Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

TiO2-NPs Toxicity and Safety: An Update of the Findings Published over the Last Six Years

Author(s): Emilia Bevacqua, Maria Antonietta Occhiuzzi, Fedora Grande* and Paola Tucci*

Volume 23, Issue 9, 2023

Published on: 25 October, 2022

Page: [1050 - 1057] Pages: 8

DOI: 10.2174/1389557522666220929152403

Price: $65

Abstract

Nanotechnology has greatly impacted our daily life and has certainly yielded many promising benefits. Titanium dioxide nanoparticles (TiO2-NPs) are among those produced on a large industrial scale that have found many practical applications in industry and daily life. Due to their presence in products such as food, cosmetics, sunscreens, medications, paints or textiles, contact with TiO2-NPs in our daily life is inevitable. The small size, together with the corresponding large specific surface area, make nanoparticles able to penetrate through cellular barriers and reach various parts of the body through different routes of exposure, including inhalation, injection, dermal penetration, and gastrointestinal tract absorption. Furthermore, after long-term exposure, the TiO2-NPs could accumulate in tissues leading to chronic diseases. This raises serious doubts about their potentially harmful effects on human health.

In the past, TiO2-NPs have been considered inert, however, many in vitro studies have shown that they were cyto- and genotoxic, leading to the production of reactive oxygen species (ROS) and to the activation of signaling pathways involved in inflammation and cell death. Several in vivo studies have also demonstrated that TiO2-NPs, once in the bloodstream, could reach and accumulate in important organs causing toxic effects. Very recently, the International Agency for Research on Cancer (IARC) has classified these nanoparticles as possibly carcinogenic to humans.

In this survey, we summarize the latest advances in acknowledging the toxicity and safety of TiO2-NPs. Since the literature is often controversial, further studies are still needed to define the risk/benefit ratio of using these nanoparticles. Overall, the data herein reported are critical for assessing human risk after exposure to TiO2-NPs.

Keywords: Additives, cosmetics, inflammation, metabolism, oxidative stress, cancer.

Graphical Abstract

[1]
Rollerova, E.; Tulinska, J.; Liskova, A.; Kuricova, M.; Kovriznych, J.; Mlynarcikova, A.; Kiss, A.; Scsukova, S. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development. Endocr. Regul., 2015, 49(2), 97-112.
[http://dx.doi.org/10.4149/endo_2015_02_97] [PMID: 25960011]
[2]
Çeşmeli, S.; Biray Avci, C. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J. Drug Target., 2019, 27(7), 762-766.
[http://dx.doi.org/10.1080/1061186X.2018.1527338] [PMID: 30252540]
[3]
Grigore, M.E.; Ion, R.M.; Iancu, L.; Grigorescu, R.M. Tailored porphyrin–gold nanoparticles for biomedical applications. J. Porphyr. Phthalocyanines, 2019, 23(7), 85-99.
[http://dx.doi.org/10.1142/S108842461930012X]
[4]
Bocca, B.; Caimi, S.; Senofonte, O.; Alimonti, A.; Petrucci, F. ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues. Sci. Total Environ., 2018, 630, 922-930.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.166] [PMID: 29499547]
[5]
Shakeel, M.; Jabeen, F.; Shabbir, S.; Asghar, M.S.; Khan, M.S.; Chaudhry, A.S. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol. Trace Elem. Res., 2016, 172(1), 1-36.
[http://dx.doi.org/10.1007/s12011-015-0550-x] [PMID: 26554951]
[6]
Grassian, V.H.; O’Shaughnessy, P.T.; Adamcakova-Dodd, A.; Pettibone, J.M.; Thorne, P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect., 2007, 115(3), 397-402.
[http://dx.doi.org/10.1289/ehp.9469] [PMID: 17431489]
[7]
Kansara, K.; Patel, P.; Shah, D.; Shukla, R.K.; Singh, S.; Kumar, A.; Dhawan, A. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen., 2015, 56(2), 204-217.
[http://dx.doi.org/10.1002/em.21925] [PMID: 25524809]
[8]
Tucci, P.; Porta, G.; Agostini, M.; Dinsdale, D.; Iavicoli, I.; Cain, K.; Finazzi-Agró, A.; Melino, G.; Willis, A. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis., 2013, 4(3), e549.
[http://dx.doi.org/10.1038/cddis.2013.76] [PMID: 23519118]
[9]
Humans, I.W. Carbon black, titanium dioxide, and talc. IARC Monogr. Eval. Carcinog. Risks Hum., 2010, 93, 1-413.
[PMID: 21449489]
[10]
Hong, F.; Yu, X.; Wu, N.; Zhang, Y.Q. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol. Res., 2017, 6(2), 115-133.
[http://dx.doi.org/10.1039/C6TX00338A] [PMID: 30090482]
[11]
Rashid, M.M. Forte Tavčer, P.; Tomšič B. Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials (Basel), 2021, 11(9), 2354.
[http://dx.doi.org/10.3390/nano11092354] [PMID: 34578667]
[12]
Gaté, L.; Disdier, C.; Cosnier, F.; Gagnaire, F.; Devoy, J.; Saba, W.; Brun, E.; Chalansonnet, M.; Mabondzo, A. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats. Toxicol. Lett., 2017, 265, 61-69.
[http://dx.doi.org/10.1016/j.toxlet.2016.11.009] [PMID: 27865850]
[13]
Song, B.; Zhang, Y.; Liu, J.; Feng, X.; Zhou, T.; Shao, L. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms. Beilstein J. Nanotechnol., 2016, 7, 645-654.
[http://dx.doi.org/10.3762/bjnano.7.57] [PMID: 27335754]
[14]
Liao, C.; Chiang, Y.; Chio, C. Model-based assessment for human inhalation exposure risk to airborne nano/fine titanium dioxide particles. Sci. Total Environ., 2008, 407(1), 165-177.
[http://dx.doi.org/10.1016/j.scitotenv.2008.09.028] [PMID: 18952258]
[15]
Yu, K.N.; Sung, J.H.; Lee, S.; Kim, J.E.; Kim, S.; Cho, W.Y.; Lee, A.Y.; Park, S.J.; Lim, J.; Park, C.; Chae, C.; Lee, J.K.; Lee, J.; Kim, J.S.; Cho, M.H. Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem. Toxicol., 2015, 85, 106-113.
[http://dx.doi.org/10.1016/j.fct.2015.08.001] [PMID: 26253354]
[16]
Hadrup, N.; Bengtson, S.; Jacobsen, N.R.; Jackson, P.; Nocun, M.; Saber, A.T.; Jensen, K.A.; Wallin, H.; Vogel, U. Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis, 2017, 32(6), 581-597.
[http://dx.doi.org/10.1093/mutage/gex042] [PMID: 29301028]
[17]
Pujalté, I.; Dieme, D.; Haddad, S.; Serventi, A.M.; Bouchard, M. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol. Lett., 2017, 265, 77-85.
[http://dx.doi.org/10.1016/j.toxlet.2016.11.014] [PMID: 27884615]
[18]
Al-Doaiss, A.A.; Ali, D.; Ali, B.A.; Jarrar, B.M. Renal histological alterations induced by acute exposure of titanium dioxide nanoparticles., 2019, 37(3)
[http://dx.doi.org/10.4067/S0717-95022019000301049]
[19]
Liang, G.; Pu, Y.; Yin, L.; Liu, R.; Ye, B.; Su, Y.; Li, Y. Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J. Toxicol. Environ. Health A, 2009, 72(11-12), 740-745.
[http://dx.doi.org/10.1080/15287390902841516] [PMID: 19492237]
[20]
Gui, S.; Zhang, Z.; Zheng, L.; Cui, Y.; Liu, X.; Li, N.; Sang, X.; Sun, Q.; Gao, G.; Cheng, Z.; Cheng, J.; Wang, L.; Tang, M.; Hong, F. Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J. Hazard. Mater., 2011, 195, 365-370.
[http://dx.doi.org/10.1016/j.jhazmat.2011.08.055] [PMID: 21907489]
[21]
Elgrabli, D.; Beaudouin, R.; Jbilou, N.; Floriani, M.; Pery, A.; Rogerieux, F.; Lacroix, G. Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS One, 2015, 10(4), e0124490.
[http://dx.doi.org/10.1371/journal.pone.0124490] [PMID: 25909957]
[22]
Chézeau, L.; Sébillaud, S.; Safar, R.; Seidel, C.; Dembélé, D.; Lorcin, M.; Langlais, C.; Grossmann, S.; Nunge, H.; Michaux, S.; Dubois-Pot-Schneider, H.; Rihn, B.; Joubert, O.; Binet, S.; Cosnier, F.; Gaté, L. Short- and long-term gene expression profiles induced by inhaled TiO2 nanostructured aerosol in rat lung. Toxicol. Appl. Pharmacol., 2018, 356, 54-64.
[http://dx.doi.org/10.1016/j.taap.2018.07.013] [PMID: 30012374]
[23]
Wallin, H.; Kyjovska, Z.O.; Poulsen, S.S.; Jacobsen, N.R.; Saber, A.T.; Bengtson, S.; Jackson, P.; Vogel, U. Surface modification does not influence the genotoxic and inflammatory effects of TiO2 nanoparticles after pulmonary exposure by instillation in mice. Mutagenesis, 2017, 32(1), 47-57.
[http://dx.doi.org/10.1093/mutage/gew046] [PMID: 27658823]
[24]
Kwon, S.; Yang, Y.S.; Yang, H.S.; Lee, J.; Kang, M.S.; Lee, B.S.; Lee, K.; Song, C.W. Nasal and pulmonary toxicity of titanium dioxide nanoparticles in rats. Toxicol. Res., 2012, 28(4), 217-224.
[http://dx.doi.org/10.5487/TR.2012.28.4.217] [PMID: 24278613]
[25]
Bourgeault, A.; Cousin, C.; Geertsen, V.; Cassier-Chauvat, C.; Chauvat, F.; Durupthy, O.; Chanéac, C.; Spalla, O. The challenge of studying TiO2 nanoparticle bioaccumulation at environmental concentrations: crucial use of a stable isotope tracer. Environ. Sci. Technol., 2015, 49(4), 2451-2459.
[http://dx.doi.org/10.1021/es504638f] [PMID: 25587677]
[26]
Rompelberg, C.; Heringa, M.B.; van Donkersgoed, G.; Drijvers, J.; Roos, A.; Westenbrink, S.; Peters, R.; van Bemmel, G.; Brand, W.; Oomen, A.G. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology, 2016, 10(10), 1404-1414.
[http://dx.doi.org/10.1080/17435390.2016.1222457] [PMID: 27619007]
[27]
Ali, S.A.; Rizk, M.Z.; Hamed, M.A.; Aboul-Ela, E.I.; El-Rigal, N.S.; Aly, H.F.; Abdel-Hamid, A.H.Z. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: effect of dose and particle size. Biomarkers, 2019, 24(5), 492-498.
[http://dx.doi.org/10.1080/1354750X.2019.1620336] [PMID: 31099265]
[28]
Efsa, A.J.Y.; Panel, M. Panel (EFSA panel on food additives and nutrient sources added to food)., 2017. Available from: https://www.efsa.europa.eu/en/efsajournal/pub/5372
[29]
Gao, Y.; Ye, Y.; Wang, J.; Zhang, H.; Wu, Y.; Wang, Y.; Yan, L.; Zhang, Y.; Duan, S.; Lv, L.; Wang, Y. Effects of titanium dioxide nanoparticles on nutrient absorption and metabolism in rats: distinguishing the susceptibility of amino acids, metal elements, and glucose. Nanotoxicology, 2020, 14(10), 1301-1323.
[http://dx.doi.org/10.1080/17435390.2020.1817597] [PMID: 32930049]
[30]
Mu, W.; Wang, Y.; Huang, C.; Fu, Y.; Li, J.; Wang, H.; Jia, X.; Ba, Q. Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice. J. Agric. Food Chem., 2019, 67(33), 9382-9389.
[http://dx.doi.org/10.1021/acs.jafc.9b02391] [PMID: 31361959]
[31]
Dorier, M.; Tisseyre, C.; Dussert, F.; Béal, D.; Arnal, M.E.; Douki, T.; Valdiglesias, V.; Laffon, B.; Fraga, S.; Brandão, F.; Herlin-Boime, N.; Barreau, F.; Rabilloud, T.; Carriere, M. Toxicological impact of acute exposure to E171 food additive and TiO2 nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2019, 845, 402980.
[http://dx.doi.org/10.1016/j.mrgentox.2018.11.004] [PMID: 31561898]
[32]
Laomettachit, T.; Puri, I.K.; Liangruksa, M. A two-step model of TiO 2 nanoparticle toxicity in human liver tissue. Toxicol. Appl. Pharmacol., 2017, 334, 47-54.
[http://dx.doi.org/10.1016/j.taap.2017.08.018] [PMID: 28870656]
[33]
Wang, J.; Zhou, G.; Chen, C.; Yu, H.; Wang, T.; Ma, Y.; Jia, G.; Gao, Y.; Li, B.; Sun, J.; Li, Y.; Jiao, F.; Zhao, Y.; Chai, Z. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett., 2007, 168(2), 176-185.
[http://dx.doi.org/10.1016/j.toxlet.2006.12.001] [PMID: 17197136]
[34]
Jia, F.; Sun, Z.; Yan, X.; Zhou, B.; Wang, J. Effect of pubertal nano-TiO2 exposure on testosterone synthesis and spermatogenesis in mice. Arch. Toxicol., 2013, 88(3), 781-788.
[http://dx.doi.org/10.1007/s00204-013-1167-5] [PMID: 24241477]
[35]
Chen, Q.; Wang, N.; Zhu, M.; Lu, J.; Zhong, H.; Xue, X.; Guo, S.; Li, M.; Wei, X.; Tao, Y.; Yin, H. TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biol., 2018, 15, 266-276.
[http://dx.doi.org/10.1016/j.redox.2017.12.011] [PMID: 29294438]
[36]
Chen, Z.; Wang, Y.; Zhuo, L.; Chen, S.; Zhao, L.; Luan, X.; Wang, H.; Jia, G. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol. Lett., 2015, 239(2), 123-130.
[http://dx.doi.org/10.1016/j.toxlet.2015.09.013] [PMID: 26387441]
[37]
Sha, B.; Gao, W.; Wang, S.; Li, W.; Liang, X.; Xu, F.; Lu, T.J. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress. Food Chem. Toxicol., 2013, 58, 280-288.
[http://dx.doi.org/10.1016/j.fct.2013.04.050] [PMID: 23665316]
[38]
LeBlanc, A.J.; Moseley, A.M.; Chen, B.T.; Frazer, D.; Castranova, V.; Nurkiewicz, T.R. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc. Toxicol., 2010, 10(1), 27-36.
[http://dx.doi.org/10.1007/s12012-009-9060-4] [PMID: 20033351]
[39]
Brun, E.; Barreau, F.; Veronesi, G.; Fayard, B.; Sorieul, S.; Chanéac, C.; Carapito, C.; Rabilloud, T.; Mabondzo, A.; Herlin-Boime, N.; Carrière, M. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part. Fibre Toxicol., 2014, 11(1), 13.
[http://dx.doi.org/10.1186/1743-8977-11-13] [PMID: 24666995]
[40]
Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol., 2013, 10(1), 15.
[http://dx.doi.org/10.1186/1743-8977-10-15] [PMID: 23587290]
[41]
Vasantharaja, D.; Ramalingam, V.; Aadinaath Reddy, G. Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male Wistar rats. Nanomed. J., 2015, 2, 46-53.
[http://dx.doi.org/10.7508/nmj.2015.01.005]
[42]
Li, J.; Yang, S.; Lei, R.; Gu, W.; Qin, Y.; Ma, S.; Chen, K.; Chang, Y.; Bai, X.; Xia, S.; Wu, C.; Xing, G. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure. Nanoscale, 2018, 10(16), 7736-7745.
[http://dx.doi.org/10.1039/C8NR00386F] [PMID: 29658026]
[43]
Chen, Z.; Zhou, D.; Zhou, S.; Jia, G. Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague‐Dawley rats. J. Appl. Toxicol., 2019, 39(5), 807-819.
[http://dx.doi.org/10.1002/jat.3769] [PMID: 30644115]
[44]
Chakrabarti, S.; Goyary, D.; Karmakar, S.; Chattopadhyay, P. Exploration of cytotoxic and genotoxic endpoints following sub-chronic oral exposure to titanium dioxide nanoparticles. Toxicol. Ind. Health, 2019, 35(9), 577-592.
[http://dx.doi.org/10.1177/0748233719879611] [PMID: 31663451]
[45]
Dransfield, G.; Guest, P.J.; Lyth, P.L.; McGarvey, D.J.; Truscott, T.G. Photoactivity tests of TiO2-based inorganic sunscreens. J. Photochem. Photobiol. B, 2000, 59(1-3), 147-151.
[http://dx.doi.org/10.1016/S1011-1344(00)00144-5] [PMID: 11332882]
[46]
Pelclova, D.; Navratil, T.; Kacerova, T.; Zamostna, B.; Fenclova, Z.; Vlckova, S.; Kacer, P. NanoTiO2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO2 is Absorbed in Humans. Nanomaterials (Basel), 2019, 9(6), 888.
[http://dx.doi.org/10.3390/nano9060888] [PMID: 31212919]
[47]
Rancan, F.; Gao, Q.; Graf, C.; Troppens, S.; Hadam, S.; Hackbarth, S.; Kembuan, C.; Blume-Peytavi, U.; Rühl, E.; Lademann, J.; Vogt, A. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano, 2012, 6(8), 6829-6842.
[http://dx.doi.org/10.1021/nn301622h] [PMID: 22797484]
[48]
Sadrieh, N.; Wokovich, A.M.; Gopee, N.V.; Zheng, J.; Haines, D.; Parmiter, D.; Siitonen, P.H.; Cozart, C.R.; Patri, A.K.; McNeil, S.E.; Howard, P.C.; Doub, W.H.; Buhse, L.F. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol. Sci., 2010, 115(1), 156-166.
[http://dx.doi.org/10.1093/toxsci/kfq041] [PMID: 20156837]
[49]
Wu, J.; Liu, W.; Xue, C.; Zhou, S.; Lan, F.; Bi, L.; Xu, H.; Yang, X.; Zeng, F.D. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol. Lett., 2009, 191(1), 1-8.
[http://dx.doi.org/10.1016/j.toxlet.2009.05.020] [PMID: 19501137]
[50]
Wright, C.; Iyer, A.K.V.; Wang, L.; Wu, N.; Yakisich, J.S.; Rojanasakul, Y.; Azad, N. Effects of titanium dioxide nanoparticles on human keratinocytes. Drug Chem. Toxicol., 2017, 40(1), 90-100.
[http://dx.doi.org/10.1080/01480545.2016.1185111] [PMID: 27310834]
[51]
Crosera, M.; Prodi, A.; Mauro, M.; Pelin, M.; Florio, C.; Bellomo, F.; Adami, G.; Apostoli, P.; De Palma, G.; Bovenzi, M.; Campanini, M.; Filon, F. Titanium dioxide nanoparticle penetration into the skin and effects on HaCaT cells. Int. J. Environ. Res. Public Health, 2015, 12(8), 9282-9297.
[http://dx.doi.org/10.3390/ijerph120809282] [PMID: 26262634]
[52]
Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol., 2019, 33(S7), 34-46.
[http://dx.doi.org/10.1111/jdv.15943] [PMID: 31588611]
[53]
Chen, Z.; Wang, Y.; Ba, T.; Li, Y.; Pu, J.; Chen, T.; Song, Y.; Gu, Y.; Qian, Q.; Yang, J.; Jia, G. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol. Lett., 2014, 226(3), 314-319.
[http://dx.doi.org/10.1016/j.toxlet.2014.02.020] [PMID: 24594277]
[54]
Hanot-Roy, M.; Tubeuf, E.; Guilbert, A.; Bado-Nilles, A.; Vigneron, P.; Trouiller, B.; Braun, A.; Lacroix, G. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol. In Vitro, 2016, 33, 125-135.
[http://dx.doi.org/10.1016/j.tiv.2016.01.013] [PMID: 26928046]
[55]
Kang, S.J.; Kim, B.M.; Lee, Y.J.; Chung, H.W. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen., 2008, 49(5), 399-405.
[http://dx.doi.org/10.1002/em.20399] [PMID: 18418868]
[56]
Bernauer, U.; Bodin, L.; Celleno, L.; Chaudhry, Q.M.; Coenraads, P-J.; Dusinska, M.; Duus-Johansen, J.; Ezendam, J.; Gaffet, E.; Galli, L.C. Opinion On Titanium Dioxide (nano form) coated with Cetyl Phosphate, Manganese Dioxide or Triethoxycaprylylsilane as UV-filter in dermally applied cosmetic; Elsevier, 2016.
[57]
Xie, G.; Lu, W.; Lu, D. Penetration of titanium dioxide nanoparticles through slightly damaged skin in vitro and in vivo. J. Appl. Biomater. Funct. Mater., 2015, 13(4), 356-361.
[http://dx.doi.org/10.5301/jabfm.5000243] [PMID: 26616753]
[58]
Yanagisawa, R.; Takano, H.; Inoue, K.; Koike, E.; Kamachi, T.; Sadakane, K.; Ichinose, T. Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp. Biol. Med., 2009, 234(3), 314-322.
[http://dx.doi.org/10.3181/0810-RM-304] [PMID: 19144875]
[59]
Venkatasubbu, G.D.; Baskar, R.; Anusuya, T.; Seshan, C.A.; Chelliah, R. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf. B Biointerfaces, 2016, 148, 600-606.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.042] [PMID: 27694049]
[60]
Pelclova, D.; Zdimal, V.; Fenclova, Z.; Vlckova, S.; Turci, F.; Corazzari, I.; Kacer, P.; Schwarz, J.; Zikova, N.; Makes, O.; Syslova, K.; Komarc, M.; Belacek, J.; Navratil, T.; Machajova, M.; Zakharov, S. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med., 2016, 73(2), 110-118.
[http://dx.doi.org/10.1136/oemed-2015-103161] [PMID: 26644454]
[61]
Pinzón-Daza, M.; Campia, I.; Kopecka, J.; Garzón, R.; Ghigo, D.; Rigant, C. Nanoparticle- and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier. Curr. Drug Metab., 2013, 14(6), 625-640.
[http://dx.doi.org/10.2174/1389200211314060001] [PMID: 23869808]
[62]
Grande, F.; Tucci, P. Titanium dioxide nanoparticles: a risk for human health? Mini Rev. Med. Chem., 2016, 16(9), 762-769.
[http://dx.doi.org/10.2174/1389557516666160321114341] [PMID: 26996620]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy