Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Review of Osteoarthritis-related Medicinal Herbs

Author(s): Shilpa Subash Raut, Varsha Narayan Tambe, Deepali Zoman and Anjali Prashant Bedse*

Volume 9, Issue 2, 2023

Published on: 03 October, 2022

Article ID: e120922208726 Pages: 8

DOI: 10.2174/2215083808666220912095609

Price: $65

Abstract

One of the most common causes of joint pain and impairment is osteoarthritis. Osteoarthritis is a condition that affects people all over the world. Osteoarthritis is the second most prevalent and commonly diagnosed rheumatologic disease in India, with a prevalence of 22 to 39 %. Prior to the discovery of extraction and synthetic chemistry, musculoskeletal diseases were treated using medicinal plant compositions. When non-pharmacological therapy is insufficient, a variety of pharmacological therapies can be used to treat arthritis. Synthetic medication therapy, on the other hand, may have undesirable side effects and be expensive. As a result, researchers have been looking at alternative therapies. Herbal drugs have demonstrated the ability to control arthritis in a safe and effective manner. In this review, the safety and efficacy of traditionally used plants and their main chemical constituents to treat osteoarthritis are reported. After reviewing online databases, we found herbs used to treat osteoarthritis, such as Boswellia serrata, Alpinia galanga, Commiphora wightii, Harpagophytum procumbens, Salix alba, Ribes nigrum L., Filipendula ulmaria, Curcuma longa, Zingiber officinale, Capsicum annum, Urtica dioica L., Vitex negundo L., Syzygium aromaticum L. and Allium sativum L. These species are attributed with antioxidant and antiinflammatory properties, which help to reduce inflammation and tissue damage. The efficacy and safety of herbal medications for osteoarthritis symptoms are discussed here.

Keywords: Osteoarthritis, Treatment with herbs, Chemical constituents, Mechanism of action

Graphical Abstract

[1]
Hunter D, Pietro-Alhambra D, Arden N. Osteoarthritis: The Facts. 2nd ed. Oxford: Oxford University Press, 2014.
[2]
Fu K, Robbins S, McDougall JJ. Osteoarthritis: The genesis of pain. Rheumatology (Oxford) 2018; 57(4): 43-50.
[3]
Vincent TL, Watt FE. Osteoarthritis Medicine (Abingdon) 2010; 38(3): 151-6.
[http://dx.doi.org/10.1016/j.mpmed.2009.11.008]
[4]
Haq I, Murphy E, Dacre J. Osteoarthritis. Postgrad Med J 2003; 79(933): 377-83.
[http://dx.doi.org/10.1136/pmj.79.933.377] [PMID: 12897215]
[5]
Newberry SJ, FitzGerald J. SooHoo NF. Treatment of osteoarthritis of the knee: An update review. AHRQ Comp Eff Rev 2017; 190.
[6]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis Lancet 2019; 393(10182): 1745-59.
[7]
Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016; 12(7): 412-20.
[http://dx.doi.org/10.1038/nrrheum.2016.65] [PMID: 27192932]
[8]
Pal CP, Singh P, Chaturvedi S, Pruthi KK, Vij A. Epidemiology of knee osteoarthritis in India and related factors. Indian J Orthop 2016; 50(5): 518-22.
[http://dx.doi.org/10.4103/0019-5413.189608] [PMID: 27746495]
[9]
Bierma-Zeinstra SMA, Waarsing JH. The role of atherosclerosis in osteoarthritis. Best Pract Res Clin Rheumatol 2017; 31(5): 613-33.
[http://dx.doi.org/10.1016/j.berh.2018.08.006] [PMID: 30509409]
[10]
Hall AJ, Stubbs B, Mamas MA, Myint PK, Smith TO. Association between osteoarthritis and cardiovascular disease: Systematic review and meta-analysis. Eur J Prev Cardiol 2016; 23(9): 938-46.
[http://dx.doi.org/10.1177/2047487315610663] [PMID: 26464295]
[11]
Wang H, Bai J, He B, Hu X, Liu D. Osteoarthritis and the risk of cardiovascular disease: A meta-analysis of observational studies. Sci Rep 2016; 6(1): 39672.
[http://dx.doi.org/10.1038/srep39672] [PMID: 28004796]
[12]
Veronese N, Cereda E, Maggi S, et al. Osteoarthritis and mortality: A prospective cohort study and systematic review with meta-analysis. Semin Arthritis Rheum 2016; 46(2): 160-7.
[http://dx.doi.org/10.1016/j.semarthrit.2016.04.002] [PMID: 27179749]
[13]
Hsu PS, Lin HH, Li CR, Chung WS. Increased risk of stroke in patients with osteoarthritis: A population-based cohort study. Osteoarthritis Cartilage 2017; 25(7): 1026-31.
[http://dx.doi.org/10.1016/j.joca.2016.10.027] [PMID: 28300652]
[14]
Martel-Pelletier J, Faure MP, McCollum R, Mineau F, Cloutier JM, Pelletier JP. Plasmin, plasminogen activators and inhibitor in human osteoarthritic cartilage. J Rheumatol 1991; 18(12): 1863-71.
[PMID: 1724464]
[15]
Loo FAJVD, Joosten LAB, Van Lent PLEM, Arntz OJ, Van Den Berg WB. Role of interleukin-1, tumor necrosis factor α, and interleukin-6 in cartilage proteoglycan metabolism and destruction effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 1995; 38(2): 164-72.
[http://dx.doi.org/10.1002/art.1780380204] [PMID: 7848306]
[16]
Mobasheri A. Intersection of inflammation and herbal medicine in the treatment of osteoarthritis. Curr Rheumatol Rep 2012; 14(6): 604-16.
[http://dx.doi.org/10.1007/s11926-012-0288-9] [PMID: 22987043]
[17]
Abdel-Tawab M, Werz O, Schubert-Zsilavecz M. Boswellia serrata. Clin Pharmacokinet 2011; 50(6): 349-69.
[http://dx.doi.org/10.2165/11586800-000000000-00000] [PMID: 21553931]
[18]
Cameron M, Chrubasik S. Oral herbal therapies for treating osteoarthritis. Cochrane Database Syst Rev 2014; 5(5)CD002947
[PMID: 24848732]
[19]
Rastogi S, Sivaraman ST, Kulkarni KS. Evaluating the safety and efficacy of Rumalaya forte: A double blind clinical trial. Orthopaedics Today 2003; 1(V): 63-5.
[20]
Rastogi S, Bansal R, Kulkarni KS. Efficacy of Rumalaya tablets in arthritis - A double blind placebo controlled trial. Antiseptic 2001; 5(98): 172-3.
[21]
Cuaz-Pérolin C, Billiet L, Baugé E. et al. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler Thromb Vasc Biol 2008; 28(2): 272-7.
[http://dx.doi.org/10.1161/ATVBAHA.107.155606] [PMID: 18032778]
[22]
Umar S, Umar K, Sarwar AHMG. et al. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine 2014; 21(6): 847-56.
[http://dx.doi.org/10.1016/j.phymed.2014.02.001] [PMID: 24667331]
[23]
Vishal AA, Mishra A, Raychaudhuri SP. A double blind, randomized, placebo controlled clinical study evaluates the early efficacy of aflapin in subjects with osteoarthritis of knee. Int J Med Sci 2011; 8(7): 615-22.
[http://dx.doi.org/10.7150/ijms.8.615] [PMID: 22022214]
[24]
Haroyan A, Mukuchyan V, Mkrtchyan N. et al. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: A comparative, randomized, double-blind, placebo-controlled study. BMC Complement Altern Med 2018; 18(1): 7-19.
[http://dx.doi.org/10.1186/s12906-017-2062-z] [PMID: 29316908]
[25]
Bhattacharyya NK, Ghosh AK, Banerjee M. Anti-inflammatory activity of root of Alpinia galanga willd. Chronicles of Young Scientists 2011; 2(3): 139-43.
[http://dx.doi.org/10.4103/2229-5186.90890]
[26]
Charles DJ, Simon JE, Singh NK. Bioactive principles/chemical constituents the essential oil of Alpinia galangal Willd. J Essent Oil Res 1992; 4: 81-2.
[27]
Shishodia S, Aggarwal BB. Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem 2004; 279(45): 47148-58.
[http://dx.doi.org/10.1074/jbc.M408093200] [PMID: 15322087]
[28]
Goyal C, Ahuja M, Sharma SK. Preparation and evaluation of anti-inflammatory activity of gugulipid-loaded proniosomal gel. Acta Pol Pharm 2011; 68(1): 147-50.
[PMID: 21485714]
[29]
Meselhy M. Inhibition of LPS-induced NO production by the oleogum resin of Commiphora wightii and its constituents. Phytochemistry 2003; 62(2): 213-8.
[http://dx.doi.org/10.1016/S0031-9422(02)00388-6] [PMID: 12482459]
[30]
Zhu N, Rafi MM, DiPaola RS. et al. Bioactive constituents from gum guggul (Commiphora wightii). Phytochemistry 2001; 56(7): 723-7.
[http://dx.doi.org/10.1016/S0031-9422(00)00485-4] [PMID: 11314959]
[31]
Akhtar N, Haqqi TM. Current nutraceuticals in the management of osteoarthritis: A review. Ther Adv Musculoskelet Dis 2012; 4(3): 181-207.
[http://dx.doi.org/10.1177/1759720X11436238] [PMID: 22850529]
[32]
Huang T. Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-kappa B activation. J Ethnopharmacol 2006; 104(1-2): 149-55.
[33]
Chantre P, Cappelaere A, Leblan D, Guedon D, Vandermander J, Fournie B. Efficacy and tolerance of Harpagophytum procumbens versus diacerhein in treatment of osteoarthritis. Phytomedicine 2000; 7(3): 177-83.
[http://dx.doi.org/10.1016/S0944-7113(00)80001-X] [PMID: 11185727]
[34]
Oketch-Rabah HA, Marles RJ, Jordan SA, Low Dog T. United States pharmacopeia safety review of willow bark. Planta Med 2019; 85(16): 1192-202.
[http://dx.doi.org/10.1055/a-1007-5206] [PMID: 31604354]
[35]
Biegert C, Wagner I, Lüdtke R. et al. Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: Results of 2 randomized double-blind controlled trials. J Rheumatol 2004; 31(11): 2121-30.
[PMID: 15517622]
[36]
Reinhard S, Jorg M, Markus F. Pain relief with a proprietary extract of willow bark in rheumatology. An Open Trial Schweiz Zschr Ganzheits Medizin 2008; 20(3): 156-62.
[37]
Gopalan A, Reuben SC, Ahmed S, Darvesh AS, Hohmann J, Bishayee A. The health benefits of blackcurrants. Food Funct 2012; 3(8): 795-809.
[http://dx.doi.org/10.1039/c2fo30058c] [PMID: 22673662]
[38]
Qu J, Mélot C, Appelboom T. Short report of a preliminary open study of synofit-containing bio-curcumin, greenlipped mussel and blackcurrant leaf extract in arthritis. Open J Rheumatol Autoimmune Dis 2015; 5(4): 113-7.
[http://dx.doi.org/10.4236/ojra.2015.54018]
[39]
Cortez RE, Gonzalez de Mejia E. Blackcurrants (Ribes nigrum): A review on chemistry, processing, and health benefits. J Food Sci 2019; 84(9): 2387-401.
[http://dx.doi.org/10.1111/1750-3841.14781] [PMID: 31454085]
[40]
Juliette C, Caroline D, Marjolaine V. et al. Comparison of the anti-inflammatory and immunomodulatory mechanisms of two medicinal herbs: Meadowsweet (Filipendula ulmaria) and Harpagophytum (Harpagophytum procumbens). Int J Plant Anim Environ Sci 2019; 9(3): 145-63.
[41]
Drummond EM, Harbourne N, Marete E. et al. Inhibition of proinflammatory biomarkers in THP1 macrophages by polyphenols derived from chamomile, meadowsweet and willow bark. Phytother Res 2013; 27(4): 588-94.
[http://dx.doi.org/10.1002/ptr.4753] [PMID: 22711544]
[42]
Taty Anna K, Elvy Suhana MR, Das S, Faizah O, Hamzaini AH. Anti-inflammatory effect of Curcuma longa (turmeric) on collagen-induced arthritis: An anatomico-radiological study. Clin Ter 2011; 162(3): 201-7.
[PMID: 21717043]
[43]
Henrotin Y, Malaise M, Wittoek R. et al. Bio-optimized Curcuma longa extract is efficient on knee osteoarthritis pain: A double-blind multicenter randomized placebo controlled three-arm study. Arthritis Res Ther 2019; 21(1): 179.
[http://dx.doi.org/10.1186/s13075-019-1960-5] [PMID: 31351488]
[44]
Arora R, Malhotra P, Sharma A, Haniadka R, Yashawanth HS, Baliga MS. Medicinal efficacy of Indian herbal remedies for the treatment of arthritis. In: Preedy VR, Watson RR, Eds. Bioactive food as dietary interventions for arthritis and related inflammatory diseases. Cambridge, Massachusetts: Academic Press 2013; pp. 601-17.
[45]
Ahmed S, Anuntiyo J, Malemud CJ, Haqqi TM. Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: A review. Evid Based Complement Alternat Med 2005; 2(3): 301-8.
[http://dx.doi.org/10.1093/ecam/neh117] [PMID: 16136208]
[46]
Levy ASA, Simon O, Shelly J, Gardener M. 6-Shogaol reduced chronic inflammatory response in the knees of rats treated with complete Freund’s adjuvant. BMC Pharmacol 2006; 6(1): 12.
[http://dx.doi.org/10.1186/1471-2210-6-12] [PMID: 17010215]
[47]
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997; 389(6653): 816-24.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[48]
Peppin JF, Pappagallo M. Capsaicinoids in the treatment of neuropathic pain: A review. Ther Adv Neurol Disord 2014; 7(1): 22-32.
[http://dx.doi.org/10.1177/1756285613501576] [PMID: 24409200]
[49]
Kiani J, Sajedi F, Nasrollahi SA, Esna-Ashari F. A randomized clinical trial of efficacy and safety of the topical clonidine and capsaicin in the treatment of painful diabetic neuropathy. J Res Med Sci 2015; 20(4): 359-63.
[PMID: 26109991]
[50]
Boiko YA, Shandra AA, Boiko IA, Kravchenko IA. Experimental study of the effectiveness the Capsicum annuum L. extracts for treatment of the rheumatoid arthritis. J Phytopharm 2019; 8(2): 46-51.
[51]
Ayan AK, Caliskan O, Cirak C. Isırgan otu (Urtica spp.). J of Fac of Agric OMU 2006; 21(3): 357-63.
[52]
Klingelhoefer S, Obertreis B, Quast S, Behnke B. Antirheumatic effect of IDS 23, a stinging nettle leaf extract, on in vitro expression of T helper cytokines. J Rheumatol 1999; 26(12): 2517-22.
[PMID: 10606356]
[53]
D’Amato G, Cecchi L, Bonini S. et al Allergenic pollen and pollen allergy in Europe. Allergy 2007; 62(9): 976-90.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01393.x] [PMID: 17521313]
[54]
Zoran M, Stevan S. Herbal medicinal products in the treatment of osteoarthritis. In: Toumi H, Mazor M, Eds. Osteoarthritis Biomarkers and Treatments. London: UK: IntechOpen 2018; pp. 1-19.
[55]
Bisht S, Bhandari S, Bisht NS. Urtica dioica (L): An undervalued, economically important plant. Agric Sci Res J 2012; 2: 250-2.
[56]
Meena AK, Perumal A, Kumar N. et al. Studies on physicochemical, phytochemicals, chromatographic profiling & estimation and in-silico study of Negundoside in roots & small branches of Vitex negundo plant. Phytomedicine Plus 2022; 2(1)100205
[http://dx.doi.org/10.1016/j.phyplu.2021.100205]
[57]
Telang RS, Chatterji S, Varshneya C. Studies on analgesic and anti-inflammatory activities of Vitex negundo Linn. Indian J Pharmacol 1999; 31: 363-6.
[58]
Tandon VR, Gupta RK. Histomorphological changes induced by Vitex negundo in albino rats. Indian J Pharmacol 2004; 36: 176-7.
[59]
Golmakani MT, Zare M, Razzaghi S. Eugenol enrichment of clove bud essential oil using different microwave-assisted distillation methods. Food Sci Technol Res 2017; 23(3): 385-94.
[http://dx.doi.org/10.3136/fstr.23.385]
[60]
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review. Food Chem Toxicol 2008; 46(2): 446-75.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[61]
Bakry AM, Abbas S, Ali B. et al. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 2016; 15(1): 143-82.
[http://dx.doi.org/10.1111/1541-4337.12179] [PMID: 33371581]
[62]
Han X, Parker TL. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm Biol 2017; 55(1): 1619-22.
[http://dx.doi.org/10.1080/13880209.2017.1314513] [PMID: 28407719]
[63]
Sugihartini N, Prabandari R, Yuwono T, Rahmawati DR. The anti-inflammatory activity of essential oil of clove (Syzygium aromaticum) in absorption base ointment with addition of oleic acid and propylene glycol as enhancer. Int J Appl Pharm 2019; 11: 106-9.
[http://dx.doi.org/10.22159/ijap.2019.v11s5.T0081]
[64]
Marmouzi I, Karym EM, Alami R. et al. Modulatory effect of Syzygium aromaticum and Pelargonium graveolens on oxidative and sodium nitroprusside stress and inflammation. Orient Pharm Exp Med 2019; 19(2): 201-10.
[http://dx.doi.org/10.1007/s13596-018-0335-9]
[65]
Aggarwal BB, Shishodia S. Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: Reasoning for seasoning. Ann N Y Acad Sci 2004; 1030(1): 434-41.
[http://dx.doi.org/10.1196/annals.1329.054] [PMID: 15659827]
[66]
El-Saber Batiha G, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 2020; 10(2): 202.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]
[67]
Choudhary M, Kumar V, Malhotra H, Singh S. Medicinal plants with potential anti-arthritic activity. J Intercult Ethnopharmacol 2015; 4(2): 147-79.
[http://dx.doi.org/10.5455/jice.20150313021918] [PMID: 26401403]
[68]
Keiss HP, Dirsch VM, Hartung T. et al. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-kappaB activity. J Nutr 2003; 133(7): 2171-5.
[http://dx.doi.org/10.1093/jn/133.7.2171] [PMID: 12840173]
[69]
Tavakoli-Far F, Amiri-Ardekani E, Tehrany A. Allium sativum L. (Garlic) role in osteoarthritis: A systematic review of clinical trials. Biointerface Res Appl Chem 2021; 11(4): 12104-19.
[http://dx.doi.org/10.33263/BRIAC114.1210412119]
[70]
Lee HS, Lee CH, Tsai HC, Salter DM. Inhibition of cyclooxygenase 2 expression by diallyl sulfide on joint inflammation induced by urate crystal and IL-1β. Osteoarthritis Cartilage 2009; 17(1): 91-9.
[http://dx.doi.org/10.1016/j.joca.2008.05.010] [PMID: 18573668]
[71]
Shi L, Lin Q, Li X, et al. Alliin, a garlic organosulfur compound, ameliorates gut inflammation through MAPK-NF-κB/AP-1/STAT-1 inactivation and PPAR-γ activation. Mol Nutr Food Res 2017; 61(9)1601013
[http://dx.doi.org/10.1002/mnfr.201601013] [PMID: 28371322]
[72]
Williams FMK, Skinner J, Spector TD. et al. Dietary garlic and hip osteoarthritis: Evidence of a protective effect and putative mechanism of action. BMC Musculoskelet Disord 2010; 11(1): 280.
[http://dx.doi.org/10.1186/1471-2474-11-280] [PMID: 21143861]
[73]
Meyer K, Ueberham E, Gebhardt R. Influence of organosulphur compounds from garlic on the secretion of matrix metalloproteinases and their inhibitor TIMP-1 by cultured HUVEC cells. Cell Biol Toxicol 2004; 20(4): 253-60.
[http://dx.doi.org/10.1023/B:CBTO.0000038463.55930.79] [PMID: 15499972]
[74]
Pareek S, Dixit M, Govil S, et al. et al. Garlic and its role in arthritis management. In: Watson RR, Preedy VR, Eds. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. 2nd Ed. Cambridge, Massachusetts: Academic Press 2019; pp. 245-52.
[http://dx.doi.org/10.1016/B978-0-12-813820-5.00014-3]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy