Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Toward Early Diagnosis of Colorectal Cancer: Focus on Optical Nano Biosensors

Author(s): Mahdieh Darroudi, Kousar Ghasemi, Majid Rezayi* and Majid Khazaei*

Volume 23, Issue 9, 2023

Published on: 02 September, 2022

Page: [1033 - 1049] Pages: 17

DOI: 10.2174/1389557522666220512142842

Price: $65

Abstract

Background: Colorectal cancer is a leading cause of death among cancers worldwide, with the symptoms mimicking other far more common lower gastrointestinal disorders.

Objective: This challenge in separating colorectal cancer from other diseases has driven researchers to investigate a noninvasive screening technique and effective method. The early detection of colorectal cancer is imperative. Biomarkers play a critical role in colorectal screening tests, treatment, clinical and prognosis management. Therefore, sensitive and rapid biomarker detection would be helpful and demand the early diagnosis of colorectal cancer.

Methods: Recently, several investigations have been performed to design biosensors for early detection of cancer diagnosis and profiling with strong applied ability and high sensitivity.

Results: In comparison, optical biosensors are one of the promising platforms for the costeffective and rapid detection of biomarkers. This review will focus on the advancements and progress of the various optical-transducing approaches for diagnosing colorectal cancer.

Conclusion: Further, the prospects and limitations of these optical biosensors in colorectal cancer diagnosis will be discussed. Here, an overview of optical biosensors and meaningful information for scientists worldwide will be demonstrated.

Keywords: Colorectal cancer, biosensor, optical sensor, biomarkers, diagnosis, detection and screening.

Next »
Graphical Abstract

[1]
Darroudi, M.; Gholami, M.; Rezayi, M.; Khazaei, M. An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. J. Nanobiotechnology, 2021, 19(1), 399.
[http://dx.doi.org/10.1186/s12951-021-01150-6] [PMID: 34844632]
[2]
Altintas, Z.; Tothill, I. Biomarkers and biosensors for the early diagnosis of lung cancer. Sens. Actuators B Chem., 2013, 188, 988-998.
[http://dx.doi.org/10.1016/j.snb.2013.07.078]
[3]
Iannazzo, D.; Espro, C.; Celesti, C.; Ferlazzo, A.; Neri, G. Smart biosensors for cancer diagnosis based on graphene quantum dots. Cancers (Basel), 2021, 13(13), 3194.
[http://dx.doi.org/10.3390/cancers13133194] [PMID: 34206792]
[4]
del Sol, A.; Balling, R.; Hood, L.; Galas, D. Diseases as network perturbations. Curr. Opin. Biotechnol., 2010, 21(4), 566-571.
[http://dx.doi.org/10.1016/j.copbio.2010.07.010] [PMID: 20709523]
[5]
Rahmani, F.; Hashemzehi, M.; Avan, A.; Barneh, F.; Asgharzadeh, F.; Moradi Marjaneh, R.; Soleimani, A.; Parizadeh, M.; Ferns, G.A.; Ghayour Mobarhan, M.; Ryzhikov, M.; Afshari, A.R.; Ahmadian, M.R.; Giovannetti, E.; Jafari, M.; Khazaei, M.; Hassanian, S.M. Rigosertib elicits potent anti-tumor responses in colorectal cancer by inhibiting Ras signaling pathway. Cell. Signal., 2021, 85, 110069.
[http://dx.doi.org/10.1016/j.cellsig.2021.110069] [PMID: 34214591]
[6]
Yaghoubi, A.; Asgharzadeh, F.; Movaqar, A.; Ghazvini, K.; Hassanian, S.M.; Avan, A.; Khazaei, M.; Soleimanpour, S. Anticancer activity of Helicobacter pylori ribosomal protein (HPRP) with iRGD in treatment of colon cancer. J. Cancer Res. Clin. Oncol., 2021, 147(10), 2851-2865.
[http://dx.doi.org/10.1007/s00432-021-03683-7] [PMID: 34117917]
[7]
Zhang, W.; Xiao, G.; Chen, J.; Wang, L.; Hu, Q.; Wu, J.; Zhang, W.; Song, M.; Qiao, J.; Xu, C. Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal. Bioanal. Chem., 2021, 413(9), 2407-2428.
[http://dx.doi.org/10.1007/s00216-021-03197-8] [PMID: 33666711]
[8]
Tabatabai, E.; Khazaei, M.; Parizadeh, M.R.; Nouri, M.; Hassanian, S.M.; Ferns, G.A.; Rahmati, M.; Avan, A. The potential therapeutic value of renin-angiotensin system inhibitors in the treatment of colorectal cancer. Curr. Pharm. Des., 2022, 28(1), 71-76.
[http://dx.doi.org/10.2174/1381612827666211011113308]
[9]
Favoriti, P.; Carbone, G.; Greco, M.; Pirozzi, F.; Pirozzi, R.E.M.; Corcione, F. Worldwide burden of colorectal cancer: A review. Updates Surg., 2016, 68(1), 7-11.
[http://dx.doi.org/10.1007/s13304-016-0359-y] [PMID: 27067591]
[10]
Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging, 2016, 11, 967-976.
[http://dx.doi.org/10.2147/CIA.S109285] [PMID: 27486317]
[11]
Khorasani, M.Y.; Langari, H.; Sany, S.B.T.; Rezayi, M.; Sahebkar, A. The role of curcumin and its derivatives in sensory applications. Mater. Sci. Eng. C, 2019, 103, 109792.
[http://dx.doi.org/10.1016/j.msec.2019.109792] [PMID: 31349416]
[12]
Tavakoly Sany, S.B.; Hashim, R.; Salleh, A.; Safari, O.; Mehdinia, A.; Rezayi, M. Risk assessment of polycyclic aromatic hydrocarbons in the West Port semi-enclosed basin (Malaysia). Environ. Earth Sci., 2014, 71, 4319-4332.
[http://dx.doi.org/10.1007/s12665-013-2826-9]
[13]
Rezayi, M.; Ghayour-Mobarhan, M.; Tavakoly Sany, S.B.; Fani, M.; Avan, A.; Pasdar, Z.; Ferns, G.A.; Abouzari-Lotf, E.; Amiri, I.S. A comparison of analytical methods for measuring concentrations of 25-hydroxy vitamin D in biological samples. Anal. Methods, 2018, 10, 5599-5612.
[http://dx.doi.org/10.1039/C8AY02146E]
[14]
Sany, S.B.; Hashim, R.; Rezayi, M.; Rahman, M.A.; Razavizadeh, B.B.M.; Abouzari-lotf, E.; Karlen, D.J. Integrated ecological risk assessment of dioxin compounds. Environ. Sci. Pollut. Res. Int., 2015, 22(15), 11193-11208.
[http://dx.doi.org/10.1007/s11356-015-4511-x] [PMID: 25953606]
[15]
Hazewinkel, Y.; Dekker, E. Colonoscopy: Basic principles and novel techniques. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(10), 554-564.
[http://dx.doi.org/10.1038/nrgastro.2011.141] [PMID: 21894202]
[16]
Dekker, E.; Sanduleanu, S. Colorectal cancer: Strategies to minimize interval CRC in screening programmes. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(1), 10-12.
[http://dx.doi.org/10.1038/nrgastro.2015.216] [PMID: 26701375]
[17]
Álvarez, C.; Andreu, M.; Castells, A.; Quintero, E.; Bujanda, L.; Cubiella, J.; Salas, D.; Lanas, Á.; Carballo, F.; Morillas, J.D.; Hernández, C.; Jover, R.; Sarasqueta, C.; Enriquéz-Navascués, J.M.; Hernández, V.; Estévez, P.; Macenlle, R.; Sala, T.; Balaguer, F.; Pellisé, M.; Moreira, L.; Gil, I.; Peris, A.; González-Rubio, F.; Ferrández, A.; Poves, C.; Ponce, M.; Grau, J.; Serradesanferm, A.; Ono, A.; Cruzado, J.; Pérez-Riquelme, F.; Alonso-Abreu, I.; Carrillo-Palau, M.; Santander, C.; Díaz Tasende, J.; Herreros, A.; Cacho, G.; Barranco, L.E.; Bessa, X. ColonPrev study investigators. Relationship of colonoscopy-detected serrated polyps with synchronous advanced neoplasia in average-risk individuals. Gastrointest. Endosc., 2013, 78(2), 333-341.e1.
[http://dx.doi.org/10.1016/j.gie.2013.03.003] [PMID: 23623039]
[18]
Hoshino, N.; Sakamoto, T.; Hida, K.; Sakai, Y. Diagnostic accuracy of computed tomography colonography for tumor depth in colorectal cancer: A systematic review and meta-analysis. Surg. Oncol., 2019, 30, 126-130.
[http://dx.doi.org/10.1016/j.suronc.2019.08.003] [PMID: 31500775]
[19]
Oono, Y.; Iriguchi, Y.; Doi, Y.; Tomino, Y.; Kishi, D.; Oda, J.; Takayanagi, S.; Mizutani, M.; Fujisaki, T.; Yamamura, A.; Hosoi, T.; Taguchi, H.; Kosaka, M.; Delgado, P. A retrospective study of immunochemical fecal occult blood testing for colorectal cancer detection. Clin. Chim. Acta, 2010, 411(11-12), 802-805.
[http://dx.doi.org/10.1016/j.cca.2010.02.057] [PMID: 20184867]
[20]
Elangovan, A.; Skeans, J.; Lalani, I.; Ullah, F.; Roy, A.; Kaelber, D.C.; Cooper, G.S.; Sandhu, D.S. Disparities in colorectal cancer screening practices in a midwest urban safety-net healthcare system. Dig. Dis. Sci., 2021, 66(8), 2585-2594.
[http://dx.doi.org/10.1007/s10620-020-06545-3] [PMID: 32816217]
[21]
Langenbach, M.R.; Schmidt, J.; Neumann, J.; Zirngibl, H. Delay in treatment of colorectal cancer: Multifactorial problem. World J. Surg., 2003, 27(3), 304-308.
[http://dx.doi.org/10.1007/s00268-002-6678-9] [PMID: 12607056]
[22]
Moyano, A.; Serrano-Pertierra, E.; Duque, J.M.; Ramos, V. Teruel-Barandiarán, E.; Fernández-Sánchez, M.T.; Salvador, M.; Martínez-García, J.C.; Sánchez, L.; García-Flórez, L.; Rivas, M.; Blanco-López, M.D.C. Magnetic lateral flow immunoassay for small extracellular vesicles quantification: Application to colorectal cancer biomarker detection. Sensors (Basel), 2021, 21(11), 3756.
[http://dx.doi.org/10.3390/s21113756] [PMID: 34071520]
[23]
Arshad, F.; Nabi, F.; Iqbal, S.; Khan, R.H. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf. B Biointerfaces, 2022, 212, 112356.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112356] [PMID: 35123193]
[24]
Girigoswami, K.; Girigoswami, A. A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(1), 12-26.
[http://dx.doi.org/10.2174/1871530320666200515115723] [PMID: 32410567]
[25]
Soler, M.; Estevez, M.C.; Villar-Vazquez, R.; Casal, J.I.; Lechuga, L.M. Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer. Anal. Chim. Acta, 2016, 930, 31-38.
[http://dx.doi.org/10.1016/j.aca.2016.04.059] [PMID: 27265902]
[26]
Lee, S.H.; Park, Y.E.; Lee, J.E.; Lee, H.J.; Soler, M.; Estevez, M.C.; Villar-Vazquez, R.; Casal, J.I.; Lechuga, L.M. A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions. Biosens. Bioelectron., 2020, 154, 112065.
[http://dx.doi.org/10.1016/j.bios.2020.112065] [PMID: 32056960]
[27]
Kazemi, F.; Naghib, S.M.; Zare, Y.; Rhee, K.Y. Biosensing applications of polyaniline (PANI)-based nanocomposites: A review. Polym. Rev. (Phila. Pa.), 2021, 61, 553-597.
[http://dx.doi.org/10.1080/15583724.2020.1858871]
[28]
Feng, J.; Wu, X.; Ma, W.; Kuang, H.; Xu, L.; Xu, C. A SERS active bimetallic core-satellite nanostructure for the ultrasensitive detection of Mucin-1. Chem. Commun. (Camb.), 2015, 51(79), 14761-14763.
[http://dx.doi.org/10.1039/C5CC05255F] [PMID: 26299303]
[29]
Liu, M.; Li, Z.; Yang, J.; Jiang, Y.; Chen, Z.; Ali, Z.; He, N.; Wang, Z. Cell-specific biomarkers and targeted biopharmaceuticals for breast cancer treatment. Cell Prolif., 2016, 49(4), 409-420.
[http://dx.doi.org/10.1111/cpr.12266] [PMID: 27312135]
[30]
Jayanthi, V.S.P.K.S.A.; Das, A.B.; Saxena, U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron., 2017, 91, 15-23.
[http://dx.doi.org/10.1016/j.bios.2016.12.014] [PMID: 27984706]
[31]
Fong, Z.V.; Winter, J.M. Biomarkers in pancreatic cancer: Diagnostic, prognostic, and predictive. Cancer J., 2012, 18(6), 530-538.
[http://dx.doi.org/10.1097/PPO.0b013e31827654ea] [PMID: 23187839]
[32]
Nikolouzakis, T.K.; Vassilopoulou, L.; Fragkiadaki, P.; Mariolis Sapsakos, T.; Papadakis, G.Z.; Spandidos, D.A.; Tsatsakis, A.M.; Tsiaoussis, J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol. Rep., 2018, 39(6), 2455-2472. [Review]
[http://dx.doi.org/10.3892/or.2018.6330] [PMID: 29565457]
[33]
Van Schaeybroeck, S.; Allen, W.L.; Turkington, R.C.; Johnston, P.G. Implementing prognostic and predictive biomarkers in CRC clinical trials. Nat. Rev. Clin. Oncol., 2011, 8(4), 222-232.
[http://dx.doi.org/10.1038/nrclinonc.2011.15] [PMID: 21321566]
[34]
Rawson, J.B.; Bapat, B. Epigenetic biomarkers in colorectal cancer diagnostics. Expert Rev. Mol. Diagn., 2012, 12(5), 499-509.
[http://dx.doi.org/10.1586/erm.12.39] [PMID: 22702366]
[35]
Howat, W.J.; Lewis, A.; Jones, P.; Kampf, C.; Pontén, F.; van der Loos, C.M.; Gray, N.; Womack, C.; Warford, A. Antibody validation of immunohistochemistry for biomarker discovery: Recommendations of a consortium of academic and pharmaceutical based histopathology researchers. Methods, 2014, 70(1), 34-38.
[http://dx.doi.org/10.1016/j.ymeth.2014.01.018] [PMID: 24525140]
[36]
Arya, S.K.; Estrela, P. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors (Basel), 2018, 18(7), 2010.
[http://dx.doi.org/10.3390/s18072010] [PMID: 29932161]
[37]
Robinson, K.J.; Hazon, N.; Lonergan, M.; Pomeroy, P.P. Validation of an enzyme-linked immunoassay (ELISA) for plasma oxytocin in a novel mammal species reveals potential errors induced by sampling procedure. J. Neurosci. Methods, 2014, 226, 73-79.
[http://dx.doi.org/10.1016/j.jneumeth.2014.01.019] [PMID: 24485867]
[38]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[39]
Yu, J.; Lin, Y.; Xiong, X.; Li, K.; Yao, Z.; Dong, H.; Jiang, Z.; Yu, D.; Yeung, S.J.; Zhang, H. Detection of exosomal PD-L1 RNA in saliva of patients with periodontitis. Front. Genet., 2019, 10, 202.
[http://dx.doi.org/10.3389/fgene.2019.00202] [PMID: 30923536]
[40]
Issaq, H.J.; Veenstra, T.D. Two-dimensional difference in gel electrophoresis for biomarker discovery. In: Proteomic Metabolomic Approaches to Biomark. Discov; Issaq, H.J.; Veenstra, T.D., Eds.; Academic Press: Cambridge, Massachusetts, 2019; pp. 209-214.
[http://dx.doi.org/10.1016/B978-0-12-818607-7.00012-8]
[41]
Blundon, M.; Ganesan, V.; Redler, B.; Van, P.T.; Minden, J.S. Two-dimensional difference gel electrophoresis. In: Electrophoretic Separation of Proteins. Methods in Molecular Biology; Kurien, B.; Scofield, R., Eds.; Humana Press: New York, NY, 2019; pp. 229-247.
[http://dx.doi.org/10.1007/978-1-4939-8793-1_20]
[42]
Špačková, B.; Wrobel, P.; Bocková, M.; Homola, J. Optical biosensors based on plasmonic nanostructures: A review. Proc. IEEE, 2016, 104, 2380-2408.
[http://dx.doi.org/10.1109/JPROC.2016.2624340]
[43]
Peltomaa, R. Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M.C. Optical biosensors for label-free detection of small molecules. Sensors (Basel), 2018, 18(12), 4126.
[http://dx.doi.org/10.3390/s18124126] [PMID: 30477248]
[44]
Filik, H.; Avan, A.A. Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: A review. Talanta, 2019, 205, 120153.
[http://dx.doi.org/10.1016/j.talanta.2019.120153] [PMID: 31450406]
[45]
Achi, F.; Bensana, A.; Bouguettoucha, A.; Chebli, D. Nanobiosensors for Detection of Phenolic Compounds.Nanotechnol. Life Sci; Springer: Cham, 2020, pp. 275-307.
[http://dx.doi.org/10.1007/978-3-030-45116-5_10]
[46]
Salek-Maghsoudi, A.; Vakhshiteh, F.; Torabi, R.; Hassani, S.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.; Abdollahi, M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron., 2018, 99, 122-135.
[http://dx.doi.org/10.1016/j.bios.2017.07.047] [PMID: 28750336]
[47]
Shao, B.; Ma, X.; Zhao, S.; Lv, Y.; Hun, X.; Wang, H.; Wang, Z. Nanogapped Au(core) @ Au-Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A. Anal. Chim. Acta, 2018, 1033, 165-172.
[http://dx.doi.org/10.1016/j.aca.2018.05.058] [PMID: 30172322]
[48]
Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron., 2018, 109, 75-82.
[http://dx.doi.org/10.1016/j.bios.2018.02.054] [PMID: 29529511]
[49]
Liu, Y.; Dong, P.; Jiang, Q.; Wang, F.; Pang, D.W.; Liu, X. Assembly-enhanced fluorescence from metal nanoclusters and quantum dots for highly sensitive biosensing. Sens. Actuators B Chem., 2019, 279, 334-341.
[http://dx.doi.org/10.1016/j.snb.2018.10.016]
[50]
Jalalvand, A.R.; Haseli, A.; Farzadfar, F.; Goicoechea, H.C. Fabrication of a novel biosensor for biosensing of bisphenol A and detection of its damage to DNA. Talanta, 2019, 201, 350-357.
[http://dx.doi.org/10.1016/j.talanta.2019.04.037] [PMID: 31122434]
[51]
Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens. Bioelectron., 2017, 91, 504-514.
[http://dx.doi.org/10.1016/j.bios.2017.01.007] [PMID: 28082239]
[52]
Shao, B.; Xiao, Z. Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - A review. Anal. Chim. Acta, 2020, 1114, 74-84.
[http://dx.doi.org/10.1016/j.aca.2020.02.041] [PMID: 32359518]
[53]
Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol., 2012, 6(2), 140-146.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010] [PMID: 22356776]
[54]
Binetti, M.; Lauro, A.; Vaccari, S.; Cervellera, M.; Tonini, V. Proteogenomic biomarkers in colorectal cancers: Clinical applications. Expert Rev. Proteomics, 2020, 17(5), 355-363.
[http://dx.doi.org/10.1080/14789450.2020.1782202] [PMID: 32536221]
[55]
Alhumaid, A.; AlYousef, Z.; Bakhsh, H.A.; AlGhamdi, S.; Aziz, M.A. Emerging paradigms in the treatment of liver metastases in colorectal cancer. Crit. Rev. Oncol. Hematol., 2018, 132, 39-50.
[http://dx.doi.org/10.1016/j.critrevonc.2018.09.011] [PMID: 30447926]
[56]
Park, H.J.; Kim, Y.; Yoo, T.H. One-pot colorimetric detection of molecules based on proximity proteolysis reaction. Biosens. Bioelectron., 2021, 188, 113349.
[http://dx.doi.org/10.1016/j.bios.2021.113349] [PMID: 34030090]
[57]
Quinchia, J.; Echeverri, D.; Cruz-Pacheco, A.F.; Maldonado, M.E.; Orozco, J. Electrochemical biosensors for determination of colorectal tumor biomarkers. Micromachines (Basel), 2020, 11(4), 1-46.
[http://dx.doi.org/10.3390/mi11040411] [PMID: 32295170]
[58]
Bohunicky, B.; Mousa, S.A. Biosensors: The new wave in cancer diagnosis. Nanotechnol. Sci. Appl., 2010, 4, 1-10.
[http://dx.doi.org/10.2147/NSA.S13465] [PMID: 24198482]
[59]
Belkin, A.N.; Freind, G.G.; Kochetov, A.G. Morphological basis for possibility of applying electrochemical method with use of nanotechnological biosensors in diagnosis of colorectal cancer. Perm Med. J., 2021, 38, 88-96.
[http://dx.doi.org/10.17816/pmj38388-96]
[60]
Li, J.; Si, Y.; Lee, H.J. Recent research trend of biosensors for colorectal cancer specific protein biomarkers. Appl. Chem. Eng., 2021, 32, 253-259.
[http://dx.doi.org/10.14478/ace.2021.1040]
[61]
Hidayat, F.; Labeda, I.; Sampetoding, S.; Pattelongi, I.J.; Lusikooy, R.E.; Warsinggih, M.I.; Dani, M.I. Mappincara; Kusuma, M.I.; Uwuratuw, J.A.; Syarifuddin, E.; Faruk, M. Correlation of interleukin-6 and C-reactive protein levels in plasma with the stage and differentiation of colorectal cancer: A cross-sectional study in East Indonesia. Ann. Med. Surg. (Lond.), 2021, 62, 334-340.
[http://dx.doi.org/10.1016/j.amsu.2021.01.013] [PMID: 33552492]
[62]
Fu, H.L.; Shao, L.; Wang, Q.; Jia, T.; Li, M.; Yang, D.P. A systematic review of p53 as a biomarker of survival in patients with osteosarcoma. Tumour Biol., 2013, 34(6), 3817-3821.
[http://dx.doi.org/10.1007/s13277-013-0966-x] [PMID: 24014053]
[63]
Zhang, X.; Zhao, Y.; Kong, P.; Han, M.; Li, B. Expression of circZNF609 is down-regulated in colorectal cancer tissue and promotes apoptosis in colorectal cancer cells by upregulating p53. Med. Sci. Monit., 2019, 25, 5977-5985.
[http://dx.doi.org/10.12659/MSM.915926] [PMID: 31401644]
[64]
Duffy, M.J.; Synnott, N.C.; Crown, J. Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker. Breast Cancer Res. Treat., 2018, 170(2), 213-219.
[http://dx.doi.org/10.1007/s10549-018-4753-7] [PMID: 29564741]
[65]
Wright, M.; Beaty, J.S.; Ternent, C.A. Molecular Markers for Colorectal Cancer. Surg. Clin. North Am., 2017, 97(3), 683-701.
[http://dx.doi.org/10.1016/j.suc.2017.01.014] [PMID: 28501255]
[66]
Attallah, A.M.; Abdel-Aziz, M.M.; El-Sayed, A.M.; Tabll, A.A. Detection of serum p53 protein in patients with different gastrointestinal cancers. Cancer Detect. Prev., 2003, 27(2), 127-131.
[http://dx.doi.org/10.1016/S0361-090X(03)00024-2] [PMID: 12670524]
[67]
Askari, M.; Alarie, J.P.; Moreno-Bondi, M.; Vo-Dinh, T. Application of an antibody biochip for p53 detection and cancer diagnosis. Biotechnol. Prog., 2001, 17(3), 543-552.
[http://dx.doi.org/10.1021/bp010008s] [PMID: 11386877]
[68]
Chen, C.L.; Mo, H.Q.; Jiang, Y.H.; Zhao, X.H.; Ma, S.; You, K.Y.; Pan, Y.; Liu, Y.M. BRD7 inhibits tumor progression by positively regulating the p53 pathway in hepatocellular carcinoma. J. Cancer, 2021, 12(5), 1507-1519.
[http://dx.doi.org/10.7150/jca.50293] [PMID: 33531996]
[69]
Gold, P.; Freedman, S.O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J. Exp. Med., 1965, 121, 439-462.
[http://dx.doi.org/10.1084/jem.121.3.439] [PMID: 14270243]
[70]
Han, J.; Li, Y.; Feng, J.; Li, M.; Wang, P.; Chen, Z.; Dong, Y. A novel sandwich-type immunosensor for detection of carcino-embryonic antigen using silver hybrid multiwalled carbon nanotubes/manganese dioxide. J. Electroanal. Chem. (Lausanne), 2017, 786, 112-119.
[http://dx.doi.org/10.1016/j.jelechem.2017.01.021]
[71]
Yang, K.M.; Park, I.J.; Kim, C.W.; Roh, S.A.; Cho, D.H.; Kim, J.C. The prognostic significance and treatment modality for elevated pre- and postoperative serum CEA in colorectal cancer patients. Ann. Surg. Treat. Res., 2016, 91(4), 165-171.
[http://dx.doi.org/10.4174/astr.2016.91.4.165] [PMID: 27757393]
[72]
Idris, A.O.; Mabuba, N.; Arotiba, O.A. An exfoliated graphite-based electrochemical immunosensor on a dendrimer/carbon nanodot platform for the detection of carcinoembryonic antigen cancer biomarker. Biosensors (Basel), 2019, 9(1), 39.
[http://dx.doi.org/10.3390/bios9010039] [PMID: 30857164]
[73]
López-Muñoz, G.A.; Estevez, M-C.; Peláez-Gutierrez, E.C.; Homs-Corbera, A.; García-Hernandez, M.C.; Imbaud, J.I.; Lechuga, L.M. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection. Biosens. Bioelectron., 2017, 96, 260-267.
[http://dx.doi.org/10.1016/j.bios.2017.05.020] [PMID: 28501746]
[74]
Xiang, W.; Lv, Q.; Shi, H.; Xie, B.; Gao, L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta, 2020, 214, 120716.
[http://dx.doi.org/10.1016/j.talanta.2020.120716] [PMID: 32278406]
[75]
Tagit, O.; Hildebrandt, N. Fluorescence sensing of circulating diagnostic biomarkers using molecular probes and nanoparticles. ACS Sens., 2017, 2(1), 31-45.
[http://dx.doi.org/10.1021/acssensors.6b00625] [PMID: 28722447]
[76]
Razmi, N.; Baradaran, B.; Hejazi, M.; Hasanzadeh, M.; Mosafer, J.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens. Bioelectron., 2018, 113, 58-71.
[http://dx.doi.org/10.1016/j.bios.2018.04.048] [PMID: 29729560]
[77]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[78]
Han, Y.; Chen, J.; Li, Z.; Chen, H.; Qiu, H. Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens. Bioelectron., 2020, 148, 111811.
[http://dx.doi.org/10.1016/j.bios.2019.111811] [PMID: 31678822]
[79]
Al-Enezi, E.; Vakurov, A.; Eades, A.; Ding, M.; Jose, G.; Saha, S.; Millner, P. Affimer-based europium chelates allow sensitive optical biosensing in a range of human disease biomarkers. Sensors, 2021, 21, 831.
[http://dx.doi.org/10.3390/s21030831]
[80]
Raina, M.; Sharma, R.; Deacon, S.E.; Tiede, C.; Tomlinson, D.; Davies, A.G.; McPherson, M.J. Wälti, C. Antibody mimetic receptor proteins for label-free biosensors. Analyst (Lond.), 2015, 140(3), 803-810.
[http://dx.doi.org/10.1039/C4AN01418A] [PMID: 25431807]
[81]
Wang, S.X.; Acha, D.; Shah, A.J.; Hills, F.; Roitt, I.; Demosthenous, A.; Bayford, R.H. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens. Bioelectron., 2017, 92, 482-488.
[http://dx.doi.org/10.1016/j.bios.2016.10.077] [PMID: 27829556]
[82]
Sharma, R.; Deacon, S.E.; Nowak, D.; George, S.E.; Szymonik, M.P.; Tang, A.A.S.; Tomlinson, D.C.; Davies, A.G.; McPherson, M.J. Wälti, C. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity. Biosens. Bioelectron., 2016, 80, 607-613.
[http://dx.doi.org/10.1016/j.bios.2016.02.028] [PMID: 26897263]
[83]
Zhang, Y.; Lyu, H. Application of biosensors based on nanomaterials in cancer cell detection. J. Phys. Conf. Ser., 2021, 1948, 012149.
[http://dx.doi.org/10.1088/1742-6596/1948/1/012149]
[84]
Shahsavar, K.; Alaei, A.; Hosseini, M. Colorimetric technique-based biosensors for early detection of cancer. In: Biosensor Based Advanced Cancer Diagnostics; Khan, R.; Parihar, A.; Sanghi, S.K., Eds.; Academic Press: Cambridge, Massachusetts, 2022; pp. 153-163.
[http://dx.doi.org/10.1016/B978-0-12-823424-2.00012-0]
[85]
Raji, M.A.; Amoabediny, G.; Tajik, P.; Hosseini, M.; Ghafar-Zadeh, E. An apta-biosensor for colon cancer diagnostics. Sensors (Basel), 2015, 15(9), 22291-22303.
[http://dx.doi.org/10.3390/s150922291] [PMID: 26404293]
[86]
Xiao, L.; Zhu, A.; Xu, Q.; Chen, Y.; Xu, J.; Weng, J. Colorimetric biosensor for detection of cancer biomarker by Au nanoparticle-decorated Bi2Se3 nanosheets. ACS Appl. Mater. Interfaces, 2017, 9(8), 6931-6940.
[http://dx.doi.org/10.1021/acsami.6b15750] [PMID: 28164701]
[87]
Koprowski, H.; Herlyn, M.; Steplewski, Z.; Sears, H.F. Sears, specific antigen in serum of patients with colon carcinoma. Science, 1981, 212, 53-55.
[http://dx.doi.org/10.1126/science.6163212]
[88]
Park, I.J.; Choi, G.S.; Jun, S.H. Prognostic value of serum tumor antigen CA19-9 after curative resection of colorectal cancer. Anticancer Res., 2009, 29(10), 4303-4308.
[PMID: 19846991]
[89]
Filella, X.; Molina, R.; Piqué, J.M.; Garcia-Valdecasas, J.C.; Grau, J.J.; Novell, F.; Astudillo, E.; de Lacy, A.; Daniels, M.; Ballesta, A.M. Use of CA 19-9 in the early detection of recurrences in colorectal cancer: Comparison with CEA. Tumour Biol., 1994, 15(1), 1-6.
[http://dx.doi.org/10.1159/000217867] [PMID: 8146525]
[90]
Wu, T.; Mo, Y.; Wu, C. Prognostic values of CEA, CA19-9, and CA72-4 in patients with stages I-III colorectal cancer. Int. J. Clin. Exp. Pathol., 2020, 13, 1608-1614.
[91]
Kato, T.; Ohashi, Y.; Nakazato, H.; Koike, A.; Saji, S.; Suzuki, H.; Takagi, H.; Nimura, Y.; Hasumi, A.; Baba, S.; Manabe, T.; Maruta, M.; Miura, K.; Yamaguchi, A. Efficacy of oral UFT as adjuvant chemotherapy to curative resection of colorectal cancer: Multicenter prospective randomized trial. Langenbecks Arch. Surg., 2002, 386, 575-581.
[http://dx.doi.org/10.1007/s00423-002-0278-x]
[92]
Zong, C.; Xu, M.; Xu, L.J.; Wei, T.; Ma, X.; Zheng, X.S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev., 2018, 118(10), 4946-4980.
[http://dx.doi.org/10.1021/acs.chemrev.7b00668] [PMID: 29638112]
[93]
Cialla-May, D.; Zheng, X.S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev., 2017, 46(13), 3945-3961.
[http://dx.doi.org/10.1039/C7CS00172J] [PMID: 28639667]
[94]
Zhao, J.; Xue, S.; Ji, R.; Li, B.; Li, J. Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev., 2021, 50(21), 12070-12097.
[http://dx.doi.org/10.1039/D1CS00237F] [PMID: 34533143]
[95]
Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev., 2011, 111(6), 3828-3857.
[http://dx.doi.org/10.1021/cr100313v] [PMID: 21648956]
[96]
Li, W.; Jiang, X.; Xue, J.; Zhou, Z.; Zhou, J. Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein. Biosens. Bioelectron., 2015, 68, 468-474.
[http://dx.doi.org/10.1016/j.bios.2015.01.033] [PMID: 25621998]
[97]
Rojalin, T.; Phong, B.; Koster, H.J.; Carney, R.P. Nanoplasmonic approaches for sensitive detection and molecular characterization of extracellular vesicles. Front Chem., 2019, 7, 279.
[http://dx.doi.org/10.3389/fchem.2019.00279] [PMID: 31134179]
[98]
Ki, J.; Lee, H.Y.; Son, H.Y.; Huh, Y.M.; Haam, S. Sensitive plasmonic detection of miR-10b in biological samples using enzyme-assisted target recycling and developed LSPR probe. ACS Appl. Mater. Interfaces, 2019, 11(21), 18923-18929.
[http://dx.doi.org/10.1021/acsami.9b03005] [PMID: 31066266]
[99]
Singh, P.; Biosensors, S.P.R. Historical perspectives and current challenges. Sens. Actuators B Chem., 2016, 229, 110-130.
[http://dx.doi.org/10.1016/j.snb.2016.01.118]
[100]
Li, W.; Qiu, Y.; Zhang, L.; Jiang, L.; Zhou, Z.; Chen, H.; Zhou, J. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199. Biosens. Bioelectron., 2016, 79, 500-507.
[http://dx.doi.org/10.1016/j.bios.2015.12.038] [PMID: 26748367]
[101]
McAuley, J.L.; Linden, S.K.; Png, C.W.; King, R.M.; Pennington, H.L.; Gendler, S.J.; Florin, T.H.; Hill, G.R.; Korolik, V.; McGuckin, M.A. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest., 2007, 117(8), 2313-2324.
[http://dx.doi.org/10.1172/JCI26705] [PMID: 17641781]
[102]
Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Early stage screening of breast cancer using electrochemical biomarker detection. TrAC - Trends Analyt. Chem., 2017, 91, 67-76.
[http://dx.doi.org/10.1016/j.trac.2017.04.006]
[103]
Lin, C.; Zheng, H.; Huang, Y.; Chen, Z.; Luo, F.; Wang, J.; Guo, L.; Qiu, B.; Lin, Z.; Yang, H. Homogeneous electrochemical aptasensor for mucin 1 detection based on exonuclease I-assisted target recycling amplification strategy. Biosens. Bioelectron., 2018, 117, 474-479.
[http://dx.doi.org/10.1016/j.bios.2018.06.056] [PMID: 29982116]
[104]
Wen, W.; Hu, R.; Bao, T.; Zhang, X.; Wang, S. An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling. Biosens. Bioelectron., 2015, 71, 13-17.
[http://dx.doi.org/10.1016/j.bios.2015.04.001] [PMID: 25880833]
[105]
Ahmad, R.; Alam, M.; Hasegawa, M.; Uchida, Y.; Al-Obaid, O.; Kharbanda, S.; Kufe, D. Targeting MUC1-C inhibits the AKT-S6K1-elF4A pathway regulating TIGAR translation in colorectal cancer. Mol. Cancer, 2017, 16(1), 33.
[http://dx.doi.org/10.1186/s12943-017-0608-9] [PMID: 28153010]
[106]
Niv, Y.; Rokkas, T. Mucin expression in colorectal cancer (CRC): Systematic review and meta-analysis. J. Clin. Gastroenterol., 2019, 53(6), 434-440.
[http://dx.doi.org/10.1097/MCG.0000000000001050] [PMID: 29782466]
[107]
Bharti, A.; Rana, S.; Dahiya, D.; Agnihotri, N.; Prabhakar, N. An electrochemical aptasensor for analysis of MUC1 using gold platinum bimetallic nanoparticles deposited carboxylated graphene oxide. Anal. Chim. Acta, 2020, 1097, 186-195.
[http://dx.doi.org/10.1016/j.aca.2019.11.005] [PMID: 31910959]
[108]
Zhao, R.N.; Feng, Z.; Zhao, Y.N.; Jia, L.P.; Ma, R.N.; Zhang, W.; Shang, L.; Xue, Q.W.; Wang, H.S. A sensitive electrochemical aptasensor for Mucin 1 detection based on catalytic hairpin assembly coupled with PtPdNPs peroxidase-like activity. Talanta, 2019, 200, 503-510.
[http://dx.doi.org/10.1016/j.talanta.2019.03.012] [PMID: 31036215]
[109]
Akram, A.; Khan, A.; Majdinasab, M.; Abbas, G.; Raza, R.; Ahmad, M.A.; Hayat, A. Development of a fluorescence immunoassay based on X-Ti-Zn nanocomposite for the detection of MUC1 biomarker. Sens. Actuators B Chem., 2020, 320, 128413.
[http://dx.doi.org/10.1016/j.snb.2020.128413]
[110]
Esfandi, F.; Mohammadzadeh Ghobadloo, S.; Basati, G. Interleukin-6 level in patients with colorectal cancer. Cancer Lett., 2006, 244(1), 76-78.
[http://dx.doi.org/10.1016/j.canlet.2005.12.003] [PMID: 16442710]
[111]
Knüpfer, H.; Preiss, R. Serum interleukin-6 levels in colorectal cancer patients--a summary of published results. Int. J. Colorectal Dis., 2010, 25(2), 135-140.
[http://dx.doi.org/10.1007/s00384-009-0818-8] [PMID: 19898853]
[112]
Świerczyński, M.; Szymaszkiewicz, A.; Fichna, J.; Zielińska, M. New insights into molecular pathways in colorectal cancer: Adiponectin, interleukin-6 and opioid signaling. Biochim. Biophys. Acta - Rev. Cancer, 2021, 1875, 188460.
[http://dx.doi.org/10.1016/j.bbcan.2020.188460]
[113]
Sun, Q.; Shang, Y.; Sun, F.; Dong, X.; Niu, J.; Li, F. Interleukin-6 promotes epithelial-mesenchymal transition and cell invasion through integrin β6 upregulation in colorectal cancer. Oxid. Med. Cell. Longev., 2020, 2020, 8032187.
[http://dx.doi.org/10.1155/2020/8032187] [PMID: 32855767]
[114]
Chou, T.H.; Chuang, C.Y.; Wu, C.M. Quantification of Interleukin-6 in cell culture medium using surface plasmon resonance biosensors. Cytokine, 2010, 51(1), 107-111.
[http://dx.doi.org/10.1016/j.cyto.2010.04.004] [PMID: 20430640]
[115]
Brink, M.; de Goeij, A.F.P.M.; Weijenberg, M.P.; Roemen, G.M.J.M.; Lentjes, M.H.F.M.; Pachen, M.M.M.; Smits, K.M.; de Bruïne, A.P.; Goldbohm, R.A.; van den Brandt, P.A. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis, 2003, 24(4), 703-710.
[http://dx.doi.org/10.1093/carcin/bgg009] [PMID: 12727799]
[116]
Zhu, D.; Keohavong, P.; Finkelstein, S.D.; Swalsky, P.; Bakker, A.; Weissfeld, J.; Srivastava, S.; Whiteside, T.L. K-ras gene mutations in normal colorectal tissues from K-ras mutation-positive colorectal cancer patients. Cancer Res., 1997, 57(12), 2485-2492.
[PMID: 9192830]
[117]
Riely, G.J.; Ladanyi, M. KRAS mutations: An old oncogene becomes a new predictive biomarker. J. Mol. Diagn., 2008, 10(6), 493-495.
[http://dx.doi.org/10.2353/jmoldx.2008.080105] [PMID: 18832458]
[118]
Kriegshäuser. G.; Auner, V.; Zeillinger, R. New and potential clinical applications of KRAS as a cancer biomarker. Expert Opin. Med. Diagn., 2010, 4(5), 383-395.
[http://dx.doi.org/10.1517/17530059.2010.510512] [PMID: 23496197]
[119]
Lu, T.; Li, J. Clinical applications of urinary cell-free DNA in cancer: Current insights and promising future. Am. J. Cancer Res., 2017, 7, 2318-2332.
[120]
Lu, H-Y.; Lin, R-T.; Zhou, G-X.; Yu, T-M.; Liu, Z-J. Critical Role of p53 and K-ras in the diagnosis of early colorectal cancer: A one-year, single-center analysis. Int. J. Med. Sci., 2017, 14(11), 1154-1162.
[http://dx.doi.org/10.7150/ijms.20538] [PMID: 29104470]
[121]
Prieur, A.; Cappellini, M.; Habif, G.; Lefranc, M.P.; Mazard, T.; Morency, E.; Pascussi, J.M.; Flacelière, M.; Cahuzac, N.; Vire, B.; Dubuc, B.; Durochat, A.; Liaud, P.; Ollier, J.; Pfeiffer, C.; Poupeau, S.; Saywell, V.; Planque, C.; Assenat, E.; Bibeau, F.; Bourgaux, J.F.; Pujol, P.; Sézeur, A.; Ychou, M.; Joubert, D. Targeting the wnt pathway and cancer stem cells with anti-progastrin humanized antibodies as a potential treatment for K-RAS-mutated colorectal cancer. Clin. Cancer Res., 2017, 23(17), 5267-5280.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0533] [PMID: 28600477]
[122]
Li, Q.; Zhou, D.; Pan, J.; Liu, Z.; Chen, J. An ultrasensitive and simple fluorescence biosensor for detection of the Kras wild type by using the three-way DNA junction-driven catalyzed hairpin assembly strategy. Analyst (Lond.), 2019, 144(9), 3088-3093.
[http://dx.doi.org/10.1039/C9AN00195F] [PMID: 30919845]
[123]
Jin, C.E.; Yeom, S.S.; Koo, B.; Lee, T.Y.; Lee, J.H.; Shin, Y.; Lim, S.B. Rapid and accurate detection of KRAS mutations in colorectal cancers using the isothermal-based optical sensor for companion diagnostics. Oncotarget, 2017, 8(48), 83860-83871.
[http://dx.doi.org/10.18632/oncotarget.20038] [PMID: 29137388]
[124]
Nguyen, A.H.; Sim, S.J. Nanoplasmonic biosensor: Detection and amplification of dual bio-signatures of circulating tumor DNA. Biosens. Bioelectron., 2015, 67, 443-449.
[http://dx.doi.org/10.1016/j.bios.2014.09.003] [PMID: 25220802]
[125]
D’Agata, R.; Bellassai, N.; Allegretti, M.; Rozzi, A.; Korom, S.; Manicardi, A.; Melucci, E.; Pescarmona, E.; Corradini, R.; Giacomini, P.; Spoto, G. Direct plasmonic detection of circulating RAS mutated DNA in colorectal cancer patients. Biosens. Bioelectron., 2020, 170, 112648.
[http://dx.doi.org/10.1016/j.bios.2020.112648] [PMID: 33010708]
[126]
Jin, C.E.; Lee, T.Y.; Koo, B.; Sung, H.; Kim, S.H.; Shin, Y. Rapid virus diagnostic system using bio-optical sensor and microfluidic sample processing. Sens. Actuators B Chem., 2018, 255, 2399-2406.
[http://dx.doi.org/10.1016/j.snb.2017.08.197]
[127]
Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol., 2016, 34(1), 7-25.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.012] [PMID: 26506111]
[128]
Shin, Y.; Perera, A.P.; Kee, J.S.; Song, J.; Fang, Q.; Lo, G.Q.; Park, M.K. Label-free methylation specific sensor based on silicon microring resonators for detection and quantification of DNA methylation biomarkers in bladder cancer. Sens. Actuators B Chem., 2013, 177, 404-411.
[http://dx.doi.org/10.1016/j.snb.2012.11.058]
[129]
Vasiliev, A.; Malik, A.; Muneeb, M.; Kuyken, B.; Baets, R.; Roelkens, G. On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators. ACS Sens., 2016, 1, 1301-1307.
[http://dx.doi.org/10.1021/acssensors.6b00428]
[130]
Bae, M.; Jin, C.E.; Park, J.H.; Kim, M.J.; Chong, Y.P.; Lee, S.O.; Choi, S.H.; Kim, Y.S.; Woo, J.H.; Shin, Y.; Kim, S.H.; Wang, L. Diagnostic usefulness of molecular detection of Coxiella burnetii from blood of patients with suspected acute Q fever. Medicine (Baltimore), 2019, 98(23), e15724.
[http://dx.doi.org/10.1097/MD.0000000000015724] [PMID: 31169672]
[131]
Shin, Y.; Perera, A.P.; Tang, W.Y.; Fu, D.L.; Liu, Q.; Sheng, J.K.; Gu, Z.; Lee, T.Y.; Barkham, T.; Kyoung Park, M. A rapid amplification/detection assay for analysis of Mycobacterium tuberculosis using an isothermal and silicon bio-photonic sensor complex. Biosens. Bioelectron., 2015, 68, 390-396.
[http://dx.doi.org/10.1016/j.bios.2015.01.030] [PMID: 25615836]
[132]
Koo, B.; Jin, C.E.; Lee, T.Y.; Lee, J.H.; Park, M.K.; Sung, H.; Park, S.Y.; Lee, H.J.; Kim, S.M.; Kim, J.Y.; Kim, S-H.; Shin, Y. An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections. Biosens. Bioelectron., 2017, 90, 187-194.
[http://dx.doi.org/10.1016/j.bios.2016.11.051] [PMID: 27894035]
[133]
Rapisarda, A.; Giamblanco, N.; Marletta, G. Kinetic discrimination of DNA single-base mutations by localized surface plasmon resonance. J. Colloid Interface Sci., 2017, 487, 141-148.
[http://dx.doi.org/10.1016/j.jcis.2016.10.026] [PMID: 27764653]
[134]
Maqbool, R.; Ul Hussain, M. MicroRNAs and human diseases: Diagnostic and therapeutic potential. Cell Tissue Res., 2014, 358(1), 1-15.
[http://dx.doi.org/10.1007/s00441-013-1787-3] [PMID: 24493638]
[135]
Shirafkan, N.; Mansoori, B.; Mohammadi, A.; Shomali, N.; Ghasbi, M.; Baradaran, B. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed. Pharmacother., 2018, 97, 1319-1330.
[http://dx.doi.org/10.1016/j.biopha.2017.11.046] [PMID: 29156521]
[136]
Pan, Z.; Miao, L. Serum microRNA-592 serves as a novel potential biomarker for early diagnosis of colorectal cancer. Oncol. Lett., 2020, 20(2), 1119-1126.
[http://dx.doi.org/10.3892/ol.2020.11682] [PMID: 32724351]
[137]
Gasparello, J.; Papi, C.; Allegretti, M.; Giordani, E.; Carboni, F.; Zazza, S.; Pescarmona, E.; Romania, P.; Giacomini, P.; Scapoli, C.; Gambari, R.; Finotti, A. A distinctive microRNA (MiRNA) signature in the blood of colorectal cancer (crc) patients at surgery. Cancers (Basel), 2020, 12(9), 1-15.
[http://dx.doi.org/10.3390/cancers12092410] [PMID: 32854257]
[138]
Desmond, B.J.; Dennett, E.R.; Danielson, K.M. Circulating extracellular vesicle microRNA as diagnostic biomarkers in early colorectal cancer-A review. Cancers (Basel), 2019, 12(1), 52.
[http://dx.doi.org/10.3390/cancers12010052] [PMID: 31878015]
[139]
Ratajczak, K.; Krazinski, B.E.; Kowalczyk, A.E.; Dworakowska, B.; Jakiela, S.; Stobiecka, M. Optical biosensing system for the detection of survivin mRNA in colorectal cancer cells using a graphene oxide carrier-bound oligonucleotide molecular beacon. Nanomaterials (Basel), 2018, 8(7), 13-19.
[http://dx.doi.org/10.3390/nano8070510] [PMID: 29987217]
[140]
Hakimian, F.; Ghourchian, H.; Hashemi, A.S.; Arastoo, M.R.; Behnam Rad, M. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci. Rep., 2018, 8(1), 2943.
[http://dx.doi.org/10.1038/s41598-018-20229-z] [PMID: 29440644]
[141]
O’Donnell, N.; Okkelman, I.A.; Timashev, P.; Gromovykh, T.I.; Papkovsky, D.B.; Dmitriev, R.I. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater., 2018, 80, 85-96.
[http://dx.doi.org/10.1016/j.actbio.2018.09.034] [PMID: 30261339]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy