Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Early Memory Impairment is Accompanied by Changes in GluA1/ p-GluA1 in APP/PS1 Mice

Author(s): Ya-Bo Zhao, Xue-Fei Hou, Xin Li, Li-Su Zhu, Jing zhu, Guo-Rui Ma, Yu-Xuan Liu, Yu-Can Miao, Qian-Yu Zhou, Lin Xu* and Qi-Xin Zhou*

Volume 19, Issue 9, 2022

Published on: 27 October, 2022

Page: [667 - 673] Pages: 7

DOI: 10.2174/1567205020666221019124543

Price: $65

Abstract

Aims: Exploring the neurobiological mechanisms of early AD damage.

Background: The early diagnosis of Alzheimer's disease (AD) has a very important impact on the prognosis of AD. However, the early symptoms of AD are not obvious and difficult to diagnose. Existing studies have rarely explored the mechanism of early AD. AMPARs are early important learning memory-related receptors. However, it is not clear how the expression levels of AMPARs change in early AD.

Objective: We explored learning memory abilities and AMPAR expression changes in APP/PS1 mice at 4 months, 8 months, and 12 months.

Methods: We used the classic Morris water maze to explore the learning and memory impairment of APP/PS1 mice and used western blotting to explore the changes in AMPARs in APP/PS1 mice.

Results: We found that memory impairment occurred in APP/PS1 mice as early as 4 months of age, and the impairment of learning and memory gradually became serious with age. The changes in GluA1 and p-GluA1 were most pronounced in the early stages of AD in APP/PS1 mice.

Conclusion: Our study found that memory impairment in APP/PS1 mice could be detected as early as 4 months of age, and this early injury may be related to GluA1.

[1]
Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 2005; 120(4): 545-55.
[http://dx.doi.org/10.1016/j.cell.2005.02.008] [PMID: 15734686]
[2]
Guillozet AL, Weintraub S, Mash DC, Mesulam MM. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 2003; 60(5): 729-36.
[http://dx.doi.org/10.1001/archneur.60.5.729] [PMID: 12756137]
[3]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[4]
Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement 2021; 17(4): 696-701.
[http://dx.doi.org/10.1002/alz.12213] [PMID: 33135381]
[5]
Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298(5594): 789-91.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[6]
John A, Reddy PH. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res Rev 2021; 65: 101208.
[http://dx.doi.org/10.1016/j.arr.2020.101208] [PMID: 33157321]
[7]
Shankar GM, Walsh DM. Alzheimer’s disease: Synaptic dysfunction and Aβ. Mol Neurodegener 2009; 4(1): 48.
[http://dx.doi.org/10.1186/1750-1326-4-48] [PMID: 19930651]
[8]
Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron 2018; 100(2): 314-29.
[http://dx.doi.org/10.1016/j.neuron.2018.10.018] [PMID: 30359599]
[9]
Collingridge GL, Isaac JTR, Wang YT. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 2004; 5(12): 952-62.
[http://dx.doi.org/10.1038/nrn1556] [PMID: 15550950]
[10]
Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994; 17(1): 31-108.
[http://dx.doi.org/10.1146/annurev.ne.17.030194.000335] [PMID: 8210177]
[11]
Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev 2010; 62(3): 405-96.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[12]
Keinänen K, Wisden W, Sommer B, et al. A family of AMPA-selective glutamate receptors. Science 1990; 249(4968): 556-60.
[http://dx.doi.org/10.1126/science.2166337] [PMID: 2166337]
[13]
Whitehead G, Regan P, Whitcomb DJ, Cho K. Ca(2+)-permeable AMPA receptor: A new perspective on amyloid-beta mediated pathophysiology of Alzheimer's disease. Neuropharmacology 2017; 112(Pt A): 221-7.
[14]
Goel A, Jiang B, Xu LW, Song L, Kirkwood A, Lee HK. Cross-modal regulation of synaptic AMPA receptors in primary sensory cortices by visual experience. Nat Neurosci 2006; 9(8): 1001-3.
[http://dx.doi.org/10.1038/nn1725] [PMID: 16819524]
[15]
Passafaro M, Piëch V, Sheng M. Subunit specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 2001; 4(9): 917-26.
[http://dx.doi.org/10.1038/nn0901-917] [PMID: 11528423]
[16]
Reisel D, Bannerman DM, Schmitt WB, et al. Spatial memory dissociations in mice lacking GluR1. Nat Neurosci 2002; 5(9): 868-73.
[http://dx.doi.org/10.1038/nn910] [PMID: 12195431]
[17]
Lee HK, Takamiya K, He K, Song L, Huganir RL. Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. J Neurophysiol 2010; 103(1): 479-89.
[http://dx.doi.org/10.1152/jn.00835.2009] [PMID: 19906877]
[18]
Chang EH, Savage MJ, Flood DG, et al. AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proc Natl Acad Sci USA 2006; 103(9): 3410-5.
[http://dx.doi.org/10.1073/pnas.0507313103] [PMID: 16492745]
[19]
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, et al. Age-Dependent shift of AMPA receptors from synapses to intracellular compartments in Alzheimer’s disease: Immunocytochemical analysis of the CA1 hippocampal region in APP/PS1 transgenic mouse model. Front Aging Neurosci 2020; 12: 577996.
[http://dx.doi.org/10.3389/fnagi.2020.577996] [PMID: 33132900]
[20]
Walsh DM, Selkoe DJ. A? Oligomers? a decade of discovery. J Neurochem 2007; 101(5): 1172-84.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04426.x] [PMID: 17286590]
[21]
Wakabayashi K, Narisawa-Saito M, Iwakura Y, et al. Phenotypic down regulation of glutamate receptor subunit GluR1 in Alzheimer’s disease. Neurobiol Aging 1999; 20(3): 287-95.
[http://dx.doi.org/10.1016/S0197-4580(99)00035-4] [PMID: 10588576]
[22]
García-Ladona FJ, Palacios J, Probst A, Wieser HG, Mengod G. Excitatory amino acid AMPA receptor mRNA localization in several regions of normal and neurological disease affected human brain. An in situ hybridization histochemistry study. Brain Res Mol Brain Res 1994; 21(1-2): 75-84.
[http://dx.doi.org/10.1016/0169-328X(94)90380-8] [PMID: 8164524]
[23]
Yasuda RP, Ikonomovic MD, Sheffield R, Rubin RT, Wolfe BB, Armstrong DM. Reduction of AMPA-selective glutamate receptor subunits in the entorhinal cortex of patients with Alzheimer’s disease pathology: A biochemical study. Brain Res 1995; 678(1-2): 161-7.
[http://dx.doi.org/10.1016/0006-8993(95)00178-S] [PMID: 7542540]
[24]
Gu Z, Liu W, Yan Z. beta-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J Biol Chem 2009; 284(16): 10639-49.
[http://dx.doi.org/10.1074/jbc.M806508200] [PMID: 19240035]
[25]
Kim S, Violette CJ, Ziff EB. Reduction of increased calcineurin activity rescues impaired homeostatic synaptic plasticity in presenilin 1 M146V mutant. Neurobiol Aging 2015; 36(12): 3239-46.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.09.007] [PMID: 26455952]
[26]
Qu W, Yuan B, Liu J, et al. Emerging role of AMPA receptor subunit GluA1 in synaptic plasticity: Implications for Alzheimer’s disease. Cell Prolif 2021; 54(1): e12959.
[http://dx.doi.org/10.1111/cpr.12959] [PMID: 33188547]
[27]
Morris R. Developments of a water maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11(1): 47-60.
[http://dx.doi.org/10.1016/0165-0270(84)90007-4] [PMID: 6471907]
[28]
Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1(2): 848-58.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[29]
Vlček K, Laczó J. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease. Front Behav Neurosci 2014; 8: 89.
[PMID: 24672452]
[30]
Mumby D, Astur RS, Weisend MP, Sutherland RJ. Retrograde amnesia and selective damage to the hippocampal formation: Memory for places and object discriminations. Behav Brain Res 1999; 106(1-2): 97-107.
[http://dx.doi.org/10.1016/S0166-4328(99)00097-2] [PMID: 10595425]
[31]
Sutherland RJ, Weisend MP, Mumby D, et al. Retrograde amnesia after hippocampal damage: Recent vs. remote memories in two tasks. Hippocampus 2001; 11(1): 27-42.
[http://dx.doi.org/10.1002/1098-1063(2001)11:1<27::AIDHIPO1017>3.0.CO;2-4] [PMID: 11261770]
[32]
Sanchez-Varo R, Sanchez-Mejias E, Fernandez-Valenzuela JJ, et al. Plaque-associated oligomeric amyloid-beta drives early synaptotoxicity in APP/PS1 mice hippocampus: Ultrastructural pathology analysis. Front Neurosci 2021; 15: 752594.
[http://dx.doi.org/10.3389/fnins.2021.752594] [PMID: 34803589]
[33]
Park JH, Widi GA, Gimbel DA, Harel NY, Lee DHS, Strittmatter SM. Subcutaneous Nogo receptor removes brain amyloid-beta and improves spatial memory in Alzheimer’s transgenic mice. J Neurosci 2006; 26(51): 13279-86.
[http://dx.doi.org/10.1523/JNEUROSCI.4504-06.2006] [PMID: 17182778]
[34]
Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O. Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 2004; 55(6): 801-14.
[http://dx.doi.org/10.1002/ana.20101] [PMID: 15174014]
[35]
Salazar AM, Leisgang AM, Ortiz AA, Murtishaw AS, Kinney JW. Alterations of GABA B receptors in the APP/PS1 mouse model of Alzheimer’s disease. Neurobiol Aging 2021; 97: 129-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.10.013] [PMID: 33232936]
[36]
Xu L, Zhou Y, Hu L, et al. Deficits in N-Methyl-D-Aspartate receptor function and synaptic plasticity in hippocampal CA1 in APP/PS1 mouse model of Alzheimer’s disease. Front Aging Neurosci 2021; 13: 772980.
[http://dx.doi.org/10.3389/fnagi.2021.772980] [PMID: 34916926]
[37]
Gengler S, Hamilton A, Hölscher C. Synaptic plasticity in the hippocampus of a APP/PS1 mouse model of Alzheimer’s disease is impaired in old but not young mice. PLoS One 2010; 5(3): e9764.
[http://dx.doi.org/10.1371/journal.pone.0009764] [PMID: 20339537]
[38]
Végh MJ, Heldring CM, Kamphuis W, et al. Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun 2014; 2(1): 76.
[http://dx.doi.org/10.1186/s40478-014-0076-z] [PMID: 24974208]
[39]
Karunakaran S. Unraveling early signs of navigational impairment in APPswe/PS1dE9 mice using morris water maze. Front Neurosci 2020; 14: 568200.
[http://dx.doi.org/10.3389/fnins.2020.568200] [PMID: 33384577]
[40]
Megill A, Tran T, Eldred K, et al. Defective age-dependent metaplasticity in a mouse model of Alzheimer’s disease. J Neurosci 2015; 35(32): 11346-57.
[http://dx.doi.org/10.1523/JNEUROSCI.5289-14.2015] [PMID: 26269641]
[41]
Lee HK, Takamiya K, Han JS, et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 2003; 112(5): 631-43.
[http://dx.doi.org/10.1016/S0092-8674(03)00122-3] [PMID: 12628184]
[42]
Mammen AL, Kameyama K, Roche KW, Huganir RL. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem 1997; 272(51): 32528-33.
[http://dx.doi.org/10.1074/jbc.272.51.32528] [PMID: 9405465]
[43]
Oh MC, Derkach VA. Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII. Nat Neurosci 2005; 8(7): 853-4.
[http://dx.doi.org/10.1038/nn1476] [PMID: 15924137]
[44]
Steinberg JP, Takamiya K, Shen Y, et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 2006; 49(6): 845-60.
[http://dx.doi.org/10.1016/j.neuron.2006.02.025] [PMID: 16543133]
[45]
Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 2000; 28(2): 499-510.
[http://dx.doi.org/10.1016/S0896-6273(00)00128-8] [PMID: 11144359]
[46]
Fiuza M, Rostosky CM, Parkinson GT, et al. PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin. J Cell Biol 2017; 216(10): 3323-38.
[http://dx.doi.org/10.1083/jcb.201701034] [PMID: 28855251]
[47]
Iihara K, Joo DT, Henderson J, et al. The influence of glutamate receptor 2 expression on excitotoxicity in Glur2 null mutant mice. J Neurosci 2001; 21(7): 2224-39.
[http://dx.doi.org/10.1523/JNEUROSCI.21-07-02224.2001] [PMID: 11264298]
[48]
Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MVL. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 2005; 102(34): 12230-5.
[http://dx.doi.org/10.1073/pnas.0505408102] [PMID: 16093311]
[49]
Wilde MC, Overk CR, Sijben JW, Masliah E. Meta‐analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 2016; 12(6): 633-44.
[http://dx.doi.org/10.1016/j.jalz.2015.12.005] [PMID: 26776762]
[50]
Acebes A. Brain mapping and synapse quantification in vivo: It’s time to imaging. Front Neuroanat 2017; 11: 17.
[http://dx.doi.org/10.3389/fnana.2017.00017] [PMID: 28326022]
[51]
Olsson B, Portelius E, Cullen NC, et al. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol 2019; 76(3): 318-25.
[http://dx.doi.org/10.1001/jamaneurol.2018.3746] [PMID: 30508027]
[52]
Pawlowski M, Meuth S, Duning T. Cerebrospinal fluid biomarkers in Alzheimer’s disease-from brain starch to bench and bedside. Diagnostics 2017; 7(3): 42.
[http://dx.doi.org/10.3390/diagnostics7030042] [PMID: 28703785]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy