Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Dietary Xylitol Supplement Ameliorated AD-related Neuronal Injury by Regulating Glucose Metabolism Relevant Amino Acids in Mice

Author(s): Mengjia Jin, Xintong Ji, Xiaozheng Zhu, Yikai Shou, Zhiwei Ge and Huanhuan Wang*

Volume 22, Issue 10, 2023

Published on: 20 October, 2022

Page: [1507 - 1517] Pages: 11

DOI: 10.2174/1871527322666220922112955

open access plus

Abstract

Background: Alzheimer's disease (AD) is one of the most common irreversible degenerative diseases of the central nervous system. Recent studies have found that patients with AD generally experience abnormal glucose metabolism. Xylitol is a functional sugar alcohol, which has been reported to regulate glucose metabolism.

Objective: The present study was designed to determine whether xylitol can alleviate cognitive impairment in AD mice.

Methods: In the current research, 5% xylitol was supplemented in the diet to treat APP/PS1 transgenic AD mice for 2 months. Cognitive ability was measured by the Morris water maze, and anxiety-like behaviors were examined by open-field experiment. Hippocampal cellular apoptosis and mitochondria pathway related apoptotic proteins were tested by TUNEL staining and immunoblotting, respectively. By LC-MS, plasma levels of glucose metabolism intermediates and related amino acids were evaluated.

Results: Results showed that xylitol could significantly ameliorate anxiety-like activity in AD mice by partially regulating expression levels of mitochondrial pathway-related apoptotic proteins. Xylitolregulated glucose metabolism may play an important role in the process.

Conclusion: The current study suggests that xylitol may be a potential candidate for improving neuropsychiatric behavior in AD by regulating the levels of TCA cycle intermediates and related amino acids in glucose metabolism.

Keywords: Xylitol, Alzheimer's disease, glucose metabolism, mitochondrial dysfunction, anxiety-like symptoms, neuronal injury.

Graphical Abstract

[1]
Oboudiyat C, Glazer H, Seifan A, Greer C, Isaacson R. Alzheimer’s disease. Semin Neurol 2013; 33(4): 313-29.
[http://dx.doi.org/10.1055/s-0033-1359319] [PMID: 24234352]
[2]
ADI. World Alzheimer Report. 2019. Available from: https://www.alzint.org/u/WorldAlzheimerReport2019.pdf
[3]
Bierman EJM, Comijs HC, Jonker C, Beekman ATF. Symptoms of anxiety and depression in the course of cognitive decline. Dement Geriatr Cogn Disord 2007; 24(3): 213-9.
[http://dx.doi.org/10.1159/000107083] [PMID: 17690554]
[4]
Orgeta V, Qazi A, Spector A, Orrell M. Psychological treatments for depression and anxiety in dementia and mild cognitive impairment: Systematic review and meta-analysis. Br J Psychiatry 2015; 207(4): 293-8.
[http://dx.doi.org/10.1192/bjp.bp.114.148130] [PMID: 26429684]
[5]
Nie L, Wei G, Peng S, et al. Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer’s disease. Biofactors 2017; 43(4): 593-611.
[http://dx.doi.org/10.1002/biof.1369] [PMID: 28608594]
[6]
Gu XM, Huang HC, Jiang ZF. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer’s disease. Neurosci Bull 2012; 28(5): 631-40.
[http://dx.doi.org/10.1007/s12264-012-1270-2] [PMID: 22968595]
[7]
Shi C, Zhu J, Leng S, Long D, Luo X. Mitochondrial FOXO3a is involved in amyloid β peptide-induced mitochondrial dysfunction. J Bioenerg Biomembr 2016; 48(3): 189-96.
[http://dx.doi.org/10.1007/s10863-016-9645-0] [PMID: 26782277]
[8]
Pan RY, Ma J, Kong XX, et al. Sodium rutin ameliorates Alzheimer’s disease–like pathology by enhancing microglial amyloid-β clear-ance. Sci Adv 2019; 5(2): eaau6328.
[http://dx.doi.org/10.1126/sciadv.aau6328] [PMID: 30820451]
[9]
Vlassenko AG, Raichle ME. Brain aerobic glycolysis functions and Alzheimer’s disease. Clin Transl Imaging 2015; 3(1): 27-37.
[http://dx.doi.org/10.1007/s40336-014-0094-7] [PMID: 26855936]
[10]
Demetrius LA, Magistretti PJ, Pellerin L. Alzheimer’s disease: The amyloid hypothesis and the inverse Warburg effect. Front Physiol 2015; 5: 522.
[http://dx.doi.org/10.3389/fphys.2014.00522] [PMID: 25642192]
[11]
Atlante A, de Bari L, Bobba A, Amadoro G. A disease with a sweet tooth: Exploring the Warburg effect in Alzheimer’s disease. Biogerontology 2017; 18(3): 301-19.
[http://dx.doi.org/10.1007/s10522-017-9692-x] [PMID: 28314935]
[12]
Bukke VN, Villani R, Archana M, et al. The glucose metabolic pathway as a potential target for therapeutics: Crucial role of glycosylation in Alzheimer’s disease. Int J Mol Sci 2020; 21(20): 7739.
[http://dx.doi.org/10.3390/ijms21207739] [PMID: 33086751]
[13]
Mathew AV, Jaiswal M, Ang L, Michailidis G, Pennathur S, Pop-Busui R. Impaired amino acid and TCA metabolism and cardiovascular autonomic neuropathy progression in type 1 diabetes. Diabetes 2019; 68(10): 2035-44.
[http://dx.doi.org/10.2337/db19-0145] [PMID: 31337616]
[14]
Takashina C, Tsujino I, Watanabe T, et al. Associations among the plasma amino acid profile, obesity, and glucose metabolism in Japa-nese adults with normal glucose tolerance. Nutr Metab 2016; 13(1): 5.
[http://dx.doi.org/10.1186/s12986-015-0059-5] [PMID: 26788116]
[15]
Gao X, Lee K, Reid MA, et al. Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep 2018; 22(13): 3507-20.
[http://dx.doi.org/10.1016/j.celrep.2018.03.017] [PMID: 29590619]
[16]
Toledo JB, Arnold M, Kastenmüller G, et al. Metabolic network failures in Alzheimer’s disease: A biochemical road map. Alzheimers Dement 2017; 13(9): 965-84.
[http://dx.doi.org/10.1016/j.jalz.2017.01.020] [PMID: 28341160]
[17]
Gross TJ, Doran E, Cheema AK, Head E, Lott IT, Mapstone M. Plasma metabolites related to cellular energy metabolism are altered in adults with Down syndrome and Alzheimer’s disease. Dev Neurobiol 2019; 79(7): 622-38.
[http://dx.doi.org/10.1002/dneu.22716] [PMID: 31419370]
[18]
Socha E, Koba M, Kośliński P. Amino acid profiling as a method of discovering biomarkers for diagnosis of neurodegenerative diseas-es. Amino Acids 2019; 51(3): 367-71.
[http://dx.doi.org/10.1007/s00726-019-02705-6] [PMID: 30725224]
[19]
Ogawa S, Ota M, Ogura J, Kato K, Kunugi H. Effects of l-theanine on anxiety-like behavior, cerebrospinal fluid amino acid profile, and hippocampal activity in Wistar Kyoto rats. Psychopharmacology 2018; 235(1): 37-45.
[http://dx.doi.org/10.1007/s00213-017-4743-1] [PMID: 28971241]
[20]
Palazzo E, Luongo L, Guida F, et al. d-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice. Amino Acids 2016; 48(7): 1553-67.
[http://dx.doi.org/10.1007/s00726-016-2205-4] [PMID: 27115160]
[21]
Islam MS, Indrajit M. Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats. Ann Nutr Metab 2012; 61(1): 57-64.
[http://dx.doi.org/10.1159/000338440] [PMID: 22832597]
[22]
Rahman MA, Islam MS. Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: A dose response study. J Food Sci 2014; 79(7): H1436-42.
[http://dx.doi.org/10.1111/1750-3841.12520] [PMID: 24962431]
[23]
Uebanso T, Kano S, Yoshimoto A, et al. Effects of consuming xylitol on gut microbiota and lipid metabolism in mice. Nutrients 2017; 9(7): 756.
[http://dx.doi.org/10.3390/nu9070756] [PMID: 28708089]
[24]
Islam MS. Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats. J Med Food 2011; 14(5): 505-11.
[http://dx.doi.org/10.1089/jmf.2010.0015] [PMID: 21434778]
[25]
Kikuko A, Arai H, Takashi U, et al. Effects of xylitol on metabolic parameters and visceral fat accumulation. J Clin Biochem Nutr 2011; 49(1): 1-7.
[http://dx.doi.org/10.3164/jcbn.10-111] [PMID: 21765599]
[26]
Shou Y, Zhu X, Zhu D, et al. Ambient PM2.5 chronic exposure leads to cognitive decline in mice: From pulmonary to neuronal inflam-mation. Toxicol Lett 2020; 331: 208-17.
[http://dx.doi.org/10.1016/j.toxlet.2020.06.014] [PMID: 32569800]
[27]
Zhang YL, Xing RZ, Luo XB, et al. Anxiety-like behavior and dysregulation of miR-34a in triple transgenic mice of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 2016; 20(13): 2853-62.https://www.europeanreview.org/article/11111
[PMID: 27424985]
[28]
Pentkowski NS, Berkowitz LE, Thompson SM, Drake EN, Olguin CR, Clark BJ. Anxiety-like behavior as an early endophenotype in the TgF344-AD rat model of Alzheimer’s disease. Neurobiol Aging 2018; 61: 169-76.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.09.024] [PMID: 29107184]
[29]
Banerjee S, Hellier J, Dewey M, et al. Sertraline or mirtazapine for depression in dementia (HTA-SADD): A randomised, multicentre, double-blind, placebo-controlled trial. Lancet 2011; 378(9789): 403-11.
[http://dx.doi.org/10.1016/S0140-6736(11)60830-1] [PMID: 21764118]
[30]
Rosenberg PB, Martin BK, Frangakis C, et al. Sertraline for the treatment of depression in Alzheimer disease. Am J Geriatr Psychiatry 2010; 18(2): 136-45.
[http://dx.doi.org/10.1097/JGP.0b013e3181c796eb] [PMID: 20087081]
[31]
Weintraub D, Rosenberg PB, Martin BK, et al. Sertraline for the treatment of depression in Alzheimer disease: Week-24 outcomes. Am J Geriatr Psychiatry 2010; 18(4): 332-40.
[http://dx.doi.org/10.1097/JGP.0b013e3181cc0333] [PMID: 20220589]
[32]
Sepehry AA, Lee PE, Hsiung GYR, Beattie BL, Jacova C. Effect of selective serotonin reuptake inhibitors in Alzheimer’s disease with comorbid depression: A meta-analysis of depression and cognitive outcomes. Drugs Aging 2012; 29(10): 793-806.
[http://dx.doi.org/10.1007/s40266-012-0012-5] [PMID: 23079957]
[33]
Pedrós I, Petrov D, Allgaier M, et al. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842(9): 1556-66.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.025] [PMID: 24887203]
[34]
Pawlosky RJ, Kemper MF, Kashiwaya Y, King MT, Mattson MP, Veech RL. Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer’s disease. J Neurochem 2017; 141(2): 195-207.
[http://dx.doi.org/10.1111/jnc.13958] [PMID: 28099989]
[35]
Croteau E, Castellano CA, Fortier M, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol 2018; 107: 18-26.
[http://dx.doi.org/10.1016/j.exger.2017.07.004] [PMID: 28709938]
[36]
Weise CM, Chen K, Chen Y, Kuang X, Savage CR, Reiman EM. Left lateralized cerebral glucose metabolism declines in amyloid-β posi-tive persons with mild cognitive impairment. Neuroimage Clin 2018; 20: 286-96.
[http://dx.doi.org/10.1016/j.nicl.2018.07.016] [PMID: 30101060]
[37]
Milligan JR, Aguilera JA, Ly A, Tran NQ, Hoang O, Ward JF. Repair of oxidative DNA damage by amino acids. Nucleic Acids Res 2003; 31(21): 6258-63.
[http://dx.doi.org/10.1093/nar/gkg816] [PMID: 14576314]
[38]
Fertan E, Rodrigues GJ, Wheeler RV, et al. Cognitive decline, cerebral-spleen tryptophan metabolism, oxidative stress, cytokine produc-tion, and regulation of the txnip gene in a triple transgenic mouse model of Alzheimer disease. Am J Pathol 2019; 189(7): 1435-50.
[http://dx.doi.org/10.1016/j.ajpath.2019.03.006] [PMID: 30980800]
[39]
Chen J, Chen Y, Vail G, et al. Erratum to: The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: A preclini-cal assessment. Mol Neurodegener 2017; 12(1): 4.
[http://dx.doi.org/10.1186/s13024-017-0151-6] [PMID: 28081717]
[40]
Chen YP, Wang C, Xu JP. Chronic unpredictable mild stress induced depression-like behaviours and glutamate-glutamine cycling dys-functions in both blood and brain of mice. Pharm Biol 2019; 57(1): 280-6.
[http://dx.doi.org/10.1080/13880209.2019.1598445] [PMID: 30990732]
[41]
Rezin GT, Cardoso MR, Gonçalves CL, et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 2008; 53(6-8): 395-400.
[http://dx.doi.org/10.1016/j.neuint.2008.09.012] [PMID: 18940214]
[42]
Anderson G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 255-66.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.022] [PMID: 28433458]
[43]
Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeu-tic strategies. Prog Neurobiol 2013; 108: 21-43.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.004] [PMID: 23850509]
[44]
Chu H, Zhang A, Han Y, et al. Metabolomics approach to explore the effects of Kai-Xin-San on Alzheimer’s disease using UPLC/ESI-Q-TOF mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016: 50-61.
[http://dx.doi.org/10.1016/j.jchromb.2016.02.007] [PMID: 26896572]
[45]
Shon JC, Lee SM, Jung JH, et al. Integrated metabolomics and lipidomics reveals high accumulation of polyunsaturated lysoglycer-ophospholipids in human lung fibroblasts exposed to fine particulate matter. Ecotoxicol Environ Saf 2020; 202: 110896.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110896] [PMID: 32622306]
[46]
Liu J, Liu W, Yang H. Balancing apoptosis and autophagy for Parkinson’s disease therapy: Targeting BCL-2. ACS Chem Neurosci 2019; 10(2): 792-802.
[http://dx.doi.org/10.1021/acschemneuro.8b00356] [PMID: 30400738]

© 2025 Bentham Science Publishers | Privacy Policy