]
Gerami, S.E.; Pourmadadi, M.; Fatoorehchi, H.; Yazdian, F.; Rashedi, H.; Nigjeh, M.N. Preparation of pH-sensitive chitosan/polyvinyl-pyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions. Int. J. Biol. Macromol., 2021, 173, 409-420.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.067] [PMID: 33454326]
[16]
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci., 2014, 116(1), 1-7.
[http://dx.doi.org/10.1016/j.lfs.2014.08.016] [PMID: 25200875]
[17]
Lu, B.; Li, T.; Zhao, H.; Li, X.; Gao, C.; Zhang, S.; Xie, E. Graphene-based composite materials beneficial to wound healing. Nanoscale, 2012, 4(9), 2978-2982.
[http://dx.doi.org/10.1039/c2nr11958g] [PMID: 22453925]
[18]
Alipour, R.; Khorshidi, A.; Shojaei, A.F.; Mashayekhi, F.; Moghaddam, M.J.M. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym. Test., 2019, 79, 106022.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106022]
[19]
Rahmandoust, M.; Ayatollahi, M.R. Nanomaterials for advanced biological applications; Springer, 2019, p. 104.
[http://dx.doi.org/10.1007/978-3-030-10834-2]
[20]
Naderian, N. Design of a novel nanobiosensor for the diagnosis of acute lymphoid leukemia (ALL) by measurement of miRNA-128 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME),2020.
[21]
Kazemi, S.; Pourmadadi, M.; Yazdian, F.; Ghadami, A. The synthesis and characterization of targeted delivery curcumin using chitosan-magnetite-reduced graphene oxide as nano-carrier. Int. J. Biol. Macromol., 2021, 186, 554-562.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.184] [PMID: 34216673]
[22]
Saeidi Tabar, F. Design of a novel electrochemical nanobiosensor for the detection of prostate cancer by measurement of PSA using graphene based materials., 2021.
[23]
Pourmadadi, M.; Shayeh, J.S.; Omidi, M.; Yazdian, F.; Alebouyeh, M.; Tayebi, L. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Mikrochim. Acta, 2019, 186(12), 787.
[http://dx.doi.org/10.1007/s00604-019-3957-9] [PMID: 31732807]
[24]
Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials (Basel), 2019, 9(5), 737.
[http://dx.doi.org/10.3390/nano9050737] [PMID: 31086043]
[25]
Fernando, S.; Gunasekara, T.; Holton, J. Antimicrobial Nanoparticles Applications and mechanisms of action. 2018.
[http://dx.doi.org/10.4038/sljid.v8i1.8167]
[26]
Mei, L.; Zhu, S.; Yin, W.; Chen, C.; Nie, G.; Gu, Z.; Zhao, Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: Current progress and future perspectives. Theranostics, 2020, 10(2), 757-781.
[http://dx.doi.org/10.7150/thno.39701] [PMID: 31903149]
[27]
Khalid, A.; Ahmad, P.; Alharthi, A.I.; Muhammad, S.; Khandaker, M.U.; Rehman, M.; Faruque, M.R.I.; Din, I.U.; Alotaibi, M.A.; Alzimami, K.; Bradley, D.A. Structural, optical and antibacterial efficacy of pure and zinc-doped copper oxide against pathogenic bacteria. Nanomaterials (Basel), 2021, 11(2), 451.
[http://dx.doi.org/10.3390/nano11020451] [PMID: 33578945]
[28]
Manoharan, R.K.; Gangadaran, P.; Ayyaru, S.; Ahn, B-C.; Ahn, Y-H. Self-healing functionalization of sulfonated hafnium oxide and copper oxide nanocomposite for effective biocidal control of multidrug-resistant bacteria. New J. Chem., 2021, 45(21), 9506-9517.
[http://dx.doi.org/10.1039/D1NJ00323B]
[29]
Azadmanesh, F.; Pourmadadi, M.; Zavar Reza, J.; Yazdian, F.; Omidi, M.; Haghirosadat, B.F. Synthesis of a novel nanocomposite containing chitosan as a three‐dimensional printed wound dressing technique: Emphasis on gene expression. Biotechnol. Prog., 2021, 37(4), e3132.
[http://dx.doi.org/10.1002/btpr.3132] [PMID: 33527746]
[30]
Valdez-Salas, B.; Beltrán-Partida, E.; Zlatev, R.; Stoytcheva, M.; Gonzalez-Mendoza, D.; Salvador-Carlos, J.; Moreno-Ulloa, A.; Cheng, N. Structure-activity relationship of diameter controlled Ag@Cu nanoparticles in broad-spectrum antibacterial mechanism. Mater. Sci. Eng. C, 2021, 119, 111501.
[http://dx.doi.org/10.1016/j.msec.2020.111501] [PMID: 33321601]
[31]
Cao, Y.; Moniri Javadhesari, S.; Mohammadnejad, S. khodadustan, E.; Raise, A.; Akbarpour, M.R. Microstructural characterization and antibacterial activity of carbon nanotube decorated with Cu nanoparticles synthesized by a novel solvothermal method. Ceram. Int., 2021, 47(18), 25729-25737.
[http://dx.doi.org/10.1016/j.ceramint.2021.05.299]
[32]
Targhi, A.A.; Moammeri, A.; Jamshidifar, E.; Abbaspour, K.; Sadeghi, S.; Lamakani, L.; Akbarzadeh, I. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg. Chem., 2021, 115, 105116.
[http://dx.doi.org/10.1016/j.bioorg.2021.105116] [PMID: 34333420]
[33]
Jia, B.; Mei, Y.; Cheng, L.; Zhou, J.; Zhang, L. Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl. Mater. Interfaces, 2012, 4(6), 2897-2902.
[http://dx.doi.org/10.1021/am3007609] [PMID: 22680307]
[34]
Kumar, B.N. Synthesis and characterization of copper particles decorated reduced graphene oxide nano composites for the application of supercapacitors. In: AIP Conference Proceedings; AIP Publishing LLC, 2018.
[http://dx.doi.org/10.1063/1.5047973]
[35]
Fasna, P.H.F.; Sasi, S.; Sharmila, T.K.B.; Chandra, C.S.J.; Antony, J.V.; Raman, V. Photocatalytic remediation of methylene blue and antibacterial activity study using Schiff base-Cu complexes. Environ. Sci. Pollut. Res. Int., 2022, 29(36), 54318-54329.
[http://dx.doi.org/10.1007/s11356-022-19694-x] [PMID: 35296999]
[36]
Fattahi Bafghi, A.; Haghirosadat, B.F.; Yazdian, F.; Mirzaei, F.; Pourmadadi, M.; Pournasir, F.; Hemati, M.; Pournasir, S. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep. Biochem. Biotechnol., 2021, 51(10), 990-997.
[http://dx.doi.org/10.1080/10826068.2021.1885045] [PMID: 34060984]
[37]
Nowroozi, N.; Faraji, S.; Nouralishahi, A.; Shahrousvand, M. Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application. Life Sci., 2021, 264, 118640.
[http://dx.doi.org/10.1016/j.lfs.2020.118640] [PMID: 33172598]
[38]
Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res., 2018, 32(6), 985-995.
[http://dx.doi.org/10.1002/ptr.6054] [PMID: 29480523]
[39]
Zhang, L.; Yu, Y.; Zheng, S.; Zhong, L.; Xue, J. Preparation and properties of conductive bacterial cellulose-based graphene oxide-silver nanoparticles antibacterial dressing. Carbohydr. Polym., 2021, 257, 117671.
[http://dx.doi.org/10.1016/j.carbpol.2021.117671] [PMID: 33541624]
[40]
Mohanty, C.; Sahoo, S.K. Curcumin and its topical formulations for wound healing applications. Drug Discov. Today, 2017, 22(10), 1582-1592.
[http://dx.doi.org/10.1016/j.drudis.2017.07.001] [PMID: 28711364]
[41]
Alven, S.; Nqoro, X.; Aderibigbe, B.A. Polymer-based materials loaded with curcumin for wound healing applications. Polymers (Basel), 2020, 12(10), 2286.
[http://dx.doi.org/10.3390/polym12102286] [PMID: 33036130]
[42]
Chen, L.; Qin, Y.; Cheng, J.; Cheng, Y.; Lu, Z.; Liu, X.; Yang, S.; Lu, S.; Zheng, L.; Cao, Q. A biocompatible PAA-Cu-MOP hydrogel for wound healing. RSC Advances, 2020, 10(59), 36212-36218.
[http://dx.doi.org/10.1039/C9RA10031H] [PMID: 35517077]
[43]
Borkow, G.; Gabbay, J.; Dardik, R.; Eidelman, A.I.; Lavie, Y.; Grunfeld, Y.; Ikher, S.; Huszar, M.; Zatcoff, R.C.; Marikovsky, M. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen., 2010, 18(2), 266-275.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00573.x] [PMID: 20409151]
[44]
Mahmoudi, N.; Eslahi, N.; Mehdipour, A.; Mohammadi, M.; Akbari, M.; Samadikuchaksaraei, A.; Simchi, A. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: Pre-clinical and pathological studies in animal models. J. Mater. Sci. Mater. Med., 2017, 28(5), 73.
[http://dx.doi.org/10.1007/s10856-017-5874-y] [PMID: 28361280]
[45]
Reneker, D.H.; Yarin, A.L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys., 2000, 87(9), 4531-4547.
[http://dx.doi.org/10.1063/1.373532]
[46]
Sill, T.; Von Recum, H. Electrospinning for tissue engineering and drug delivery. Biomaterials, 2008, 29(13), 1989-2006.
[http://dx.doi.org/10.1016/j.biomaterials.2008.01.011] [PMID: 18281090]
[47]
Krishnamoorthy, S.; Hinderling, C.; Heinzelmann, H. Nanoscale patterning with block copolymers. Mater. Today, 2006, 9(9), 40-47.
[http://dx.doi.org/10.1016/S1369-7021(06)71621-2]
[48]
Chaudhari, A.; Vig, K.; Baganizi, D.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S.; Pillai, S. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci., 2016, 17(12), 1974.
[http://dx.doi.org/10.3390/ijms17121974] [PMID: 27898014]
[49]
Salmeh, M.A. Antibacterial polymeric wound dressing based on PVA/graphene oxide-nigella sativa-arginine. 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME),2020.
[50]
Malmir, S.; Karbalaei, A.; Pourmadadi, M.; Hamedi, J.; Yazdian, F.; Navaee, M. Antibacterial properties of a bacterial cellulose CQD-TiO2 nanocomposite. Carbohydr. Polym., 2020, 234, 115835.
[http://dx.doi.org/10.1016/j.carbpol.2020.115835] [PMID: 32070499]
[51]
Politano, G.G.; Versace, C.; Vena, C.; Castriota, M.; Ciuchi, F.; Fasanella, A.; Desiderio, G.; Cazzanelli, E. Physical investigation of electrophoretically deposited graphene oxide and reduced graphene oxide thin films. J. Appl. Phys., 2016, 120(19), 195307.
[http://dx.doi.org/10.1063/1.4968000]
[52]
Wang, T.; Walden, S.; Egan, R. Development and validation of a general non-digestive method for the determination of palladium in bulk pharmaceutical chemicals and their synthetic intermediates by graphite furnace atomic absorption spectroscopy. J. Pharm. Biomed. Anal., 1997, 15(5), 593-599.
[http://dx.doi.org/10.1016/S0731-7085(96)01886-9] [PMID: 9127271]
[53]
Sayed, M.M.; Mousa, H.M.; El-Aassar, M.R.; El-Deeb, N.M.; Ghazaly, N.M.; Dewidar, M.M.; Abdal-hay, A. Enhancing mechanical and biodegradation properties of polyvinyl alcohol/silk fibroin nanofibers composite patches for Cardiac Tissue Engineering. Mater. Lett., 2019, 255, 126510.
[http://dx.doi.org/10.1016/j.matlet.2019.126510]
[54]
Zavareh, S.; Norouzi, E. Impregnation of GO with Cu2+ for enhancement of aniline adsorption and antibacterial activity. J. Water Process Eng., 2017, 20, 160-167.
[http://dx.doi.org/10.1016/j.jwpe.2017.10.012]
[55]
Liao, K.H.; Lin, Y.S.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces, 2011, 3(7), 2607-2615.
[http://dx.doi.org/10.1021/am200428v] [PMID: 21650218]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy