Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

A Novel Idea of Sulfamic Acid as an Efficient Catalyst for the Synthesis of 2-Azapyrrolizidine Derivatives

Author(s): Radia Tafer*, Raouf Boulcina and Abdelmadjid Debache

Volume 10, Issue 1, 2023

Published on: 22 February, 2023

Page: [19 - 25] Pages: 7

DOI: 10.2174/2213337209666220728114131

Price: $65

Abstract

Background: The synthesis of 2-azapyrrolizidine scaffolds has fascinated scientists due to their potential biological activities.

Objective: An efficient and environmentally sustainable synthetic method has been presented to synthesize structurally various 2-azapyrrolizidines via a three-component reaction.

Methods: The condensation of aldehydes, hydantoin, and malononitrile in the presence of green and sustainable sulfamic acid as catalyst in mild conditions has been achieved.

Results: The present protocol leads, in most cases, to the desired products in high yields.

Conclusion: The synthetic efficiency and operational simplicity make the present procedure cost effective, time efficient and eco-friendly for the synthesis of substituted 2-azapyrrolizidines.

Keywords: Multicomponent reactions, One-pot synthesis, Homogeneous catalysis, Hydantoin, 2-Azapyrrolizidines, Sulfamic acid.

Graphical Abstract

[1]
Smissman, E.E.; Chien, P.L.; Robinson, R.A. Synthesis of a bicyclohydantoin. J. Org. Chem., 1970, 35(11), 3818-3820.
[http://dx.doi.org/10.1021/jo00836a052] [PMID: 5474327]
[2]
Daboun, H.A.F.; Abdou, S.E.; Hussein, M.M.; Elnagdi, M.H. Activated nitriles in heterocyclic synthesis: Novel syntheses of pyrrolo [1, 2-c] imidazole and pyrano [2, 3-d] imidazole derivatives. Synthesis, 1982, 1982(6), 502-504.
[http://dx.doi.org/10.1055/s-1982-29857]
[3]
Brouillette, W.J.; Jestkov, V.P.; Brown, M.L.; Akhtar, M.S.; DeLorey, T.M.; Brown, G.B. Bicyclic hydantoins with a bridgehead nitrogen. Comparison of anticonvulsant activities with binding to the neuronal voltage-dependent sodium channel. J. Med. Chem., 1994, 37(20), 3289-3293.
[http://dx.doi.org/10.1021/jm00046a013] [PMID: 7932556]
[4]
Khodair, A.I.; Bertrand, P. A new approach to the synthesis of substituted 4-imidazolidinones as potential antiviral and antitumor agents. Tetrahedron, 1998, 54(19), 4859-4872.
[http://dx.doi.org/10.1016/S0040-4020(98)00170-7]
[5]
Paquette, L.A.; Brand, S.; Behrens, C. An enantioselective ring expansion route leading to furanose and pyranose nucleosides featuring spirodiketopiperazines at the anomeric position. J. Org. Chem., 1999, 64(6), 2010-2025.
[http://dx.doi.org/10.1021/jo982259u] [PMID: 11674296]
[6]
Cseke, C.; Gerwick, B.C.; Crouse, G.D.; Murdoch, M.G.; Green, S.B.; Heim, D.R. 2α-phosphohydantocidin: The in vivo adenylosuccinate synthetase inhibitor responsible for hydantocidin phytotoxicity. Pestic. Biochem. Physiol., 1996, 55(3), 210-217.
[http://dx.doi.org/10.1006/pest.1996.0050]
[7]
Zhang, D.; Ye, D.; Feng, E.; Wang, J.; Shi, J.; Jiang, H.; Liu, H. Highly α-selective synthesis of sialyl spirohydantoins by regiospecific domino condensation/O-->N acyl migration/N-sialylation of carbodiimides with peracetylated sialic acid. J. Org. Chem., 2010, 75(11), 3552-3557.
[http://dx.doi.org/10.1021/jo100016k] [PMID: 20462259]
[8]
Basappa, A.K.; Ananda Kumar, C.S.; Nanjunda Swamy, S.; Sugahara, K.; Rangappa, K.S. Anti-tumor and anti-angiogenic activity of novel hydantoin derivatives: Inhibition of VEGF secretion in liver metastatic osteosarcoma cells. Bioorg. Med. Chem., 2009, 17(14), 4928-4934.
[http://dx.doi.org/10.1016/j.bmc.2009.06.004] [PMID: 19556138]
[9]
Todorov, P.T.; Naydenova, E.D. Synthesis and characterization of novel dipeptide mimetics with hydantoin moiety. C. R. Chim., 2010, 13(11), 1424-1428.
[http://dx.doi.org/10.1016/j.crci.2010.01.011]
[10]
Goubet, F.; Teutsch, G. Conversion of a thiohydantoin to the corresponding hydantoin via a ring-opening/ring closure mechanism. Tetrahedron Lett., 1996, 37(43), 7727-7730.
[http://dx.doi.org/10.1016/0040-4039(96)01735-2]
[11]
Sañudo, M.; García-Valverde, M.; Marcaccini, S.; Torroba, T. A diastereoselective synthesis of pseudopeptidic hydantoins by an Ugi/cyclization/Ugi sequence. Tetrahedron, 2012, 68(12), 2621-2629.
[http://dx.doi.org/10.1016/j.tet.2012.01.073]
[12]
Mandal, A.; Krishnan, R.S.G.; Thennarasu, S.; Panigrahi, S.; Mandal, A.B. Two-dimensional surface properties of an antimicrobial hydantoin at the air–water interface: An experimental and theoretical study. Colloids Surf. B Biointerfaces, 2010, 79(1), 136-141.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.042] [PMID: 20417067]
[13]
Daugan, A.; Grondin, P.; Ruault, C.; Le Monnier de Gouville, A-C.; Coste, H.; Kirilovsky, J.; Hyafil, F.; Labaudinière, R. The discovery of tadalafil: A novel and highly selective PDE5 inhibitor. 1:5,6,11,11a-tetrahydro-1H-imidazo[1′,5′:1,6]pyrido[3,4-b]indole-1,3(2H)-dione analogues. J. Med. Chem., 2003, 46(21), 4525-4532.
[http://dx.doi.org/10.1021/jm030056e] [PMID: 14521414]
[14]
Volonterio, A.; Ramirez de Arellano, C.; Zanda, M. Synthesis of 1,3,5-trisubstituted hydantoins by regiospecific domino condensation/aza-Michael/O-->N acyl migration of carbodiimides with activated α,β-unsaturated carboxylic acids. J. Org. Chem., 2005, 70(6), 2161-2170.
[http://dx.doi.org/10.1021/jo0480848] [PMID: 15760201]
[15]
Brouillette, Y.; Lisowski, V.; Guillon, J.; Massip, S.; Martinez, J. Efficient one-pot microwave-assisted synthesis of 3-(thien-3-yl)imidazolidine-2,4-dione analogs. Tetrahedron, 2007, 63(32), 7538-7544.
[http://dx.doi.org/10.1016/j.tet.2007.05.057]
[16]
Alizadeh, A.; Sheikhi, E. One-pot synthesis of functionalized hydantoin derivatives via a four-component reaction between an amine, an arylsulfonyl isocyanate and an alkyl propiolate or dialkyl acetylenedicarboxylate in the presence of triphenylphosphine. Tetrahedron Lett., 2007, 48(28), 4887-4890.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.061]
[17]
Bucherer, H.T.; Lieb, V.A. Syntheses of hydantoins. II. Formation of substituted hydantoins from aldehydes and ketones. J. Prakt. Chem., 1934, 141, 5-43.
[http://dx.doi.org/10.1002/prac.19341410102]
[18]
Meusel, M.; Gütschow, M. Recent developments in hydantoin chemistry. Org. Prep. Proced. Int., 2004, 36(5), 391-443.
[http://dx.doi.org/10.1080/00304940409356627]
[19]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[20]
Brauch, S.; Van Berkel, S.S.; Westermann, B. Higher-order multicomponent reactions: Beyond four reactants. Chem. Soc. Rev., 2013, 42(12), 4948-4962.
[http://dx.doi.org/10.1039/c3cs35505e] [PMID: 23426583]
[21]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[22]
Karamthulla, S.; Pal, S.; Khan, M.N.; Choudhury, L.H. Synthesis of novel spiro [indoline-3,7′-pyrrolo [1,2-c] imidazole]-6′-carbonitrile derivatives in water using a regioselective sequential three component reaction. RSC Advances, 2013, 3(36), 15576.
[http://dx.doi.org/10.1039/c3ra43289k]
[23]
Karamthulla, S.; Pal, S.; Khan, M.N.; Choudhury, L.H. L-proline catalyzed multicomponent reactions: Facile access to 2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione derivatives. RSC Advances, 2013, 3, 15576-15581.
[http://dx.doi.org/10.1039/c3ra43289k]
[24]
Rajarathinam, B.; Vasuki, G. Diastereoselective multicomponent reaction in water: Synthesis of 2-azapyrrolizidine alkaloid analogues. Org. Lett., 2012, 14(20), 5204-5206.
[http://dx.doi.org/10.1021/ol302355w] [PMID: 23025468]
[25]
Rajarathinam, B.; Kumaravel, K.; Vasuki, G. In water: Organocatalyzed diastereoselective multi-component reactions toward 2-azapyrrolizidine alkaloid scaffolds. ACS Comb. Sci., 2017, 19(7), 455-463.
[http://dx.doi.org/10.1021/acscombsci.7b00038] [PMID: 28558195]
[26]
Safaei-Ghomi, J.; Bakhtiari, A. Tungsten anchored onto functionalized SBA-15: An efficient catalyst for diastereoselective synthesis of 2-azapyrrolizidine alkaloid scaffolds. RSC Advances, 2019, 9(34), 19662-19674.
[http://dx.doi.org/10.1039/C9RA02825K] [PMID: 35519375]
[27]
Murray, R.G.; Whitehead, D.M.; Le Strat, F.; Conway, S.J. Facile one-pot synthesis of 5-substituted hydantoins. Org. Biomol. Chem., 2008, 6(6), 988-991.
[http://dx.doi.org/10.1039/b719675j] [PMID: 18327322]
[28]
Safari, J.; Javadian, L. Montmorillonite K-10 as a catalyst in the synthesis of 5, 5-disubstituted hydantoins under ultrasound irradiation. J. Chem. Sci., 2013, 125(5), 981-987.
[http://dx.doi.org/10.1007/s12039-013-0427-5]
[29]
Stolle, A.; Szuppa, T.; Leonhardt, S.E.S.; Ondruschka, B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034]
[30]
Roeder, E. Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie, 2000, 55(10), 711-726.
[PMID: 11082830]
[31]
Fu, P.P.; Yang, Y.C.; Xia, Q.; Chou, M.W.; Cui, Y.Y.; Lin, G. Pyrrolizidine alkaloids - tumorigenic components in Chinese herbal medicines and dietary supplements. Yao Wu Shi Pin Fen Xi, 2002, 10, 198-211.
[32]
Roeder, E.; Wiedenfeld, H. Pyrrolizidine alkaloids in medicinal plants of Mongolia, Nepal and Tibet. Pharmazie, 2009, 64(11), 699-716.
[PMID: 20099513]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy