Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Extended-Spectrum β-Lactamase-Producing Escherichia coli and Virulence Genes in Pediatric Patients with Health-Care Urinary Tract Infections

Author(s): Mohamed Anies Rizk, Maysaa El Sayed Zaki*, Hanan Abdelfattah Abdelmohsen Mohamed, Dina Mohammed Abdel-Hady and Karim Montasser

Volume 23, Issue 3, 2023

Published on: 15 December, 2022

Article ID: e041122210656 Pages: 8

DOI: 10.2174/1871526523666221104150123

Price: $65

Abstract

Introduction: Healthcare-associated urinary tract infection (UTI) represents a significant health problem, especially in infants and young children. The most common pathogen associated with this infection is Escherichia coli (E. coli).

Objective: The present study aimed to detect the frequency of virulence genes among clinical isolates of E. coli isolated from healthcare-associated urinary tract infections in children and the correlation between these virulence genes and the presence of the blaCTX gene.

Methods: The study included one hundred clinical isolates of E. coli isolated from healthcareassociated urinary tract infections in children in intensive care units. The isolates were subjected to antibiotics sensitivity by disc diffusion method and detection of extended-spectrum beta-lactamase by double disc diffusion method. In addition, multiplex polymerase chain reaction (PCR) was used to detect some virulence genes, and PCR was used to detect the blaCTX-M gene.

Results: E. coli producing ESBL by double discs method was identified in 74 isolates. blaCTX-M gene detection by PCR was identified among 38 isolates representing 51.4% of ESBL-producing E. coli. There was a significant association between ESBL and blaCTX-M Gene, P = 0.0001. The frequency of the studied virulence genes by multiplex PCR in the isolated E. coli was 66% for the Fim gene, 75% for the Aer gene, 68% for the FliC gene, 53% for each of IucD gene and Usp gene, 40% for pap gene, 35% for each of AFA and ironN genes and 17% for sfa gene. None of the isolated E. coli had the Cdt gene. There was a significant association between the presence of the FimH gene (P = 0.0001), Pap gene (P = 0.05), sfa (P = 0.026), Afa gene (P = 0.018), and aer gene (P = 0.035) and the presence of the blaCTX-M gene in the isolated E. coli.

Conclusion: The present study highlights the presence of virulence genes and blaCTX-M gene in uropathogenic E. coli isolated from pediatric patients with healthcare-associated urinary tract infections. There was an association between the blaCTX-M gene and virulence genes FimH, pap, sfa, Afa, and aer. Various distributions of the studied genes with a high frequency of fimbria are flic genes. Moreover, the ESBL had high frequency in E. coli with the presence of blaCTX-M in about one-third of the isolates.

Graphical Abstract

[1]
Chenoweth CE, Saint S. Urinary tract infections. Infect Dis Clin North Am 2011; 25(1): 103-15.
[http://dx.doi.org/10.1016/j.idc.2010.11.005] [PMID: 21315996]
[2]
Tchesnokova VL, Rechkina E, Larson L, et al. Rapid and extensive expansion in the United States of a new multidrug-resistant Escherichia coli clonal group, sequence type 1193. Clin Infect Dis 2019; 68(2): 334-7.
[http://dx.doi.org/10.1093/cid/ciy525] [PMID: 29961843]
[3]
Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13(5): 269-84.
[http://dx.doi.org/10.1038/nrmicro3432] [PMID: 25853778]
[4]
Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001; 32(8): 1162-71.
[http://dx.doi.org/10.1086/319757] [PMID: 11283805]
[5]
Tumbarello M, Sanguinetti M, Montuori E, et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 2007; 51(6): 1987-94.
[http://dx.doi.org/10.1128/AAC.01509-06] [PMID: 17387156]
[6]
Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol 2010; 7(12): 653-60.
[http://dx.doi.org/10.1038/nrurol.2010.190] [PMID: 21139641]
[7]
Livermore DM, Woodford N. The β-lactamase threat in enterobacteriaceae, pseudomonas and acinetobacter. Trends Microbiol 2006; 14(9): 413-20.
[http://dx.doi.org/10.1016/j.tim.2006.07.008] [PMID: 16876996]
[8]
Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: A clinical update. Clin Microbiol Rev 2005; 18(4): 657-86.
[http://dx.doi.org/10.1128/CMR.18.4.657-686.2005] [PMID: 16223952]
[9]
Pitout JDD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect Dis 2008; 8(3): 159-66.
[http://dx.doi.org/10.1016/S1473-3099(08)70041-0] [PMID: 18291338]
[10]
Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing enterobacteriaceae. Clin Microbiol Rev 2018; 31(2): e00079-17.
[11]
Rodríguez-Baño J, Pascual A. Clinical significance of extended-spectrum β-lactamases. Expert Rev Anti Infect Ther 2008; 6(5): 671-83.
[http://dx.doi.org/10.1586/14787210.6.5.671] [PMID: 18847405]
[12]
Lee E, Lee Y. Prevalence of Escherichia coli carrying pks islands in bacteremia patients. Ann Lab Med 2018; 38(3): 271-3.
[http://dx.doi.org/10.3343/alm.2018.38.3.271] [PMID: 29401564]
[13]
Mainil J. Escherichia coli virulence factors. Vet Immunol Immunopathol 2013; 152(1-2): 2-12.
[http://dx.doi.org/10.1016/j.vetimm.2012.09.032] [PMID: 23083938]
[14]
Wang MC, Tseng CC, Chen CY, Wu JJ, Huang JJ. The role of bacterial virulence and host factors in patients with Escherichia coli bacteremia who have acute cholangitis or upper urinary tract infection. Clin Infect Dis 2002; 35(10): 1161-6.
[http://dx.doi.org/10.1086/343828] [PMID: 12410475]
[15]
Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, et al. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog 2019; 11: 10.
[16]
Magill SS, O’Leary E, Janelle SJ, et al. Changes in prevalence of health care–associated infections in U.S. hospitals. N Engl J Med 2018; 379(18): 1732-44.
[http://dx.doi.org/10.1056/NEJMoa1801550] [PMID: 30380384]
[17]
Azardokht T, Ali B, Elnaz O, et al. Determination of virulence and quinolone resistance genes and biofilm production among uropathogenic Escherichia coli strains isolated from clinical specimens in Iran. Rev and Res in Med Microb 2022; 33(1): 20-30.
[18]
Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol 1995; 12(2): 85-90.
[http://dx.doi.org/10.1111/j.1574-695X.1995.tb00179.x] [PMID: 8589667]
[19]
Jackson EC. Urinary tract infections in children: Knowledge updates and a salute to the future. Pediatr Rev 2015; 36(4): 153-66.
[http://dx.doi.org/10.1542/pir.36.4.153] [PMID: 25834219]
[20]
Shaikh N. Alejandro Hoberman Urinary tract infections in infants and children older than one month: Clinical features and diagnosis Up To Date, Post, TW (ED). Waltham, MA: Up To Date 2022.
[21]
CLSI. Performance standards for antimicrobial susceptibility testing. (30th ed.), Wayne, PA: Clinical and Laboratory Standards Institute 2020.
[22]
Tabar MM, Mirkalantari S, Amoli RI. Detection of CTX-M gene in ESBL-producing E. coli strains isolated from urinary tract infection in Semnan. Iran. Electron Physician 2016; 8(7): 2686-90.
[23]
Albarrak M, Alzomor O, Almaghrabi R, et al. Diagnosis and management of community-acquired urinary tract infection in infants and children: Clinical guidelines endorsed by the Saudi Pediatric Infectious Diseases Society (SPIDS). Int J Pediatr Adolesc Med 2021; 8(2): 57-67.
[http://dx.doi.org/10.1016/j.ijpam.2021.03.001] [PMID: 34084874]
[24]
Lee NG, Marchalik D, Lipsky A, Rushton HG, Pohl HG, Song X. Risk factors for catheter associated urinary tract infections in a pediatric institution. J Urol 2016; 195(4 Part 2): 1306-11.
[http://dx.doi.org/10.1016/j.juro.2015.03.121] [PMID: 25858421]
[25]
Sante L, Lecuona M, Jaime-Aguirre A, Arias A. Risk factors to secondary nosocomial bacteremia to UTI in a tertiary hospital. Rev Esp Quimioter 2019; 32(4): 311-6.
[PMID: 31273970]
[26]
Okeke I, Fayinka ST, Lamikanra A. Antibiotic resistance in Escherichia coli from Nigerian students, 1986-1998. Emerg Infect Dis 2000; 6(4): 393-6.
[http://dx.doi.org/10.3201/eid0604.009913] [PMID: 10905975]
[27]
Vazouras K, Velali K, Tassiou I, et al. Antibiotic treatment and antimicrobial resistance in children with urinary tract infections. J Glob Antimicrob Resist 2020; 20: 4-10.
[http://dx.doi.org/10.1016/j.jgar.2019.06.016] [PMID: 31252156]
[28]
Iqbal Z, Mumtaz MZ, Malik A. Extensive drug-resistance in strains of Escherichia coli and Klebsiella pneumoniae isolated from paediatric urinary tract infections. J Taibah Univ Med Sci 2021; 16(4): 565-74.
[http://dx.doi.org/10.1016/j.jtumed.2021.03.004] [PMID: 34408614]
[29]
Kayastha K, Dhungel B, Karki S, et al. Extended-spectrum β-Lactamase-producing Escherichia coli and Klebsiella species in pediatric patients visiting international friendship children’s hospital, Kathmandu, Nepal. Infect Dis (Auckl) 2020; 131178633720909798
[30]
Shakya P, Shrestha D, Maharjan E, Sharma VK, Paudyal R. ESBL production among E. coli and Klebsiella spp. causing urinary tract infection: A hospital based study. Open Microbiol J 2017; 11(1): 23-30.
[http://dx.doi.org/10.2174/1874285801711010023] [PMID: 28553414]
[31]
Seifu WD, Gebissa AD. Prevalence and antibiotic susceptibility of Uropathogens from cases of urinary tract infections (UTI) in Shashemene referral hospital, Ethiopia. BMC Infect Dis 2018; 18(1): 30.
[http://dx.doi.org/10.1186/s12879-017-2911-x] [PMID: 29320984]
[32]
Zorc JJ, Kiddoo DA, Shaw KN. Diagnosis and management of pediatric urinary tract infections. Clin Microbiol Rev 2005; 18(2): 417-22.
[http://dx.doi.org/10.1128/CMR.18.2.417-422.2005] [PMID: 15831830]
[33]
Ramadan AA, Abdelaziz NA, Amin MA, Aziz RK. Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci Rep 2019; 9(1): 4224.
[http://dx.doi.org/10.1038/s41598-019-39730-0] [PMID: 30862858]
[34]
Li Y, Sun QL, Shen Y, et al. Rapid increase in prevalence of carbapenem-resistant enterobacteriaceae (CRE) and emergence of colistin resistance gene mcr-1 in CRE in a Hospital in Henan, China. J Clin Microbiol 2018; 56(4): e01932-17.
[http://dx.doi.org/10.1128/JCM.01932-17] [PMID: 29386265]
[35]
Gharavi MJ, Zarei J, Roshani-Asl P, Yazdanyar Z, Sharif M, Rashidi N. Comprehensive study of antimicrobial susceptibility pattern and extended-spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Sci Rep 2021; 11(1): 578-85.
[36]
López-Banda DA, Carrillo-Casas EM, Leyva-Leyva M, et al. Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico. BioMed Res Int 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/959206] [PMID: 24895634]
[37]
Samarasinghe S, Reid R. AL-Bayati M. The anti-virulence effect of cranberry active compound proanthocyanins (PACs) on expression of genes in the third-generation cephalosporin-resistant Escherichia coli CTX-M-15 associated with urinary tract infection. Antimicrob Resist Infect Control 2019; 8(1): 181.
[http://dx.doi.org/10.1186/s13756-019-0637-9] [PMID: 31832181]
[38]
Firoozeh F, Saffari M, Neamati F, Zibaei M. Detection of virulence genes in Escherichia coli isolated from patients with cystitis and pyelonephritis. Int J Infect Dis 2014; 29: 219-22.
[http://dx.doi.org/10.1016/j.ijid.2014.03.1393] [PMID: 25449257]
[39]
Santo E, Macedo C, Marin JM. Virulence factors of uropathogenic Escherichia coli from a university hospital in ribeirão preto, São Paulo, Brazil. Rev Inst Med Trop São Paulo 2006; 48(4): 185-8.
[http://dx.doi.org/10.1590/S0036-46652006000400002] [PMID: 17119672]
[40]
Vega-Hernández R, Ochoa SA, Valle-Rios R, et al. Flagella, Type I Fimbriae and curli of uropathogenic Escherichia coli promote the release of proinflammatory cytokines in a coculture system. Microorganisms 2021; 9(11): 2233.
[http://dx.doi.org/10.3390/microorganisms9112233] [PMID: 34835359]
[41]
Tabasi M, Karam MR, Habibi M, Mostafavi E, Bouzari S. Genotypic characterization of virulence factors in Escherichia coli isolated from patients with acute cystitis, pyelonephritis and asymptomatic bacteriuria. J Clin Diagn Res 2016; 10(12): DC01-7.
[http://dx.doi.org/10.7860/JCDR/2016/21379.9009] [PMID: 28208853]
[42]
Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol 2014; 65: 337-72.
[http://dx.doi.org/10.1016/bs.ampbs.2014.08.006] [PMID: 25476769]
[43]
Oliveira FA, Paludo KS, Arend LNVS, et al. Virulence characteristics and antimicrobial susceptibility of uropathogenic Escherichia coli strains. Genet Mol Res 2011; 10(4): 4114-25.
[http://dx.doi.org/10.4238/2011.October.31.5] [PMID: 22057993]
[44]
Lee S, Yu JK, Park K, Oh EJ, Kim SY, Park YJ. Phylogenetic groups and virulence factors in pathogenic and commensal strains of Escherichia coli and their association with blaCTX-M. Ann Clin Lab Sci 2010; 40(4): 361-7.
[PMID: 20947811]
[45]
Koczura R, Mokracka J, Barczak A, Krysiak N, Kaznowski A. Association between the presence of class 1 integrons, virulence genes, and phylogenetic groups of Escherichia coli isolates from river water. Microb Ecol 2013; 65(1): 84-90.
[http://dx.doi.org/10.1007/s00248-012-0101-3] [PMID: 22903163]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy