Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Preparation of Ionic Liquid Supported Organocatalysts for the Synthesis of Stereoselective (R)-9-Methyl-5(10)-Octaline-1,6-Dione

Author(s): Vivek Srivastava*

Volume 10, Issue 1, 2023

Published on: 29 December, 2022

Page: [26 - 33] Pages: 8

DOI: 10.2174/2213337210666221103122755

Price: $65

Abstract

The synthesis of Proline-2-triethyl-ethylamide hexafluorophosphate (ILPA-PF6) (with 96% yield) and further the application during the synthesis of (R)-9-Methyl-5(10)-octaline-1,6-dione (Wieland-Miescher ketone molecule) are defined in this manuscript. The suggested protocol signifies one of the most efficient methods for the synthesis of these flexible chiral building blocks in good yield. The evident solubility of ionic liquids allows straightforward isolation of the (R)-9-Methyl- 5(10)-octaline-1,6-dione product from reaction mass. Additionally, six times catalyst recycling was considered the main conclusion of this proposed procedure.

Background: The synthesis of WMK starts with the Michael Addition step, where the α, β- unsaturated ketone reacts with 2-methyl-1,3-cyclohexanedione followed by the nucleophilic attack and produces the triketone. Further, the isolated triketone goes to intramolecular Aldol Condensation, (in the Robinson Annulation reaction cascade) to get an enolate. Later, followed by the dehydrogenation reaction of enolate (to expel hydroxide ion) the desired product Wieland Miescher Ketone was isolated in good yield. The above conventional method suffers from several drawbacks like a slow reaction rate, the requirement of high boiling point solvent systems, and low reaction yield.

Objective: To prepare ionic liquid-supported organocatalysts for the synthesis of stereoselective (R)- 9-Methyl-5(10)-octaline-1,6-dione

Methods: This report summarizes the synthesis and its application of triethyl salt-supported prolinebased organocatalysts as recyclable and highly efficient for the asymmetric Wieland-Miescher ketone ((R)-9-Methyl-5(10)-octaline-1,6-dione). An ionic liquid-supported proline (as a catalyst) is equipped with basic proline and a significantly acidic amide moiety to promote the reaction rate, and synchronously having a specialty of ionic liquid could be easy to separate and recycle.

Results: The report simply defined the WMK molecule in good yield and enantioselectivity followed by minimal ether washing. During the reaction, low catalyst loading i.e., 0.5 g of catalyst was found enough to attain the maximum yield and enantioselectivity in 2 hours. Furthermore, catalyst recycling was observed 6 times as a significant element of the suggested catalytic method.

Conclusion: The synthesis of an extremely dynamic and enantioselective ILPA-PF6 catalytic approach is demonstrated in the report. The ILPA-PF6 catalyst was further modified after its characterization for use in the synthesis of the WMK molecule and the subsequent intramolecular aldol reaction of triketone. The WMK molecule was isolated with good yield and enantioselectivity followed by minimal ether washing. During the reaction, low catalyst loading i.e., 0.5 g of catalyst was found enough to get the maximum yield and enantioselectivity in 2 hours. Additionally, catalyst recycling was observed 6 times as a significant element of the suggested catalytic method.

Graphical Abstract

[1]
Fanourakis, A.; Docherty, P.J.; Chuentragool, P.; Phipps, R.J. Recent developments in enantioselective transition metal catalysis featuring attractive noncovalent interactions between ligand and substrate. ACS Catal., 2020, 10(18), 10672-10714.
[http://dx.doi.org/10.1021/acscatal.0c02957] [PMID: 32983588]
[2]
Ye, X.; Tan, C.H.; Ye, X.; Tan, H. Enantioselective transition metal catalysis directed by chiral cations. Chem. Sci. (Camb.), 2021, 12(2), 533-539.
[http://dx.doi.org/10.1039/D0SC05734G] [PMID: 34163782]
[3]
Kim, U.B.; Jung, D.J.; Jeon, H.J.; Rathwell, K.; Lee, S. Synergistic dual transition metal catalysis. Chem. Rev., 2020, 120(24), 13382-13433.
[http://dx.doi.org/10.1021/acs.chemrev.0c00245] [PMID: 33251788]
[4]
List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122(10), 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[5]
Xiang, S.H.; Tan, B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun., 2020, 11, 1-5.
[6]
Costanzo, M.; Cortigiani, M.; Gillick-Healy, M.W.; Kelly, B.G.; Monasterolo, C.; Adamo, M.F.A. Organocatalytic desymmetrization of meso‐aziridines via asymmetric intramolecular rearrangement. Eur. J. Org. Chem., 2021, 2021(33), 4560-4565.
[http://dx.doi.org/10.1002/ejoc.202100502]
[7]
Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol., 2016, 11(5), 409-420.
[http://dx.doi.org/10.1038/nnano.2016.54] [PMID: 27146955]
[8]
Bai, Y.; Chen, J.; Zimmerman, S.C. Designed transition metal catalysts for intracellular organic synthesis. Chem. Soc. Rev., 2018, 47(5), 1811-1821.
[http://dx.doi.org/10.1039/C7CS00447H] [PMID: 29367988]
[9]
van der Helm, M.P.; Klemm, B.; Eelkema, R. Organocatalysis in aqueous media. Nat. Rev. Chem., 2019, 3, 491-508.
[10]
Coverdale, J.P.C.; Romero-Canelón, I.; Sanchez-Cano, C.; Clarkson, G.J.; Habtemariam, A.; Wills, M.; Sadler, P.J. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat. Chem., 2018, 10(3), 347-354.
[http://dx.doi.org/10.1038/nchem.2918] [PMID: 29461524]
[11]
Kodo, T.; Nagao, K.; Ohmiya, H. Organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover. Nat. Commun., 2022, 13, 1-7.
[12]
Nielsen, C.D.T.; Linfoot, J.D.; Williams, A.F.; Spivey, A.C. Recent progress in asymmetric synergistic catalysis-The judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org. Biomol. Chem., 2022, 20(14), 2764-2778.
[http://dx.doi.org/10.1039/D2OB00025C] [PMID: 35298581]
[13]
Li, Q.; Levi, S.M.; Wagen, C.C.; Wendlandt, A.E.; Jacobsen, E.N. Site-selective, stereocontrolled glycosylation of minimally protected sugars. Nature, 2022, 608(7921), 74-79.
[http://dx.doi.org/10.1038/s41586-022-04958-w] [PMID: 35709829]
[14]
Ooi, T.; Crudden, C. 2021 nobel laureates recognized in organocatalysis. ACS Catal., 2021, 11(24), 15234.
[http://dx.doi.org/10.1021/acscatal.1c05384]
[15]
Šebesta, R. New advances in asymmetric organocatalysis. Beilstein J. Org. Chem., 2022, 18, 240-242.
[http://dx.doi.org/10.3762/bjoc.18.28] [PMID: 35330781]
[16]
Adams, R.; Cohen, F.L.; Rees, O.W. The reduction of aromatic nitro compounds to amines with hydrogen and platinum-oxide platinum black as a catalyst. XIV. J. Am. Chem. Soc., 1927, 49(4), 1093-1099.
[http://dx.doi.org/10.1021/ja01403a035]
[18]
List, B. Introduction: Organocatalysis. Chem. Rev., 2007, 107(12), 5413-5415.
[http://dx.doi.org/10.1021/cr078412e]
[19]
Srivastava, V.; Gaubert, K.; Pucheault, M.; Vaultier, M. Organic-inorganic hybrid materials for enantioselective organocatalysis. ChemCatChem, 2009, 1(1), 94-98.
[http://dx.doi.org/10.1002/cctc.200900035]
[20]
Notz, W.; Tanaka, F.; Watanabe, S.; Chowdari, N.S.; Turner, J.M.; Thayumanavan, R.; Barbas, C.F., III The direct organocatalytic asymmetric mannich reaction: Unmodified aldehydes as nucleophiles. J. Org. Chem., 2003, 68(25), 9624-9634.
[http://dx.doi.org/10.1021/jo0347359] [PMID: 14656087]
[21]
Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc., 2000, 122(17), 4243-4244. [16].
[http://dx.doi.org/10.1021/ja000092s]
[22]
Joshi, H.; Yadav, A.; Das, A.; Singh, V.K. Organocatalytic asymmetric hetero-diels–alder reaction of in situ generated dienes: access to α,β-unsaturated δ-lactones featuring CF3-Substituted quaternary stereocenter J. Org. Chem., 2020, 85(5), 3202-3212.
[http://dx.doi.org/10.1021/acs.joc.9b03076] [PMID: 31940437]
[23]
Srivastava, V. Ionic liquid mediated recyclable sulphonimide based organocatalysis for aldol reaction. Cent. Eur. J. Chem., 2010, 8, 269-272.
[24]
Upadhyay, P.; Srivastava, V. Proline based organocatalysis: Supported and unsupported approach. Curr. Organocatal., 2016, 3(3), 243-269.
[http://dx.doi.org/10.2174/2213337202666150812230640]
[25]
Han, B.; He, X.H.; Liu, Y.Q.; He, G.; Peng, C.; Li, J.L. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem. Soc. Rev., 2021, 50(3), 1522-1586.
[http://dx.doi.org/10.1039/D0CS00196A] [PMID: 33496291]
[26]
Trubitsõn, D.; Martõnova, J.; Kudrjašova, M.; Erkman, K.; Järving, I.; Kanger, T. Enantioselective organocatalytic michael addition to unsaturated indolyl ketones. Org. Lett., 2021, 23(5), 1820-1824.
[http://dx.doi.org/10.1021/acs.orglett.1c00222]
[27]
Świderek, K.; Nödling, A.R.; Tsai, Y.H.; Luk, L.Y.P.; Moliner, V. Reaction mechanism of organocatalytic michael addition of nitromethane to cinnamaldehyde: A case study on catalyst regeneration and solvent effects. J. Phys. Chem. A, 2018, 122(1), 451-459.
[http://dx.doi.org/10.1021/acs.jpca.7b11803] [PMID: 29256614]
[28]
Sahoo, B.M.; Banik, B.K. Organocatalysis: Trends of drug synthesis in medicinal chemistry. Curr. Organocatal., 2019, 6(2), 92-105.
[http://dx.doi.org/10.2174/2213337206666190405144423]
[29]
Liu, C.; Bradshaw, B.; Maseras, F.; Bonjoch, J.; Besora, M. Mechanistic study on the asymmetric synthesis of the wieland‐miescher ketone and analogs. ChemCatChem, 2019, 11(16), 4064-4071.
[http://dx.doi.org/10.1002/cctc.201900543]
[30]
Fuhshuku, K.; Funa, N.; Akeboshi, T.; Ohta, H.; Hosomi, H.; Ohba, S.; Sugai, T. Access to Wieland-Miescher ketone in an enantiomerically pure form by a kinetic resolution with yeast-mediated reduction. J. Org. Chem., 2000, 65(1), 129-135.
[http://dx.doi.org/10.1021/jo991192n] [PMID: 10813906]
[31]
Bradshaw, B.; Bonjoch, J. The wieland-miescher ketone: A journey from organocatalysis to natural product synthesis. Synlett, 2012, 23(3), 337-356.
[http://dx.doi.org/10.1055/s-0031-1290107]
[32]
Belal, M.; Sarkar, S.; Subramanian, R.; Khan, A.T. Synthetic utility of biomimicking vanadium bromoperoxidase and n -tetrabutylammonium tribromide (TBATB) in organic synthesis. Org. Biomol. Chem., 2022, 20(13), 2562-2579.
[http://dx.doi.org/10.1039/D1OB02421C] [PMID: 35274638]
[33]
Srivastava, V. Recyclable L-proline organocatalyst for Wieland–Miescher ketone synthesis. J. Chem. Sci., 2013, 125(6), 1523-1527.
[http://dx.doi.org/10.1007/s12039-013-0527-2]
[34]
Hagiwara, H. Aspects in the total syntheses of higher terpenoids starting from wieland–miescher ketone and its derivative: A review. Nat. Prod. Commun., 2020, 15(5), 1934578X2092534.
[http://dx.doi.org/10.1177/1934578X20925340]
[35]
Srivastava, V. PEG-solvent system for l-proline catalyzed wieland - miescher ketone synthesis. Curr. Organocatal., 2014, 1(1), 2-6.
[http://dx.doi.org/10.2174/2213337201666140226000527]
[36]
Srivastava, V. Retraction: Hydrotalcite anchored ruthenium catalyst for co2 hydrogenation reaction. Open Chemistry, 2018, 16, 1297.
[http://dx.doi.org/10.2174/1570178615666180816120058]
[37]
Upadhyay, P.R.; Srivastava, V. Selective hydrogenation of CO 2 gas to formic acid over nanostructured Ru-TiO2 catalysts. RSC Advances, 2016, 6(48), 42297-42306.
[http://dx.doi.org/10.1039/C6RA03660K]
[38]
Srivastava, V. CO2 hydrogenation over Ru-NPs supported amine-functionalized SBA-15 Catalyst: Structure-Reactivity relationship study. Catalysis Letters, 2021, 151, 3704-3720.
[39]
Poonam, G.; Singh, R. Applications of ionic liquids in organic synthesis. Nanotechnol. Life Sci., 2020, 41-62.
[40]
Welton, T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[41]
Pollet, P.; Davey, E.A.; Ureña-Benavides, E.E.; Eckert, C.A.; Liotta, C.L. Solvents for sustainable chemical processes. Green Chem., 2014, 16(3), 1034-1055.
[http://dx.doi.org/10.1039/C3GC42302F]
[42]
Tukhvatshin, R.S.; Kucherenko, A.S.; Nelyubina, Y.V.; Zlotin, S.G. Tertiary amine-derived ionic liquid-supported squaramide as a recyclable organocatalyst for noncovalent “on water” catalysis. ACS Catal., 2017, 7(4), 2981-2989.
[http://dx.doi.org/10.1021/acscatal.7b00562]
[43]
Ni, B.; Zhang, Q.; Dhungana, K.; Headley, A.D. Ionic liquid-supported (ILS) (S)-pyrrolidine sulfonamide, a recyclable organocatalyst for the highly enantioselective Michael addition to nitroolefins. Org. Lett., 2009, 11(4), 1037-1040.
[http://dx.doi.org/10.1021/ol900003e] [PMID: 19178161]
[44]
Patel, M.P.; Green, N.T.; Burch, J.K.; Kew, K.A.; Hughes, R.M. Screening of biocatalysts for synthesis of the wieland–miescher ketone. Catalysts, 2020, 10, 1063.
[45]
Pan, L.; Ding, X.; Ding, J.; Li, D.; Chen, J.; Zuo, X.; An, R. Design and synthesis of L-Proline derivatives as enantioselective organocatalysts for synthesis of the (s)-wieland-miescher ketone. ChemistrySelect, 2017, 2(36), 11999-12005.
[http://dx.doi.org/10.1002/slct.201702075]
[46]
Zhou, P.; Zhang, L.; Luo, S.; Cheng, J.P. Asymmetric synthesis of Wieland-Miescher and Hajos-Parrish ketones catalyzed by an amino-acid-derived chiral primary amine. J. Org. Chem., 2012, 77(5), 2526-2530.
[http://dx.doi.org/10.1021/jo202433v] [PMID: 22316216]
[47]
Yang, S.D.; Wu, L.Y.; Yan, Z.Y.; Pan, Z.L.; Liang, Y.M. A novel ionic liquid supported organocatalyst of pyrrolidine amide: Synthesis and catalyzed Claisen–Schmidt reaction. J. Mol. Catal. Chem., 2007, 268(1-2), 107-111.
[http://dx.doi.org/10.1016/j.molcata.2006.11.039]
[48]
Liu, Z.Q. How to start a total synthesis from the wieland-miescher ketone? Curr. Org. Synth., 2019, 16(3), 328-341.
[http://dx.doi.org/10.2174/1570179416666190328233710] [PMID: 31984897]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy