Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Systematic Review Article

Circadian Rhythm and Risk of Hemorrhagic Transformation after Acute Ischemic Stroke Treated with Intravenous Thrombolysis - A Systematic Review

Author(s): Adina Stan, Hanna Dragos, Stefan Strilciuc*, Silvina Ilut, Vitalie Vacaras, Angela Cozma, Paul Stefan Panaitescu, Horatiu Stan and Dafin F. Muresanu

Volume 22, Issue 10, 2023

Published on: 02 November, 2022

Page: [1493 - 1506] Pages: 14

DOI: 10.2174/1871527322666221004113752

open access plus

Abstract

Background: A circadian pattern for the onset of acute ischemic stroke (AIS) has been described, with a higher risk in the early morning and a lower risk during nighttime. However, data assessing the circadian distribution of hemorrhagic transformation after intravenous thrombolysis (ivT) are still incongruent.

Objectives: This review aimed to evaluate whether the time interval based on AIS onset or ivT time could influence the occurrence of intracranial hemorrhage (ICH) related to ivT and if the circadian rhythm of endogenous production of tissue plasminogen activator (t-PA) favors ICH occurrence.

Methods: We conducted a systematic review following the PRISMA guidelines, searching PubMed and Embase for articles in English using the keywords: 'stroke', 'thrombolysis', and 'circadian'. Articles investigating the AIS onset or ivT time effects on circadian variations of ICH in AIS adult patients treated with ivT were included. Based on ICH's incidence and odds ratio, time intervals associated with higher risk and time intervals associated with lower risk were defined. The Newcastle-Ottawa Scale was used to assess the risk of bias. The resulting data were reported in a qualitative narrative synthesis.

Results: From the 70 abstracts returned by electronic literature search, six studies with 33,365 patients fulfilled the inclusion criteria, out of which three were retrospective analysis studies, one case-control study, one prospective study, and one post hoc analysis of a multicentre trial. Some studies assessed the relationship between ICH occurrence and circadian rhythm depending on AIS onset time (n = 2), treatment time (n = 2), or both (n = 4). All studies investigated the patients' comorbidities as confounding variables for the circadian pattern of symptomatic ICH (sICH). Two studies found no association between AIS onset or ivT time and patient risk factors, but the other four found several differences and used multivariate logistic regression models to balance these covariates. The overall score of the Newcastle- Ottawa scale was 83.3%, which might be interpreted as overall high quality.

Conclusion: ICH occurred after ivT seems to follow a circadian pattern; the 18:00-00:00 time frame was the safest one, and patients with AIS onset or ivT time between these hours had the lowest incidence of any ICH, including sICH. The 06:00-12:00 block was associated with the highest incidence of ICH and sICH. However, the analysis is limited by the small number of included studies and the heterogeneous findings reported. Further homogenized studies using comparable time frames and sICH definitions are needed to demonstrate this circadian pattern. The review protocol was registered in the OSF database under reference UHNF, doi:10.17605/OSF.IO/UHNF6.

Keywords: ischemic stroke, thrombolysis, circadian rhythm, intracranial hemorrhage, symptomatic intracranial hemorrhage, recombinant tissue plasminogen activator, tissue plasminogen activator, plasminogen activator inhibitor type 1

Graphical Abstract

[1]
Zhang J, Yang Y, Sun H, Xing Y. Hemorrhagic transformation after cerebral infarction: Current concepts and challenges. Ann Transl Med 2014; 2(8): 81.
[PMID: 25333056]
[2]
Sussman ES, Connolly ES Jr. Hemorrhagic transformation: A review of the rate of hemorrhage in the major clinical trials of acute is-chemic stroke. Front Neurol 2013; 4: 69.
[http://dx.doi.org/10.3389/fneur.2013.00069] [PMID: 23772220]
[3]
Kent DM, Hinchey J, Price LL, Levine SR, Selker HP. In acute ischemic stroke, are asymptomatic intracranial hemorrhages clinically innocuous? Stroke 2004; 35(5): 1141-6.
[http://dx.doi.org/10.1161/01.STR.0000125712.02090.6e] [PMID: 15087567]
[4]
Yaghi S, Willey JZ, Cucchiara B, et al. Treatment and outcome of hemorrhagic transformation after intravenous Alteplase in acute is-chemic stroke: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2017; 48(12): e343-61.
[http://dx.doi.org/10.1161/STR.0000000000000152] [PMID: 29097489]
[5]
Hacke W, Kaste M, Fieschi C, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Lancet 1998; 352(9136): 1245-51.
[http://dx.doi.org/10.1016/S0140-6736(98)08020-9] [PMID: 9788453]
[6]
Wahlgren N, Ahmed N, Dávalos A, et al. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Throm-bolysis in Stroke-Monitoring Study (SITS-MOST): An observational study. Lancet 2007; 369(9558): 275-82.
[http://dx.doi.org/10.1016/S0140-6736(07)60149-4] [PMID: 17258667]
[7]
National institute of neurological disorders and Stroke rt-PA stroke study group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333(24): 1581-8.
[http://dx.doi.org/10.1056/NEJM199512143332401] [PMID: 7477192]
[8]
del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M. PROACT: A phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in Acute Cerebral Thrombo-embolism. Stroke 1998; 29(1): 4-11.
[http://dx.doi.org/10.1161/01.STR.29.1.4] [PMID: 9445320]
[9]
von Kummer R, Broderick JP, Campbell BCV, et al. The Heidelberg Bleeding Classification. Stroke 2015; 46(10): 2981-6.
[http://dx.doi.org/10.1161/STROKEAHA.115.010049] [PMID: 26330447]
[10]
Sandercock P, Lindley R, Wardlaw J, et al. The third International Stroke Trial (IST-3) of thrombolysis for acute ischaemic stroke. Trials 2008; 9(1): 37.
[http://dx.doi.org/10.1186/1745-6215-9-37] [PMID: 18559104]
[11]
Menon BK, Saver JL, Prabhakaran S, et al. Risk score for intracranial hemorrhage in patients with acute ischemic stroke treated with intravenous tissue-type plasminogen activator. Stroke 2012; 43(9): 2293-9.
[http://dx.doi.org/10.1161/STROKEAHA.112.660415] [PMID: 22811458]
[12]
Seet RCS, Rabinstein AA. Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: A critical review of case definitions. Cerebrovasc Dis 2012; 34(2): 106-14.
[http://dx.doi.org/10.1159/000339675] [PMID: 22868870]
[13]
Gumbinger C, Gruschka P, Böttinger M, et al. Improved prediction of poor outcome after thrombolysis using conservative definitions of symptomatic hemorrhage. Stroke 2012; 43(1): 240-2.
[http://dx.doi.org/10.1161/STROKEAHA.111.623033] [PMID: 21998049]
[14]
Rao NM, Levine SR, Gornbein JA, Saver JL. Defining clinically relevant cerebral hemorrhage after thrombolytic therapy for stroke: Analysis of the national institute of neurological disorders and stroke tissue-type plasminogen activator trials. Stroke 2014; 45(9): 2728-33.
[http://dx.doi.org/10.1161/STROKEAHA.114.005135] [PMID: 25096731]
[15]
Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood–brain barrier disruption in ischemic stroke: Critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 2010; 38(3): 376-85.
[http://dx.doi.org/10.1016/j.nbd.2010.03.008] [PMID: 20302940]
[16]
Wagstaff AJ, Gillis JC, Goa KL. Alteplase. Drugs 1995; 50(2): 289-316.
[http://dx.doi.org/10.2165/00003495-199550020-00007] [PMID: 8521760]
[17]
Vandelli L, Marietta M, Gambini M, et al. Fibrinogen decrease after intravenous thrombolysis in ischemic stroke patients is a risk factor for intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2015; 24(2): 394-400.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.005] [PMID: 25497721]
[18]
Lee VH, Conners JJ, Cutting S, Song SY, Bernstein RA, Prabhakaran S. Elevated international normalized ratio as a manifestation of post-thrombolytic coagulopathy in acute ischemic stroke. J Stroke Cerebrovasc Dis 2014; 23(8): 2139-44.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.03.021] [PMID: 25081309]
[19]
Matosevic B, Knoflach M, Werner P, et al. Fibrinogen degradation coagulopathy and bleeding complications after stroke thrombolysis. Neurology 2013; 80(13): 1216-24.
[http://dx.doi.org/10.1212/WNL.0b013e3182897015] [PMID: 23486872]
[20]
Yan S, Zhang X, Zhang R, Xu J, Lou M. Early fibrinogen depletion and symptomatic intracranial hemorrhage after reperfusion therapy. Stroke 2019; 50(10): 2716-21.
[http://dx.doi.org/10.1161/STROKEAHA.119.025711] [PMID: 31394994]
[21]
Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 2012; 32(9): 3044-57.
[http://dx.doi.org/10.1523/JNEUROSCI.6409-11.2012] [PMID: 22378877]
[22]
Yaghi S, Eisenberger A, Willey JZ. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: A review of natural history and treatment. JAMA Neurol 2014; 71(9): 1181-5.
[http://dx.doi.org/10.1001/jamaneurol.2014.1210] [PMID: 25069522]
[23]
Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complica-tions after thrombolysis in human stroke. Circulation 2003; 107(4): 598-603.
[http://dx.doi.org/10.1161/01.CIR.0000046451.38849.90] [PMID: 12566373]
[24]
Bai J, Lyden PD. Revisiting cerebral postischemic reperfusion injury: New insights in understanding reperfusion failure, hemorrhage, and edema. Int J Stroke 2015; 10(2): 143-52.
[http://dx.doi.org/10.1111/ijs.12434] [PMID: 25598025]
[25]
del Zoppo GJ, von Kummer R, Hamann GF. Hemorrhagic transformation of cerebral infarction--possible mechanisms. Thromb Haemost 1999; 82(S1): 92-4.
[http://dx.doi.org/10.1055/s-0037-1615562] [PMID: 10695495]
[26]
Kurnik PB. Circadian variation in the efficacy of tissue-type plasminogen activator. Circulation 1995; 91(5): 1341-6.
[http://dx.doi.org/10.1161/01.CIR.91.5.1341] [PMID: 7867171]
[27]
Becker RC, Corrao JM, Baker SP, Gore JM, Alpert JS. Circadian variation in thrombolytic response to recombinant tissue-type plasmino-gen activator in acute myocardial infarction. J Appl Cardiol 1988; 3(3): 213-21.
[28]
Fujita M, Araie E, Yamanishi K, Miwa K, Kida M, Nakajima H. Circadian variation in the success rate of intracoronary thrombolysis for acute myocardial infarction. Am J Cardiol 1993; 71(15): 1369-71.
[http://dx.doi.org/10.1016/0002-9149(93)90559-U] [PMID: 8498385]
[29]
Goldhammer E, Kharash L, Abinader EG. Circadian fluctuations in the efficacy of thrombolysis with streptokinase. Postgrad Med J 1999; 75(889): 667-71.
[http://dx.doi.org/10.1136/pgmj.75.889.667] [PMID: 10621877]
[30]
Kono T, Morita H, Nishina T, et al. Circadian variations of onset of acute myocardial infarction and efficacy of thrombolytic therapy. J Am Coll Cardiol 1996; 27(4): 774-8.
[http://dx.doi.org/10.1016/0735-1097(95)00552-8] [PMID: 8613602]
[31]
Andreotti F, Davies GJ, Hackett DR, et al. Major circadian fluctuations in fibrinolytic factors and possible relevance to time of onset of myocardial infarction, sudden cardiac death and stroke. Am J Cardiol 1988; 62(9): 635-7.
[http://dx.doi.org/10.1016/0002-9149(88)90669-8] [PMID: 3137799]
[32]
Haus E. Chronobiology of hemostasis and inferences for the chronotherapy of coagulation disorders and thrombosis prevention. Adv Drug Deliv Rev 2007; 59(9-10): 966-84.
[http://dx.doi.org/10.1016/j.addr.2006.11.002] [PMID: 17822804]
[33]
Grimaudo V, Hauert J, Bachmahh F, Kruithof EKO. Diurnal variation of the fibrinolytic system. Thromb Haemost 1988; 59(3): 495-9.
[http://dx.doi.org/10.1055/s-0038-1647522] [PMID: 3142085]
[34]
Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. Stroke 1998; 29(5): 992-6.
[http://dx.doi.org/10.1161/01.STR.29.5.992] [PMID: 9596248]
[35]
Cappellari M, Bovi P, Moretto G. Circadian variation in the effect of intravenous thrombolysis after non-lacunar stroke. J Thromb Thrombolysis 2014; 38(2): 253-9.
[http://dx.doi.org/10.1007/s11239-013-1041-6] [PMID: 24402193]
[36]
Vilas D, Gomis M, Blanco M, et al. Circadian rhythms in the efficacy of intravenous alteplase in patients with acute ischemic stroke and middle cerebral artery occlusion. Chronobiol Int 2012; 29(10): 1383-9.
[http://dx.doi.org/10.3109/07420528.2012.728655] [PMID: 23130962]
[37]
Ding J, Bai Z, Zhou D, et al. Circadian rhythms may not influence the outcomes of thrombolysis in patients with ischemic stroke: A study from China. Chronobiol Int 2018; 35(11): 1533-42.
[http://dx.doi.org/10.1080/07420528.2018.1494602] [PMID: 29993298]
[38]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372(71): n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[39]
Stan A. Circadian rhythm and risk of hemorrhagic transformation after acute ischemic stroke treated with intravenous thrombolysis - a systematic review. OSF Registry 2022.
[http://dx.doi.org/10.17605/OSF.IO/UHNF6]
[40]
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344-418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[41]
Strbian D, Sairanen T, Meretoja A, et al. Patient outcomes from symptomatic intracerebral hemorrhage after stroke thrombolysis. Neurology 2011; 77(4): 341-8.
[http://dx.doi.org/10.1212/WNL.0b013e3182267b8c] [PMID: 21715707]
[42]
The NINDS t-PA Stroke Study Group. The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 1997; 28(11): 2109-18.
[http://dx.doi.org/10.1161/01.STR.28.11.2109] [PMID: 9368550]
[43]
Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. JAMA 1995; 274(13): 1017-25.
[http://dx.doi.org/10.1001/jama.1995.03530130023023] [PMID: 7563451]
[44]
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25(9): 603-5.
[http://dx.doi.org/10.1007/s10654-010-9491-z] [PMID: 20652370]
[45]
Kõrv J, Vibo R, Kadlecová P, et al. Benefit of thrombolysis for stroke is maintained around the clock: Results from the SITS-EAST Registry. Eur J Neurol 2014; 21(1): 112-7.
[http://dx.doi.org/10.1111/ene.12257] [PMID: 24102712]
[46]
Lorenzano S, Ahmed N, Tatlisumak T, et al. Within-day and weekly variations of thrombolysis in acute ischemic stroke: Results from safe implementation of treatments in stroke-international stroke thrombolysis register. Stroke 2014; 45(1): 176-84.
[http://dx.doi.org/10.1161/STROKEAHA.113.002133] [PMID: 24262329]
[47]
Curtze S, Meretoja A, Mustanoja S, et al. Does time of day or physician experience affect outcome of acute ischemic stroke patients treated with thrombolysis? A study from Finland. Int J Stroke 2012; 7(6): 511-6.
[http://dx.doi.org/10.1111/j.1747-4949.2012.00795.x] [PMID: 22494345]
[48]
Rhoney DH, Coplin WM, Lin Y, Frankel M, Lyden PD, Levine SR. Time of Day, Outcome, and Response to Thrombolytic Therapy: The National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator Stroke Trial Experience. J Stroke Cerebrovasc Dis 2010; 19(1): 40-8.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2009.03.006] [PMID: 20123226]
[49]
Vu-Ngoc H, Elawady SS, Mehyar GM, et al. Quality of flow diagram in systematic review and/or meta-analysis. PLoS One 2018; 13(6): e0195955.
[http://dx.doi.org/10.1371/journal.pone.0195955] [PMID: 29949595]
[50]
Chaturvedi S, Adams HP Jr, Woolson RF. Circadian variation in ischemic stroke subtypes. Stroke 1999; 30(9): 1792-5.
[http://dx.doi.org/10.1161/01.STR.30.9.1792] [PMID: 10471425]
[51]
Coca A. Circadian rhythm and blood pressure control: Physiological and pathophysiological factors. J Hypertens Suppl 1994; 12(5): S13-21.
[PMID: 7965281]
[52]
Rana S, Prabhu SD, Young ME. Chronobiological influence over cardiovascular function: The good, the bad, and the ugly. Circ Res 2020; 126(2): 258-79.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.313349] [PMID: 31944922]
[53]
Massin MM, Maeyns K, Withofs N, Ravet F, Gérard P. Circadian rhythm of heart rate and heart rate variability. Arch Dis Child 2000; 83(2): 179-82.
[http://dx.doi.org/10.1136/adc.83.2.179] [PMID: 10906034]
[54]
Tjärnlund-Wolf A, Brogren H, Lo EH, Wang X. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke 2012; 43(10): 2833-9.
[http://dx.doi.org/10.1161/STROKEAHA.111.622217] [PMID: 22879095]
[55]
Kostenko E, Petrova L. Features of circadian rhythms in patients with cerebrovascular diseases. In: El-Esawi MA, Ed. Circadian rhythm: Cellular and molecular mechanisms. London: IntechOpen 2018.
[http://dx.doi.org/10.5772/intechopen.75963]
[56]
Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest 2018; 128(6): 2157-67.
[http://dx.doi.org/10.1172/JCI80590] [PMID: 29856365]
[57]
Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 1989; 79(1): 101-6.
[http://dx.doi.org/10.1161/01.CIR.79.1.101] [PMID: 2491971]
[58]
Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med 1991; 325(14): 986-90.
[http://dx.doi.org/10.1056/NEJM199110033251402] [PMID: 1886635]
[59]
Conroy DA, Spielman AJ, Scott RQ. Daily rhythm of cerebral blood flow velocity. J Circadian Rhythms 2005; 3(0): 3.
[http://dx.doi.org/10.1186/1740-3391-3-3] [PMID: 15760472]
[60]
Hodkinson DJ, O’Daly O, Zunszain PA, et al. Circadian and homeostatic modulation of functional connectivity and regional cerebral blood flow in humans under normal entrained conditions. J Cereb Blood Flow Metab 2014; 34(9): 1493-9.
[http://dx.doi.org/10.1038/jcbfm.2014.109] [PMID: 24938404]
[61]
Tofler GH, Brezinski D, Schafer AI, et al. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 1987; 316(24): 1514-8.
[http://dx.doi.org/10.1056/NEJM198706113162405] [PMID: 3587281]
[62]
Petralito A, Mangiafico RA, Gibiino S, Cuffari MA, Miano MF, Fiore CE. Daily modifications of plasma fibrinogen platelets aggregation, Howell’s time, PTT, TT, and antithrombin II in normal subjects and in patients with vascular disease. Chronobiologia 1982; 9(2): 195-201.
[PMID: 7117042]
[63]
Ehrly AM, Lung G. Circadian rhythm of human blood viscosity12. Biorheology 1973; 10(4): 577-83.
[http://dx.doi.org/10.3233/BIR-1973-10411] [PMID: 4783690]
[64]
Weitzman ED, Fukushima D, Nogeire C, Roffwarg H, Gallagher TF, Hellman L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab 1971; 33(1): 14-22.
[http://dx.doi.org/10.1210/jcem-33-1-14] [PMID: 4326799]
[65]
Bremner WF, Sothern RB, Kanabrocki EL, et al. Relation between circadian patterns in levels of circulating lipoprotein(a), fibrinogen, platelets, and related lipid variables in men. Am Heart J 2000; 139(1): 164-73.
[http://dx.doi.org/10.1016/S0002-8703(00)90324-7] [PMID: 10618578]
[66]
Decousus HA, Croze M, Levi FA, et al. Circadian changes in anticoagulant effect of heparin infused at a constant rate. BMJ 1985; 290(6465): 341-4.
[http://dx.doi.org/10.1136/bmj.290.6465.341] [PMID: 3917812]
[67]
Arboix A. Cardiovascular risk factors for acute stroke: Risk profiles in the different subtypes of ischemic stroke. World J Clin Cases 2015; 3(5): 418-29.
[http://dx.doi.org/10.12998/wjcc.v3.i5.418] [PMID: 25984516]
[68]
Seet RCS, Zhang Y, Wijdicks EFM, Rabinstein AA. Thrombolysis outcomes among obese and overweight stroke patients: An age- and national institutes of health stroke scale-matched comparison. J Stroke Cerebrovasc Dis 2014; 23(1): 1-6.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.04.001] [PMID: 22578917]
[69]
Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator (tPA) increase neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998; 4(2): 228-31.
[http://dx.doi.org/10.1038/nm0298-228] [PMID: 9461198]
[70]
Yepes M, Sandkvist M, Wong MKK, et al. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 2000; 96(2): 569-76.
[http://dx.doi.org/10.1182/blood.V96.2.569] [PMID: 10887120]
[71]
Liu JA, Walton JC, DeVries AC, Nelson RJ. Disruptions of circadian rhythms and thrombolytic therapy during ischemic stroke interven-tion. Front Neurosci 2021; 15: 675732.
[http://dx.doi.org/10.3389/fnins.2021.675732] [PMID: 34177452]
[72]
Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res 2015; 1623: 30-8.
[http://dx.doi.org/10.1016/j.brainres.2015.04.024] [PMID: 25916577]
[73]
Yang X, Chu H, Tang Y, Dong Q. The role of connexin43 in hemorrhagic transformation after thrombolysis in vivo and in vitro. Neuroscience 2016; 329: 54-65.
[http://dx.doi.org/10.1016/j.neuroscience.2016.04.040] [PMID: 27138645]
[74]
Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez MJ, Reiter RJ. Relation of nocturnal melatonin levels to serum matrix metalloproteinase-9 concentrations in patients with myocardial infarction. Thromb Res 2007; 120(3): 361-6.
[http://dx.doi.org/10.1016/j.thromres.2006.10.010] [PMID: 17126384]
[75]
Montaner J, Alvarez-Sabín J, Molina CA, et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardi-oembolic stroke. Stroke 2001; 32(12): 2762-7.
[http://dx.doi.org/10.1161/hs1201.99512] [PMID: 11739970]
[76]
Wang X, Lee SR, Arai K, et al. Lipoprotein receptor–mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 2003; 9(10): 1313-7.
[http://dx.doi.org/10.1038/nm926] [PMID: 12960961]
[77]
Lee YJ, Han DH, Pak YK, Cho S. Circadian regulation of low density lipoprotein receptor promoter activity by CLOCK/] BMAL1, Hes1 and Hes6. Exp Mol Med 2012; 44(11): 642-52.
[http://dx.doi.org/10.3858/emm.2012.44.11.073] [PMID: 22913986]
[78]
Roenneberg T, Merrow M. The network of time: Understanding the molecular circadian system. Curr Biol 2003; 13(5): R198-207.
[http://dx.doi.org/10.1016/S0960-9822(03)00124-6] [PMID: 12620213]
[79]
Park KP, Rosell A, Foerch C, et al. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke 2009; 40(8): 2836-42.
[http://dx.doi.org/10.1161/STROKEAHA.109.554824] [PMID: 19556529]
[80]
Fagan SC, Waller JL, Nichols FT, et al. Minocycline to improve neurologic outcome in stroke (MINOS): A dose-finding study. Stroke 2010; 41(10): 2283-7.
[http://dx.doi.org/10.1161/STROKEAHA.110.582601] [PMID: 20705929]
[81]
Spronk E, Sykes G, Falcione S, et al. Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol 2021; 12: 661955.
[http://dx.doi.org/10.3389/fneur.2021.661955] [PMID: 34054705]
[82]
Kim JS, Lee KB, Park JH, et al. SAFE-TPA Investigators. Safety and efficacy of Otaplimastat in patients with acute ischemic stroke re-quiring t-PA (SAFE-TPA): A multicenter, randomized, double-blind, placebo-controlled phase 2 Study. Ann Neurol 2020; 87(2): 233-45.
[http://dx.doi.org/10.1002/ana.25644] [PMID: 31721277]
[83]
Zhang SL, Yue Z, Arnold DM, Artiushin G, Sehgal A. A circadian clock in the blood-brain barrier regulates Xenobiotic Efflux. Cell 2018; 173(1): 130-139.e10.
[http://dx.doi.org/10.1016/j.cell.2018.02.017] [PMID: 29526461]
[84]
Cuddapah VA, Zhang SL, Sehgal A. Regulation of the bloodbrain barrier by circadian rhythms and sleep. Trends Neurosci 2019; 42(7): 500-10.
[http://dx.doi.org/10.1016/j.tins.2019.05.001] [PMID: 31253251]
[85]
Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death. Science 2002; 297(5584): 1186-90.
[http://dx.doi.org/10.1126/science.1073634] [PMID: 12183632]
[86]
Jianliu K, Rosenberg G. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 2005; 39(1): 71-80.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.03.033] [PMID: 15925279]
[87]
Sun X, Berthiller J, Trouillas P, Derex L, Diallo L, Hanss M. Early fibrinogen degradation coagulopathy: A predictive factor of paren-chymal hematomas in cerebral rt-PA thrombolysis. J Neurol Sci 2015; 351(1-2): 109-14.
[http://dx.doi.org/10.1016/j.jns.2015.02.048] [PMID: 25783009]
[88]
Schoenhard J, Smith LH, Painter CA, Eren M, Johnson CH, Vaughan DE. Regulation of the PAI-1 promoter by circadian clock compo-nents: Differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol 2003; 35(5): 473-81.
[http://dx.doi.org/10.1016/S0022-2828(03)00051-8] [PMID: 12738229]
[89]
Somanath PR, Podrez EA, Chen J, et al. Deficiency in core circadian protein Bmal1 is associated with a prothrombotic and vascular phe-notype. J Cell Physiol 2011; 226(1): 132-40.
[http://dx.doi.org/10.1002/jcp.22314] [PMID: 20658528]
[90]
Yaghi S, Boehme AK, Dibu J, et al. Treatment and outcome of thrombolysis-related hemorrhage: A multicenter retrospective study. JAMA Neurol 2015; 72(12): 1451-7.
[http://dx.doi.org/10.1001/jamaneurol.2015.2371] [PMID: 26501741]
[91]
Whiteley WN, Slot KB, Fernandes P, Sandercock P, Wardlaw J. Risk factors for intracranial hemorrhage in acute ischemic stroke patients treated with recombinant tissue plasminogen activator: A systematic review and meta-analysis of 55 studies. Stroke 2012; 43(11): 2904-9.
[http://dx.doi.org/10.1161/STROKEAHA.112.665331] [PMID: 22996959]
[92]
Agarwal R. Regulation of circadian blood pressure: From mice to astronauts. Curr Opin Nephrol Hypertens 2010; 19(1): 51-8.
[http://dx.doi.org/10.1097/MNH.0b013e3283336ddb] [PMID: 19864947]
[93]
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Molecular mechanisms underlying the circadian rhythm of blood pressure in normo-tensive subjects. Curr Hypertens Rep 2020; 22(7): 50.
[http://dx.doi.org/10.1007/s11906-020-01063-z] [PMID: 32661611]
[94]
Kario K, Shimada K, Pickering TG. Clinical implication of morning blood pressure surge in hypertension. J Cardiovasc Pharmacol 2003; 42(S1): S87-91.
[http://dx.doi.org/10.1097/00005344-200312001-00019] [PMID: 14871036]
[95]
Logallo N, Kvistad CE, Thomassen L. Therapeutic Potential of Tenecteplase in the Management of Acute Ischemic Stroke. CNS Drugs 2015; 29(10): 811-8.
[http://dx.doi.org/10.1007/s40263-015-0280-9] [PMID: 26387127]
[96]
Turcasso NM, Nappi JM. Tenecteplase for treatment of acute myocardial infarction. Ann Pharmacother 2001; 35(10): 1233-40.
[http://dx.doi.org/10.1345/aph.10425] [PMID: 11675853]
[97]
Cannon CP, Gibson CM, McCabe CH, et al. TNK–tissue plasminogen activator compared with frontloaded alteplase in acute myocardial infarction. Results of the TIMI 10B trial. Circulation 1998; 98: 2805-14.
[http://dx.doi.org/10.1161/01.CIR.98.25.2805] [PMID: 9860780]
[98]
Kheiri B, Osman M, Abdalla A, et al. Tenecteplase versus alteplase for management of acute ischemic stroke: A pairwise and network meta-analysis of randomized clinical trials. J Thromb Thrombolysis 2018; 46(4): 440-50.
[http://dx.doi.org/10.1007/s11239-018-1721-3] [PMID: 30117036]
[99]
Ibrahim F, Akhtar N, Salam A, et al. Stroke Thrombolysis protocol shortens “door-to-needle time” and improves outcomes-experience at a tertiary care center in Qatar. J Stroke Cerebrovasc Dis 2016; 25(8): 2043-6.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.03.047] [PMID: 27256170]
[100]
Molina CA, Ribó M, Romero F, Alvarez-Sabín J. Hemodynamic changes in the basilar artery following stenting. Neurology 2004; 62(8): 1398.
[http://dx.doi.org/10.1212/WNL.62.8.1398] [PMID: 15111680]
[101]
Rubiera M, Ribo M, Delgado-Mederos R, et al. Tandem internal carotid artery/middle cerebral artery occlusion: An independent predic-tor of poor outcome after systemic thrombolysis. Stroke 2006; 37(9): 2301-5.
[http://dx.doi.org/10.1161/01.STR.0000237070.80133.1d] [PMID: 16888266]
[102]
Bentley P, Peck G, Smeeth L, Whittaker J, Sharma P. Causal relationship of susceptibility genes to ischemic stroke: Comparison to is-chemic heart disease and biochemical determinants. PLoS One 2010; 5(2): e9136.
[http://dx.doi.org/10.1371/journal.pone.0009136] [PMID: 20161734]
[103]
D’Armiento FP, Bianchi A, de Nigris F, et al. Age-related effects on atherogenesis and scavenger enzymes of intracranial and extracranial arteries in men without classic risk factors for atherosclerosis. Stroke 2001; 32(11): 2472-80.
[http://dx.doi.org/10.1161/hs1101.098520] [PMID: 11692003]
[104]
Saqqur M, Uchino K, Demchuk AM, et al. Site of arterial occlusion identified by transcranial Doppler predicts the response to intrave-nous thrombolysis for stroke. Stroke 2007; 38(3): 948-54.
[http://dx.doi.org/10.1161/01.STR.0000257304.21967.ba] [PMID: 17290031]
[105]
Arenillas JF, Álvarez-Sabín J, Molina CA, et al. Progression of symptomatic intracranial large artery atherosclerosis is associated with a proinflammatory state and impaired fibrinolysis. Stroke 2008; 39(5): 1456-63.
[http://dx.doi.org/10.1161/STROKEAHA.107.498600] [PMID: 18323504]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy