Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Pectin/Pectin Derivatives as Potential Scaffolds for the Tissue Engineering Applications

Author(s): Akanksha Pandey, Pramod Kumar Sharma, Rishabha Malviya* and Kalpana Rahate

Volume 13, Issue 6, 2023

Published on: 18 November, 2022

Article ID: e121022209870 Pages: 16

DOI: 10.2174/2210315513666221012102746

Price: $65

Abstract

Pectins are polysaccharides that have a sequence that is similar to that of plant cell membranes that are predominantly made up of galacturonic acid units, and their concentration, morphology, and molecular mass vary. Tissue engineering is a multidisciplinary field that examines natural replacement for the injured tissue to heal or preserve its function, and it involves using scaffolds, cells, and biomolecules. Biocompatible, biodegradable, and permeable scaffolds are required. The study aims to find the potential of pectin/pectin derivative scaffolds for tissue engineering applications.

Graphical Abstract

[1]
Srivastava, P.; Malviya, R. Sources of pectin, extraction and its applications in pharmaceutical industry - An overview. Indian J. Nat. Prod. Resour., 2011, 2(1), 10-18.
[2]
Savaner, V.; Vandita, B. Review on pectin isolation and application in various sectors. Accent J. Eco. Ecol. Eng., 2020, 05, 70-75.
[3]
Harholt, J.; Suttangkakul, A.; Vibe Scheller, H. Biosynthesis of pectin. Plant Physiol., 2010, 153(2), 384-395.
[http://dx.doi.org/10.1104/pp.110.156588] [PMID: 20427466]
[4]
Mellerowicz, E.; Sundberg, B. Wood cell walls: Biosynthesis, developmental dynamics and their implications for wood properties. Curr. Opin. Plant Biol., 2008, 11(3), 293-300.
[http://dx.doi.org/10.1016/j.pbi.2008.03.003] [PMID: 18434240]
[5]
Parre, E.; Geitmann, A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta, 2005, 220(4), 582-592.
[http://dx.doi.org/10.1007/s00425-004-1368-5] [PMID: 15449057]
[6]
Rascón-Chu, A.; Díaz-Baca, J.A.; Carvajal-Millán, E.; López-Franco, Y.; Lizardi-Mendoza, J. New Use for an “Old” Polysaccharide: Pectin-Based Composite Materials. In: Handbook of Sustainable Polymers: Structure and Chemistry; Thakur, V.K.; Thakur, M.K., Eds.; Pan Stanford Publishing Pt. Ltd.: Singapore, 2016; pp. 72-107.
[7]
Crombie, H.; Scott, C.; Reid, J. Advances in Pectin and Pectinase Research; Voragen, A.G.J.; Schols, H.A; Visser, R.G.F., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003, pp. 35-45.
[http://dx.doi.org/10.1007/978-94-017-0331-4_3]
[8]
Sundar Raj, A.A.; Rubila, S.; Jayabalan, R.; Ranganathan, T.V. A review on pectin: Chemistry due to general properties of pectin and its pharmaceutical uses. Sci. Rep., 2012, 1(12), 550-553.
[9]
Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and uses of pectin-A review. Crit. Rev. Food Sci. Nutr., 1997, 37(1), 47-73.
[http://dx.doi.org/10.1080/10408399709527767] [PMID: 9067088]
[10]
Mishra, R.K.; Banthia, A.K.; Majeed, A.B. Pectin based formulations for biomedical applications: A review. Asian J. Pharm. Clin. Res., 2012, 5(4), 1-7.
[11]
Coimbra, P.; Ferreira, P.; de Sousa, H.C.; Batista, P.; Rodrigues, M.A.; Correia, I.J.; Gil, M.H. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int. J. Biol. Macromol., 2011, 48(1), 112-118.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.10.006] [PMID: 20955729]
[12]
Choudhury, M.; Mohanty, S.; Nayak, S. Effect of different solvents in solvent casting of porous PLA scaffolds-In biomedical and tissue engineering applications. J. Biomater. Tissue Eng., 2015, 5(1), 1-9.
[http://dx.doi.org/10.1166/jbt.2015.1243]
[13]
Zhang, D.; Duan, J.; Wang, D.; Ge, S. Effect of preparation methods on mechanical properties of PVA/HA composite hydrogel. J. Bionics Eng., 2010, 7(3), 235-243.
[http://dx.doi.org/10.1016/S1672-6529(10)60246-6]
[14]
Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol., 2012, 30(10), 546-554.
[http://dx.doi.org/10.1016/j.tibtech.2012.07.005] [PMID: 22939815]
[15]
Haj, J.; Haj Khalil, T.; Falah, M.; Zussman, E.; Srouji, S. An ECM-mimicking, mesenchymal stem cell-embedded hybrid scaffold for bone regeneration. BioMed Res. Int., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/8591073] [PMID: 29270436]
[16]
Xu, Y.; Xia, D.; Han, J.; Yuan, S.; Lin, H.; Zhao, C. Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. Carbohydr. Polym., 2017, 177, 210-216.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.069] [PMID: 28962760]
[17]
Sanz, M.; Dahlin, C.; Apatzidou, D.; Artzi, Z.; Bozic, D.; Calciolari, E.; De Bruyn, H.; Dommisch, H.; Donos, N.; Eickholz, P.; Ellingsen, J.E.; Haugen, H.J.; Herrera, D.; Lambert, F.; Layrolle, P.; Montero, E.; Mustafa, K.; Omar, O.; Schliephake, H. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol., 2019, 46(21), 82-91.
[http://dx.doi.org/10.1111/jcpe.13123] [PMID: 31215114]
[18]
Aslam Khan, M.U.; Mehboob, H.; Abd Razak, S.I.; Yahya, M.Y.; Mohd Yusof, A.H.; Ramlee, M.H.; Sahaya Anand, T.J.; Hassan, R.; Aziz, A.; Amin, R. Development of polymeric nanocomposite (xyloglucan-co-methacrylic acid/hydroxyapatite/sio2) scaffold for bone tissue engineering applications-in-vitro antibacterial, cytotoxicity and cell culture evaluation. Polymers, 2020, 12(6), 1238.
[http://dx.doi.org/10.3390/polym12061238] [PMID: 32485926]
[19]
Khan, M.U.A.; Haider, S.; Shah, S.A.; Razak, S.I.A.; Hassan, S.A.; Kadir, M.R.A.; Haider, A. Arabinoxylan-co-AA/HAp/TiO2 nanocomposite scaffold a potential material for bone tissue engineering: An in vitro study. Int. J. Biol. Macromol., 2020, 151, 584-594.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.142] [PMID: 32081758]
[20]
Samura, M.; Hosoyama, T.; Takeuchi, Y.; Ueno, K.; Morikage, N.; Hamano, K. Therapeutic strategies for cell-based neovascularization in critical limb ischemia. J. Transl. Med., 2017, 15(1), 49.
[http://dx.doi.org/10.1186/s12967-017-1153-4] [PMID: 28235425]
[21]
Christy, P.N.; Basha, S.K.; Kumari, V.S.; Bashir, A.K.H.; Maaza, M.; Kaviyarasu, K.; Arasu, M.V.; Al-Dhabi, N.A.; Ignacimuthu, S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications-A review. J. Drug Deliv. Sci. Technol., 2020, 55, 101452.
[http://dx.doi.org/10.1016/j.jddst.2019.101452]
[22]
Kemençe, N.; Bölgen, N. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: Synthesis, characterization, in vitro and in vivo biocompatibility. J. Tissue Eng. Regen. Med., 2017, 11(1), 20-33.
[http://dx.doi.org/10.1002/term.1813] [PMID: 23997022]
[23]
Ceylan, S.; Göktürk, D.; Bölgen, N. Effect of crosslinking methods on the structure and biocompatibility of polyvinyl alcohol/gelatin cryogels. Biomed. Mater. Eng., 2016, 27(4), 327-340.
[24]
Guan, G.; Bai, L.; Zuo, B.; Li, M.; Wu, Z.; Li, Y.; Wang, L. Promoted dermis healing from full-thickness skin defect by porous silk fibroin scaffolds (PSFSs). Biomed. Mater. Eng., 2010, 20(5), 295-308.
[http://dx.doi.org/10.3233/BME-2010-0643] [PMID: 21084741]
[25]
Tangsadthakun, C.; Kanokpanont, S.; Sanchavanakit, N.; Banaprasert, T.; Damrongsakkul, S. Properties of collagen/chitosan scaffolds for skin tissue engineering. J. Met. Mater. Miner., 2006, 16(1), 37-44.
[26]
Demir, D.; Ceylan, S.; Göktürk, D.; Bölgen, N. Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds. Polym. Bull., 2021, 78(4), 2211-2226.
[http://dx.doi.org/10.1007/s00289-020-03208-1]
[27]
Seidi, F.; Khodadadi Yazdi, M.; Jouyandeh, M.; Dominic, M.; Naeim, H.; Nezhad, M.N.; Bagheri, B.; Habibzadeh, S.; Zarrintaj, P.; Saeb, M.R.; Mozafari, M. Chitosan-based blends for biomedical applications. Int. J. Biol. Macromol., 2021, 183, 1818-1850.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.003] [PMID: 33971230]
[28]
Zargar, V.; Asghari, M.; Dashti, A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev., 2015, 2(3), 204-226.
[http://dx.doi.org/10.1002/cben.201400025]
[29]
Spadoni Andreani, E.; Karboune, S.; Liu, L. Structural characterization of pectic polysaccharides in the cell wall of stevens variety cranberry using highly specific pectin-hydrolyzing enzymes. Polymer, 2021, 13(11), 1842.
[http://dx.doi.org/10.3390/polym13111842] [PMID: 34199419]
[30]
Tiwari, A.K.; Saha, S.N.; Yadav, V.P.; Upadhyay, U.K.; Katiyar, D.; Mishra, T. Extraction and characterization of pectin from orange peels. Inter. J. Biotech. Biochem., 2017, 13(1), 39-47.
[31]
Geerkens, C.H.; Nagel, A.; Just, K.M.; Miller-Rostek, P.; Kammerer, D.R.; Schweiggert, R.M.; Carle, R. Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food Hydrocoll., 2015, 51, 241-251.
[http://dx.doi.org/10.1016/j.foodhyd.2015.05.022]
[32]
Liu, J.; Willför, S.; Xu, C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Dietary Fibre, 2015, 5(1), 31-61.
[http://dx.doi.org/10.1016/j.bcdf.2014.12.001]
[33]
Malviya, R.; Srivastava, P.; Bansal, M.; Sharma, P.K. Mango peel pectin as a super disintegrating agent. J. Sci. Ind. Res., 2010, 69, 688-690.
[34]
Srivastava, P.; Malviya, R. Extraction, characterization and evaluation of orange peel waste derived pectin as a pharmaceutical excipient. Nat. Prod. J., 2011, 1(1), 65-70.
[35]
Renard, C.M.G.C.; Thibault, J.F. Structure and properties of apple and sugar-beet pectins extracted by chelating agents. Carbohydr. Res., 1993, 244(1), 99-114.
[http://dx.doi.org/10.1016/0008-6215(93)80007-2]
[36]
Oakenfull, D.G. The Chemistry and Technology of Pectin; Elsevier, 1991.
[37]
Kohn, R. Binding of toxic cations to pectin, its oligomeric fragments and plant tissues. Carb. Polymers, 1982, 2(4), 273-275.
[38]
Joseph, G.H. Pectin: Bibliography of Pharmaceutical Literature; Sunkist Growers: Ontario, 1956.
[39]
Flourie, B.; Vidon, N.; Florent, C.H.; Bernier, J.J. Effect of pectin on jejunal glucose absorption and unstirred layer thickness in normal man. Gut, 1984, 25(9), 936-941.
[http://dx.doi.org/10.1136/gut.25.9.936] [PMID: 6432635]
[40]
Sandberg, A.S.; Ahderinne, R.; Andersson, H.; Hallgren, B.; Hultén, L. The effect of citrus pectin on the absorption of nutrients in the small intestine. Hum. Nutr. Clin. Nutr., 1983, 37(3), 171-183.
[PMID: 6307932]
[41]
Sriamornsak, P. Pectin: The role in health. J. Silpakorn Uni., 2001, 21(22), 60-77.
[42]
Holt, S.; Carter, D.C.; Tothill, P.; Heading, R.C.; Prescott, L.F. Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet, 1979, 313(8117), 636-639.
[http://dx.doi.org/10.1016/S0140-6736(79)91079-1] [PMID: 85872]
[43]
Di Lorenzo, C.; Williams, C.M.; Hajnal, F.; Valenzuela, J.E. Pectin delays gastric emptying and increases satiety in obese subjects. Gastroenterology, 1988, 95(5), 1211-1215.
[http://dx.doi.org/10.1016/0016-5085(88)90352-6] [PMID: 3169489]
[44]
Slany, J.; Bronisa, D.; Chorvatova, B.; Mandak, M. Evaluation of tablets with pectin as a binding agent. Farm. Obz., 1981, 50, 491-498.
[45]
Macleod, G.S.; Collett, J.H.; Fell, J.T. The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release. J. Control. Release, 1999, 58(3), 303-310.
[http://dx.doi.org/10.1016/S0168-3659(98)00168-0] [PMID: 10099155]
[46]
Krusteva, S.; Lambov, N.; Velinov, G. Biopharmaceutic studies of a bioerodible nystatin unit. Pharmazie, 1990, 45(3), 195-197.
[PMID: 2381961]
[47]
Sungthongjeen, S.; Pitaksuteepong, T.; Somsiri, A.; Sriamornsak, P. Studies on pectins as potential hydrogel matrices for controlled-release drug delivery. Drug Dev. Ind. Pharm., 1999, 25(12), 1271-1276.
[http://dx.doi.org/10.1081/DDC-100102298] [PMID: 10612023]
[48]
Sriamornsak, P.; Nunthanid, J. Calcium pectinate gel beads for controlled release drug delivery. Int. J. Pharm., 1998, 160(2), 207-212.
[http://dx.doi.org/10.1016/S0378-5173(97)00310-4]
[49]
Malviya, R.; Srivastava, P.; Bansal, M. Mango Peel pectin as super disintegrating agents. J. Sci. Industr. Res., 2010, 69, 688-690.
[50]
Ashford, M.; Fell, J.; Attwood, D.; Sharma, H.; Woodhead, P. An evaluation of pectin as a carrier for drug targeting to the colon. J. Control. Release, 1993, 26(3), 213-220.
[http://dx.doi.org/10.1016/0168-3659(93)90188-B]
[51]
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci., 2011, 2011, 290602.
[52]
Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J., 2008, 17(S4), 467-479.
[http://dx.doi.org/10.1007/s00586-008-0745-3] [PMID: 19005702]
[53]
Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev., 2013, 19(6), 485-502.
[http://dx.doi.org/10.1089/ten.teb.2012.0437] [PMID: 23672709]
[54]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[55]
Hacker, M.; Nawaz, H. Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. Int. J. Mol. Sci., 2015, 16(11), 27677-27706.
[http://dx.doi.org/10.3390/ijms161126056] [PMID: 26610468]
[56]
Narayan, R.J.; Doraiswamy, A.; Chrisey, D.B.; Chichkov, B.N. Medical prototyping using two photon polymerization. Mater. Today, 2010, 13(12), 42-48.
[http://dx.doi.org/10.1016/S1369-7021(10)70223-6]
[57]
Henderson, T.M.A.; Ladewig, K.; Haylock, D.N.; McLean, K.M.; O’Connor, A.J. Cryogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(21), 2682-2695.
[http://dx.doi.org/10.1039/c3tb20280a] [PMID: 32260973]
[58]
El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 38.
[http://dx.doi.org/10.5339/gcsp.2013.38] [PMID: 24689032]
[59]
Kumar, A. Supermacroporous Cryogels: Biomedical and Biotechnological Applications; CRC Press, 2016.
[http://dx.doi.org/10.1201/b19676]
[60]
Polymeric Cryogels: Macroporous gels with remarkable properties; Okay, O., Ed.; Springer, 2014.
[http://dx.doi.org/10.1007/978-3-319-05846-7]
[61]
Lozinsky, V.I. Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russ. Chem. Bull., 2008, 57(5), 1015-1032.
[http://dx.doi.org/10.1007/s11172-008-0131-7]
[62]
Kumari, J.; Karande, A.A.; Kumar, A. Combined effect of cryogel matrix and temperature-reversible soluble-insoluble polymer for the development of in vitro human liver tissue. ACS Appl. Mater. Interfaces, 2016, 8(1), 264-277.
[http://dx.doi.org/10.1021/acsami.5b08607] [PMID: 26654271]
[63]
Huang, H.; Zhao, G.; Zhang, Y.; Xu, J.; Toth, T.L.; He, X. Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation. ACS Biomater. Sci. Eng., 2017, 3(8), 1758-1768.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00201] [PMID: 28824959]
[64]
Qi, C.; Yan, X.; Huang, C.; Melerzanov, A.; Du, Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell, 2015, 6(9), 638-653.
[http://dx.doi.org/10.1007/s13238-015-0179-8] [PMID: 26088192]
[65]
Lozinsky, V.I.; Plieva, F.M. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme Microb. Technol., 1998, 23(3-4), 227-242.
[http://dx.doi.org/10.1016/S0141-0229(98)00036-2]
[66]
Hassan, C.M.; Peppas, N.A. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Biopolymers· PVA hydrogels, anionic polymerisation nanocomposites; Springer: Berlin, Heidelberg, 2000; pp. 37-65.
[http://dx.doi.org/10.1007/3-540-46414-X_2]
[67]
Lozinsky, V.I. Cryotropic gelation of poly(vinyl alcohol) solutions. Russ. Chem. Rev., 1998, 67(7), 573-586.
[http://dx.doi.org/10.1070/RC1998v067n07ABEH000399]
[68]
Ertürk, G.; Mattiasson, B. Cryogels-versatile tools in bioseparation. J. Chromatogr. A, 2014, 1357, 24-35.
[http://dx.doi.org/10.1016/j.chroma.2014.05.055] [PMID: 24915836]
[69]
Varfolomeyev, S.; Rainina, E.I.; Lozinsky, V.I. Cryoimmobilized enzymes and cells in organic synthesis. Pure Appl. Chem., 1993, 32(1), 202-204.
[70]
Lozinsky, V.I.; Galaev, I.Y.; Plieva, F.M.; Savina, I.N.; Jungvid, H.; Mattiasson, B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol., 2003, 21(10), 445-451.
[http://dx.doi.org/10.1016/j.tibtech.2003.08.002] [PMID: 14512231]
[71]
Bloch, K.; Vanichkin, A.; Damshkaln, L.G.; Lozinsky, V.I.; Vardi, P. Vascularization of wide pore agarose–gelatin cryogel scaffolds implanted subcutaneously in diabetic and non-diabetic mice. Acta Biomater., 2010, 6(3), 1200-1205.
[http://dx.doi.org/10.1016/j.actbio.2009.08.022] [PMID: 19703598]
[72]
Bencherif, S.A.; Sands, R.W.; Bhatta, D.; Arany, P.; Verbeke, C.S.; Edwards, D.A.; Mooney, D.J. Injectable preformed scaffolds with shape-memory properties. Proc. Natl. Acad. Sci., 2012, 109(48), 19590-5.
[http://dx.doi.org/10.1073/pnas.1211516109]
[73]
Ratner, B.; Hoffman, A.; Schoen, F.; Lemons, J. Biomaterials Science: An Introduction to Materials in Medicine, 3rd ed; Elsevier, 2013, p. 1519.
[74]
O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today, 2011, 14(3), 88-95.
[http://dx.doi.org/10.1016/S1369-7021(11)70058-X]
[75]
Lozinsky, V.I. Cryogels on the basis of natural and synthetic polymers: preparation, properties and application. Russ. Chem. Rev., 2002, 71(6), 489-511.
[http://dx.doi.org/10.1070/RC2002v071n06ABEH000720]
[76]
Munarin, F.; Tanzi, M.C.; Petrini, P. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol., 2012, 51(4), 681-689.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.07.002] [PMID: 22776748]
[77]
Chlapanidas, T.; Tosca, M.C.; Faragò, S.; Perteghella, S.; Galuzzi, M.; Lucconi, G.; Antonioli, B.; Ciancio, F.; Rapisarda, V.; Vigo, D.; Marazzi, M.; Faustini, M.; Torre, M.L. Formulation and characterization of silk fibroin films as a scaffold for adipose-derived stem cells in skin tissue engineering. Int. J. Immunopathol. Pharmacol., 2013, 26(1_suppl)(Suppl.), 43-49.
[http://dx.doi.org/10.1177/03946320130260S106 ] [PMID: 24046948]
[78]
Wu, X.; Sun, H.; Qin, Z.; Che, P.; Yi, X.; Yu, Q.; Zhang, H.; Sun, X.; Yao, F.; Li, J. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application. Int. J. Biol. Macromol., 2020, 149, 707-716.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.297] [PMID: 32014477]
[79]
Kraskouski, A.; Hileuskaya, K.; Kulikouskaya, V.; Kabanava, V.; Agabekov, V.; Pinchuk, S.; Vasilevich, I.; Volotovski, I.; Kuznetsova, T.; Lapitskaya, V. Polyvinyl alcohol and pectin blended films: Preparation, characterization, and mesenchymal stem cells attachment. J. Biomed. Mater. Res. A, 2021, 109(8), 1379-1392.
[http://dx.doi.org/10.1002/jbm.a.37130] [PMID: 33252172]
[80]
Valle, K.Z.; Saucedo, A.R.A.; Ríos, A.J.V.; Lobo, N.; Rodriguez, C.; Cuevas-Gonzalez, J.C.; Tovar-Carrillo, K.L. Natural film based on pectin and allantoin for wound healing: Obtaining, characterization, and rat model. BioMed Res. Int., 2020, 2020, 1-7.
[81]
Prezotti, F.G.; Siedle, I.; Boni, F.I.; Chorilli, M.; Müller, I.; Cury, B.S.F. Mucoadhesive films based on gellan gum/pectin blends as potential platform for buccal drug delivery. Pharm. Dev. Technol., 2020, 25(2), 159-167.
[http://dx.doi.org/10.1080/10837450.2019.1682608] [PMID: 31623500]
[82]
Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., 2010, 28(3), 325-347.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[83]
Afsharian, Y.P.; Rahimnejad, M. Bioactive electrospun scaffolds for wound healing applications: A comprehensive review. Polym. Test., 2021, 93, 106952.
[http://dx.doi.org/10.1016/j.polymertesting.2020.106952]
[84]
Akinalan Balik, B.; Argin, S. Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. J. Appl. Polym. Sci., 2020, 137(3), 48294.
[http://dx.doi.org/10.1002/app.48294]
[85]
Li, N.; Xue, F.; Zhang, H.; Sanyour, H.J.; Rickel, A.P.; Uttecht, A.; Fanta, B.; Hu, J.; Hong, Z. Fabrication and characterization of pectin hydrogel nanofiber scaffolds for differentiation of mesenchymal stem cells into vascular cells. ACS Biomater. Sci. Eng., 2019, 5(12), 6511-6519.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01178] [PMID: 33417803]
[86]
Chen, S.; Cui, S.; Zhang, H.; Pei, X.; Hu, J.; Zhou, Y.; Liu, Y. Cross-linked pectin nanofibers with enhanced cell adhesion. Biomacromolecules, 2018, 19(2), 490-498.
[http://dx.doi.org/10.1021/acs.biomac.7b01605] [PMID: 29257671]
[87]
Chan, S.Y.; Chan, B.Q.Y.; Liu, Z.; Parikh, B.H.; Zhang, K.; Lin, Q.; Su, X.; Kai, D.; Choo, W.S.; Young, D.J.; Loh, X.J. Electrospun pectin-polyhydroxybutyrate nanofibers for retinal tissue engineering. ACS Omega, 2017, 2(12), 8959-8968.
[http://dx.doi.org/10.1021/acsomega.7b01604] [PMID: 30023596]
[88]
Ahadi, F.; Khorshidi, S.; Karkhaneh, A. A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride. Eur. Polym. J., 2019, 118, 265-274.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.06.001]
[89]
Alipour, R.; Khorshidi, A.; Shojaei, A.F.; Mashayekhi, F.; Moghaddam, M.J.M. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym. Test., 2019, 79, 106022.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106022]
[90]
Mallick, S.P.; Singh, B.N.; Rastogi, A.; Srivastava, P. Design and evaluation of chitosan/poly(l-lactide)/pectin based composite scaffolds for cartilage tissue regeneration. Int. J. Biol. Macromol., 2018, 112, 909-920.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.049] [PMID: 29438752]
[91]
Lapomarda, A.; De Acutis, A.; Chiesa, I.; Fortunato, G.M.; Montemurro, F.; De Maria, C.; Mattioli Belmonte, M.; Gottardi, R.; Vozzi, G. Pectin-GPTMS-based biomaterial: Toward a sustainable bioprinting of 3D scaffolds for tissue engineering application. Biomacromolecules, 2020, 21(2), 319-327.
[http://dx.doi.org/10.1021/acs.biomac.9b01332] [PMID: 31808680]
[92]
Türkkan, S.; Atila, D.; Akdağ, A.; Tezcaner, A. Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(7), 2625-2635.
[http://dx.doi.org/10.1002/jbm.b.34079] [PMID: 29360269]
[93]
Cui, Y.; Wu, Q.; He, J.; Li, M.; Zhang, Z.; Qiu, Y. Porous nano-minerals substituted apatite/chitin/pectin nanocomposites scaffolds for bone tissue engineering. Arab. J. Chem., 2020, 13(10), 7418-7429.
[http://dx.doi.org/10.1016/j.arabjc.2020.08.018]
[94]
Yu, N.; Wang, X.; Ning, F.; Jiang, C.; Li, Y.; Peng, H.; Xiong, H. Development of antibacterial pectin from Akebia trifoliata var. australis waste for accelerated wound healing. Carbohydr. Polym., 2019, 217, 58-68.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.071] [PMID: 31079685]
[95]
Pati, F.; Jang, J.; Lee, J.W.; Cho, D.W. Extrusion bioprinting. In: Essentials of 3D Biofabrication and Translation; Elsevier: Amsterdam, Netherlands, 2015; pp. 123-152.
[http://dx.doi.org/10.1016/B978-0-12-800972-7.00007-4]
[96]
Ning, L.; Chen, X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol. J., 2017, 12(8), 1600671.
[http://dx.doi.org/10.1002/biot.201600671] [PMID: 28544779]
[97]
Banks, A.; Guo, X.; Chen, J.; Kumpaty, S.; Zhang, W. Novel bioprinting method using a pectin based bioink. Technol. Health Care, 2017, 25(4), 651-655.
[http://dx.doi.org/10.3233/THC-160764] [PMID: 28436403]
[98]
Stealey, S.; Guo, X.; Ren, L.; Bryant, E.; Kaltchev, M.; Chen, J.; Kumpaty, S.; Hua, X.; Zhang, W. Stability improvement and characterization of bioprinted pectin-based scaffold. J. Appl. Biomater. Funct. Mater., 2019, 17(1), 2280800018807108.
[http://dx.doi.org/10.1177/2280800018807108] [PMID: 30803313]
[99]
Lapomarda, A.; Pulidori, E.; Cerqueni, G.; Chiesa, I.; De Blasi, M.; Geven, M.A.; Montemurro, F.; Duce, C.; Mattioli-Belmonte, M.; Tiné, M.R.; Vozzi, G.; De Maria, C. Pectin as rheology modifier of a gelatin-based biomaterial ink. Materials, 2021, 14(11), 3109.
[http://dx.doi.org/10.3390/ma14113109] [PMID: 34198912]
[100]
Lapomarda, A.; Cerqueni, G.; Geven, M.A.; Chiesa, I.; De Acutis, A.; De Blasi, M.; Montemurro, F.; De Maria, C.; Mattioli-Belmonte, M.; Vozzi, G. Physicochemical characterization of pectin‐gelatin biomaterial formulations for 3D bioprinting. Macromol. Biosci., 2021, 21(9), 2100168.
[http://dx.doi.org/10.1002/mabi.202100168]
[101]
Pereira, R.F.; Sousa, A.; Barrias, C.C.; Bártolo, P.J.; Granja, P.L. A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Mater. Horiz., 2018, 5(6), 1100-1111.
[http://dx.doi.org/10.1039/C8MH00525G]
[102]
Lanza, R.; Langer, R.; Vacanti, J. Principles of Tissue Er, 4th ed; Elsevier: New York, 2014.
[103]
Bölgen, N.; Vargel, I.; Korkusuz, P.; Güzel, E.; Plieva, F.; Galaev, I.; Matiasson, B. Pişkin, E. Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: An animal model. J. Biomed. Mater. Res. A, 2009, 91A(1), 60-68.
[http://dx.doi.org/10.1002/jbm.a.32193] [PMID: 18690660]
[104]
Bab, I.A.; Sela, J.J. Cellular and molecular aspects of bone repair. In: Principles of bone regeneration; Springer: Boston, MA, 2012; pp. 11-41.
[http://dx.doi.org/10.1007/978-1-4614-2059-0_2]
[105]
Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med., 2011, 9(1), 66.
[http://dx.doi.org/10.1186/1741-7015-9-66] [PMID: 21627784]
[106]
Finkemeier, C.G. Bone-grafting and bone-graft substitutes. J. Bone Joint Surg. Am., 2002, 84(3), 454-464.
[http://dx.doi.org/10.2106/00004623-200203000-00020] [PMID: 11886919]
[107]
Bölgen, N.; Korkusuz, P. Vargel, İ Kılıç, E.; Güzel, E.; Çavuşoğlu, T.; Uçkan, D.; Pişkin, E. Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects. Artif. Cells Nanomed. Biotechnol., 2014, 42(1), 70-77.
[http://dx.doi.org/10.3109/21691401.2013.775578] [PMID: 23477355]
[108]
Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27), 5474-5491.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.002] [PMID: 15860204]
[109]
Meinel, L.; Fajardo, R.; Hofmann, S.; Langer, R.; Chen, J.; Snyder, B.; Vunjak-Novakovic, G.; Kaplan, D. Silk implants for the healing of critical size bone defects. Bone, 2005, 37(5), 688-698.
[http://dx.doi.org/10.1016/j.bone.2005.06.010] [PMID: 16140599]
[110]
Salgado, C.L.; Grenho, L.; Fernandes, M.H.; Colaço, B.J.; Monteiro, F.J. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration. J. Biomed. Mater. Res. A, 2016, 104(1), 57-70.
[http://dx.doi.org/10.1002/jbm.a.35540] [PMID: 26179958]
[111]
Shiekh, P.A.; Andrabi, S.M.; Singh, A.; Majumder, S.; Kumar, A. Designing cryogels through cryostructuring of polymeric matrices for biomedical applications. Eur. Polym. J., 2021, 144, 110234.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110234]
[112]
Rodrigues, S.C.; Salgado, C.L.; Sahu, A.; Garcia, M.P.; Fernandes, M.H.; Monteiro, F.J. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. J. Biomed. Mater. Res. A, 2013, 101A(4), 1080-1094.
[http://dx.doi.org/10.1002/jbm.a.34394] [PMID: 23008173]
[113]
He, T.; Li, B.; Colombani, T.; Joshi-Navare, K.; Mehta, S.; Kisiday, J.; Bencherif, S.A.; Bajpayee, A.G. Hyaluronic acid-based shape-memory cryogel scaffolds for focal cartilage defect repair. Tissue Eng. Part A, 2021, 27(11-12), 748-760.
[http://dx.doi.org/10.1089/ten.tea.2020.0264] [PMID: 33108972]
[114]
Inci, I.; Kirsebom, H.; Galaev, I.Y.; Mattiasson, B.; Piskin, E. Gelatin cryogels crosslinked with oxidized dextran and containing freshly formed hydroxyapatite as potential bone tissue-engineering scaffolds. J. Tissue Eng. Regen. Med., 2013, 7(7), 584-588.
[http://dx.doi.org/10.1002/term.1464] [PMID: 22733656]
[115]
Liao, H.T.; Shalumon, K.T.; Chang, K.H.; Sheu, C.; Chen, J.P. Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(10), 1827-1841.
[http://dx.doi.org/10.1039/C5TB02496J] [PMID: 32263060]
[116]
Hixon, K.R.; Eberlin, C.T.; Lu, T.; Neal, S.M.; Case, N.D.; McBride-Gagyi, S.H.; Sell, S.A. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration. Biomed. Mater., 2017, 12(2), 025005.
[http://dx.doi.org/10.1088/1748-605X/aa5d76] [PMID: 28145891]
[117]
Hixon, K.R.; Lu, T.; Carletta, M.N.; McBride-Gagyi, S.H.; Janowiak, B.E.; Sell, S.A. A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(5), 1918-1933.
[http://dx.doi.org/10.1002/jbm.b.34002] [PMID: 28960886]
[118]
Ak, F.; Oztoprak, Z.; Karakutuk, I.; Okay, O. Macroporous silk fibroin cryogels. Biomacromolecules, 2013, 14(3), 719-727.
[http://dx.doi.org/10.1021/bm3018033] [PMID: 23360211]
[119]
Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater., 2016, 31, 1-16.
[http://dx.doi.org/10.1016/j.actbio.2015.09.005] [PMID: 26360593]
[120]
Kundu, B.; Kundu, S.C. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering. Biomed. Mater., 2013, 8(5), 055003.
[http://dx.doi.org/10.1088/1748-6041/8/5/055003] [PMID: 24002731]
[121]
Kadakia, P.U.; Jain, E.; Hixon, K.R.; Eberlin, C.T.; Sell, S.A. Sonication induced silk fibroin cryogels for tissue engineering applications. Mater. Res. Express, 2016, 3(5), 055401.
[http://dx.doi.org/10.1088/2053-1591/3/5/055401]
[122]
Hixon, K.R.; Eberlin, C.T.; Kadakia, P.U.; McBride-Gagyi, S.H.; Jain, E.; Sell, S.A. A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration. Biomed. Phys. Eng. Express, 2016, 2(3), 035014.
[http://dx.doi.org/10.1088/2057-1976/2/3/035014]
[123]
Volkmer, T.; Magalhães, J.; Sousa, V.; Santos, L.; Burguera, E.; Blanco, F.; Román, J.; Rodríguez-Lorenzo, L. 2-(dimethylamino) ethyl methacrylate/(2-hydroxyethyl) methacrylate/α-tricalcium phosphate cryogels for bone repair, preparation and evaluation of the biological response of human trabecular bone-derived cells and mesenchymal stem cells. Polymers, 2014, 6(10), 2510-2525.
[http://dx.doi.org/10.3390/polym6102510]
[124]
Van Rie, J.; Declercq, H.; Van Hoorick, J.; Dierick, M.; Van Hoorebeke, L.; Cornelissen, R.; Thienpont, H.; Dubruel, P.; Van Vlierberghe, S. Cryogel-PCL combination scaffolds for bone tissue repair. J. Mater. Sci. Mater. Med., 2015, 26(3), 123.
[http://dx.doi.org/10.1007/s10856-015-5465-8] [PMID: 25690621]
[125]
Mishra, R.; Kumar, A. Osteocompatibility and osteoinductive potential of supermacroporous polyvinyl alcohol-TEOS-Agarose-CaCl2 (PTAgC) biocomposite cryogels. J. Mater. Sci. Mater. Med., 2014, 25(5), 1327-1337.
[http://dx.doi.org/10.1007/s10856-014-5166-8] [PMID: 24515863]
[126]
Rodriguez-Lorenzo, L.M.; Saldaña, L.; Benito-Garzón, L.; García-Carrodeguas, R.; de Aza, S.; Vilaboa, N.; Román, J.S. Feasibility of ceramic-polymer composite cryogels as scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med., 2012, 6(6), 421-433.
[http://dx.doi.org/10.1002/term.443] [PMID: 21800433]
[127]
Abueva, C.D.G.; Padalhin, A.R.; Min, Y.K.; Lee, B.T. Preformed chitosan cryogel-biphasic calcium phosphate: a potential injectable biocomposite for pathologic fracture. J. Biomater. Appl., 2015, 30(2), 182-192.
[http://dx.doi.org/10.1177/0885328215577892] [PMID: 25805056]
[128]
Mishra, R.; Kumar, A. Inorganic/organic biocomposite cryogels for regeneration of bony tissues. J. Biomater. Sci. Polym. Ed., 2011, 22(16), 2107-2126.
[http://dx.doi.org/10.1163/092050610X534230] [PMID: 21067655]
[129]
Mishra, R.; Goel, S.K.; Gupta, K.C.; Kumar, A. Biocomposite cryogels as tissue-engineered biomaterials for regeneration of critical-sized cranial bone defects. Tissue Eng. Part A, 2014, 20(3-4), 751-762.
[PMID: 24147880]
[130]
Bölgen, N.; Yang, Y.; Korkusuz, P.; Güzel, E.; El Haj, A.J. Pişkin, E. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. J. Tissue Eng. Regen. Med., 2011, 5(10), 770-779.
[http://dx.doi.org/10.1002/term.375] [PMID: 22002920]
[131]
Muzzarelli, R.A.A.; Greco, F.; Busilacchi, A.; Sollazzo, V.; Gigante, A. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review. Carbohydr. Polym., 2012, 89(3), 723-739.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.057] [PMID: 24750856]
[132]
Święszkowski, W.; Ku, D.N.; Bersee, H.E.N.; Kurzydlowski, K.J. An elastic material for cartilage replacement in an arthritic shoulder joint. Biomaterials, 2006, 27(8), 1534-1541.
[http://dx.doi.org/10.1016/j.biomaterials.2005.08.032] [PMID: 16188311]
[133]
Tripathi, A.; Kathuria, N.; Kumar, A. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J. Biomed. Mater. Res. A, 2009, 90A(3), 680-694.
[http://dx.doi.org/10.1002/jbm.a.32127] [PMID: 18563830]
[134]
Singh, D.; Tripathi, A.; Nayak, V.; Kumar, A. Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel. J. Biomater. Sci. Polym. Ed., 2011, 22(13), 1733-1751.
[http://dx.doi.org/10.1163/092050610X522486] [PMID: 20843432]
[135]
Nettles, D.L.; Elder, S.H.; Gilbert, J.A. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng., 2002, 8(6), 1009-16.
[136]
Hwang, Y.; Sangaj, N.; Varghese, S. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Eng. Part A, 2010, 16(10), 3033-3041.
[http://dx.doi.org/10.1089/ten.tea.2010.0045] [PMID: 20486791]
[137]
Han, M.E.; Kim, S.H.; Kim, H.D.; Yim, H.G.; Bencherif, S.A.; Kim, T.I.; Hwang, N.S. Extracellular matrix-based cryogels for cartilage tissue engineering Int. J. Biol. Macromol,(Pt B)., 2016, 93, 1410-1419.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.024] [PMID: 27185069]
[138]
Dwivedi, P.; Bhat, S.; Nayak, V.; Kumar, A. Study of different delivery modes of chondroitin sulfate using microspheres and cryogel scaffold for application in cartilage tissue engineering. Int. J. Polym. Mater., 2014, 63(16), 859-872.
[http://dx.doi.org/10.1080/00914037.2014.886223]
[139]
Odabas, S.; Feichtinger, G.A.; Korkusuz, P.; Inci, I.; Bilgic, E.; Yar, A.S.; Cavusoglu, T.; Menevse, S.; Vargel, I.; Piskin, E. Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes. J. Tissue Eng. Regen. Med., 2013, 7(10), 831-840.
[PMID: 23281155]
[140]
Bhat, S.; Lidgren, L.; Kumar, A. In vitro neo-cartilage formation on a three-dimensional composite polymeric cryogel matrix. Macromol. Biosci., 2013, 13(7), 827-837.
[http://dx.doi.org/10.1002/mabi.201200484] [PMID: 23619817]
[141]
Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100B(5), 1451-1457.
[http://dx.doi.org/10.1002/jbm.b.32694] [PMID: 22514196]
[142]
Bhat, S.; Tripathi, A.; Kumar, A. Supermacroprous chitosan–agarose–gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering. J. R. Soc. Interface, 2011, 8(57), 540-554.
[http://dx.doi.org/10.1098/rsif.2010.0455] [PMID: 20943683]
[143]
Gupta, A.; Bhat, S.; Jagdale, P.R.; Chaudhari, B.P.; Lidgren, L.; Gupta, K.C.; Kumar, A. Evaluation of three-dimensional chitosan-agarose-gelatin cryogel scaffold for the repair of subchondral cartilage defects: An in vivo study in a rabbit model. Tissue Eng. Part A, 2014, 20(23-24), 3101-3111.
[http://dx.doi.org/10.1089/ten.tea.2013.0702] [PMID: 24846199]
[144]
Gupta, A.; Bhat, S.; Chaudhari, B.P.; Gupta, K.C.; Tägil, M.; Zheng, M.H.; Kumar, A.; Lidgren, L. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits. J. Tissue Eng. Regen. Med., 2017, 11(6), 1689-1700.
[http://dx.doi.org/10.1002/term.2063] [PMID: 26177894]
[145]
Kuo, C.Y.; Chen, C.H.; Hsiao, C.Y.; Chen, J.P. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. Carbohydr. Polym., 2015, 117, 722-730.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.056] [PMID: 25498693]
[146]
Priya, S.G.; Gupta, A.; Jain, E.; Sarkar, J.; Damania, A.; Jagdale, P.R.; Chaudhari, B.P.; Gupta, K.C.; Kumar, A. Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds. ACS Appl. Mater. Interfaces, 2016, 8(24), 15145-15159.
[http://dx.doi.org/10.1021/acsami.6b04711] [PMID: 27223844]
[147]
Shevchenko, R.V.; James, S.L.; James, S.E. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J. R. Soc. Interface, 2010, 7(43), 229-258.
[http://dx.doi.org/10.1098/rsif.2009.0403] [PMID: 19864266]
[148]
Priya, S.G.; Jungvid, H.; Kumar, A. Skin tissue engineering for tissue repair and regeneration. Tissue Eng. Part B Rev., 2008, 14(1), 105-118.
[http://dx.doi.org/10.1089/teb.2007.0318] [PMID: 18454637]
[149]
Cheng, L.; Ji, K.; Shih, T.Y.; Haddad, A.; Giatsidis, G.; Mooney, D.J.; Orgill, D.P.; Nabzdyk, C.S. Injectable shape-memorizing three-dimensional hyaluronic acid cryogels for skin sculpting and soft tissue reconstruction. Tissue Eng. Part A, 2017, 23(5-6), 243-251.
[http://dx.doi.org/10.1089/ten.tea.2016.0263] [PMID: 27875939]
[150]
Thones, S.; Kutz, L.M.; Oehmichen, S.; Becher, J.; Heymann, K.; Saalbach, A.; Knolle, W.; Schnabelrauch, M.; Reichelt, S.; Anderegg, U. New E-beam-initiated hyaluronan acrylate cryogels support growth and matrix deposition by dermal fibroblasts. Int. J. Biol. Macromol., 2017, 94(A), 611-620.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.065]
[151]
Shevchenko, R.V.; Eeman, M.; Rowshanravan, B.; Allan, I.U.; Savina, I.N.; Illsley, M.; Salmon, M.; James, S.L.; Mikhalovsky, S.V.; James, S.E. The in vitro characterization of a gelatin scaffold, prepared by cryogelation and assessed in vivo as a dermal replacement in wound repair. Acta Biomater., 2014, 10(7), 3156-3166.
[http://dx.doi.org/10.1016/j.actbio.2014.03.027] [PMID: 24704695]
[152]
Sharma, A.; Bhat, S.; Nayak, V.; Kumar, A. Efficacy of supermacroporous poly(ethylene glycol)–gelatin cryogel matrix for soft tissue engineering applications. Mater. Sci. Eng. C, 2015, 47, 298-312.
[http://dx.doi.org/10.1016/j.msec.2014.11.031] [PMID: 25492201]
[153]
Bhat, S.; Kumar, A. Cell proliferation on three-dimensional chitosan–agarose–gelatin cryogel scaffolds for tissue engineering applications. J. Biosci. Bioeng., 2012, 114(6), 663-670.
[http://dx.doi.org/10.1016/j.jbiosc.2012.07.005] [PMID: 22884715]
[154]
Takei, T.; Nakahara, H.; Ijima, H.; Kawakami, K. Synthesis of a chitosan derivative soluble at neutral pH and gellable by freeze–thawing, and its application in wound care. Acta Biomater., 2012, 8(2), 686-693.
[http://dx.doi.org/10.1016/j.actbio.2011.10.005] [PMID: 22023751]
[155]
Allan, I.U.; Tolhurst, B.A.; Shevchenko, R.V.; Dainiak, M.B.; Illsley, M.; Ivanov, A.; Jungvid, H.; Galaev, I.Y.; James, S.L.; Mikhalovsky, S.V.; James, S.E. An in vitro evaluation of fibrinogen and gelatin containing cryogels as dermal regeneration scaffolds. Biomater. Sci., 2016, 4(6), 1007-1014.
[http://dx.doi.org/10.1039/C6BM00133E] [PMID: 27138753]
[156]
Dainiak, M.B.; Allan, I.U.; Savina, I.N.; Cornelio, L.; James, E.S.; James, S.L.; Mikhalovsky, S.V.; Jungvid, H.; Galaev, I.Y. Gelatin–fibrinogen cryogel dermal matrices for wound repair: Preparation, optimisation and in vitro study. Biomaterials, 2010, 31(1), 67-76.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.029] [PMID: 19783036]
[157]
Zeng, Y.; Zhu, L.; Han, Q.; Liu, W.; Mao, X.; Li, Y.; Yu, N.; Feng, S.; Fu, Q.; Wang, X.; Du, Y.; Zhao, R.C. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomater., 2015, 25, 291-303.
[http://dx.doi.org/10.1016/j.actbio.2015.07.042] [PMID: 26234487]
[158]
Takei, T.; Nakahara, H.; Tanaka, S.; Nishimata, H.; Yoshida, M.; Kawakami, K. Effect of chitosan-gluconic acid conjugate/poly(vinyl alcohol) cryogels as wound dressing on partial-thickness wounds in diabetic rats. J. Mater. Sci. Mater. Med., 2013, 24(10), 2479-2487.
[http://dx.doi.org/10.1007/s10856-013-4991-5] [PMID: 23801501]
[159]
Martínez, Y.N.; Cavello, I.; Hours, R.; Cavalitto, S.; Castro, G.R. Immobilized keratinase and enrofloxacin loaded on pectin PVA cryogel patches for antimicrobial treatment. Bioresour. Technol., 2013, 145, 280-284.
[http://dx.doi.org/10.1016/j.biortech.2013.02.063] [PMID: 23558181]
[160]
Martínez, Y.N.; Cavello, I.; Cavalitto, S.; Illanes, A.; Castro, G.R. Studies on PVA pectin cryogels containing crosslinked enzyme aggregates of keratinase. Colloids Surf. B Biointerfaces, 2014, 117, 284-289.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.049] [PMID: 24657614]
[161]
Vrana, N.E.; Cahill, P.A.; McGuinness, G.B. Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: Effect of disturbed shear stress conditions. J. Biomed. Mater. Res. A, 2010, 9999A(4), NA.
[http://dx.doi.org/10.1002/jbm.a.32790] [PMID: 20694975]
[162]
Conconi, M.T.; Borgio, L.; Di Liddo, R.; Sartore, L.; Dalzoppo, D.; Amistà, P.; Lora, S.; Parnigotto, P.P.; Grandi, C. Evaluation of vascular grafts based on polyvinyl alcohol cryogels. Mol. Med. Rep., 2014, 10(3), 1329-1334.
[http://dx.doi.org/10.3892/mmr.2014.2348] [PMID: 24969541]
[163]
Jiang, H.; Campbell, G.; Boughner, D.; Wan, W.K.; Quantz, M. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med. Eng. Phys., 2004, 26(4), 269-277.
[http://dx.doi.org/10.1016/j.medengphy.2003.10.007] [PMID: 15121052]
[164]
Cohen, S.; Leor, J. Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: Constructing a living human heart patch. Sci. Am., 2004, 291(5), 44-51.
[http://dx.doi.org/10.1038/scientificamerican1104-44] [PMID: 15521146]
[165]
Jain, K.K. Cell therapy for CNS trauma. Mol. Biotechnol., 2009, 42(3), 367-376.
[http://dx.doi.org/10.1007/s12033-009-9166-8] [PMID: 19330468]
[166]
Béduer, A.; Braschler, T.; Peric, O.; Fantner, G.E.; Mosser, S.; Fraering, P.C.; Benchérif, S.; Mooney, D.J.; Renaud, P. A compressible scaffold for minimally invasive delivery of large intact neuronal networks. Adv. Healthc. Mater., 2015, 4(2), 301-312.
[http://dx.doi.org/10.1002/adhm.201400250] [PMID: 25178838]
[167]
Jurga, M.; Dainiak, M.B.; Sarnowska, A.; Jablonska, A.; Tripathi, A.; Plieva, F.M.; Savina, I.N.; Strojek, L.; Jungvid, H.; Kumar, A.; Lukomska, B.; Domanska-Janik, K.; Forraz, N.; McGuckin, C.P. The performance of laminin-containing cryogel scaffolds in neural tissue regeneration. Biomaterials, 2011, 32(13), 3423-3434.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.049] [PMID: 21324403]
[168]
Vishnoi, T.; Kumar, A. Comparative study of various delivery methods for the supply of alpha-ketoglutarate to the neural cells for tissue engineering. BioMed Res. Int., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/294679] [PMID: 23878803]
[169]
Pumberger, M.; Qazi, T.H.; Ehrentraut, M.C.; Textor, M.; Kueper, J.; Stoltenburg-Didinger, G.; Winkler, T.; von Roth, P.; Reinke, S.; Borselli, C.; Perka, C.; Mooney, D.J.; Duda, G.N.; Geißler, S. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials, 2016, 99, 95-108.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.009] [PMID: 27235995]
[170]
Singh, D.; Nayak, V.; Kumar, A. Proliferation of myoblast skeletal cells on three-dimensional supermacroporous cryogels. Int. J. Biol. Sci., 2010, 6(4), 371-381.
[http://dx.doi.org/10.7150/ijbs.6.371] [PMID: 20617130]
[171]
Elowsson, L.; Kirsebom, H.; Carmignac, V.; Mattiasson, B.; Durbeej, M. Evaluation of macroporous blood and plasma scaffolds for skeletal muscle tissue engineering. Biomater. Sci., 2013, 1(4), 402-410.
[http://dx.doi.org/10.1039/c2bm00054g] [PMID: 32481905]
[172]
Dhandayuthapani, B.; Krishnan, U.M.; Sethuraman, S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 94(1), 264-272.
[http://dx.doi.org/10.1002/jbm.b.31651] [PMID: 20524203]
[173]
Chung, L.Y.; Schmidt, R.J.; Hamlyn, P.F.; Sagar, B.F.; Andrew, A.M.; Turner, T.D. Biocompatibility of potential wound management products: Fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. J. Biomed. Mater. Res., 1994, 28(4), 463-469.
[http://dx.doi.org/10.1002/jbm.820280409] [PMID: 8006051]
[174]
Malette, W.G.; Quigley, H.J.; Gaines, R.D.; Johnson, N.D.; Rainer, W.G. Chitosan: A new hemostatic. Ann. Thorac. Surg., 1983, 36(1), 55-58.
[http://dx.doi.org/10.1016/S0003-4975(10)60649-2] [PMID: 6222713]
[175]
Chen, J.P.; Chang, G.Y.; Chen, J.K. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf., 2008, 313, 183-188.
[176]
Lin, H.Y.; Chen, H.H.; Chang, S.H.; Ni, T.S. Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold. J. Biomater. Sci. Polym. Ed., 2013, 24(4), 470-484.
[http://dx.doi.org/10.1080/09205063.2012.693047] [PMID: 23565688]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy