Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Microrna-96 In Human Cancers

Author(s): Yiwen Wu, Zhizhong Xie, Sijun Deng, Yiniu Xia, Xiaoyong Lei and Xiaoyan Yang*

Volume 26, Issue 7, 2023

Published on: 17 October, 2022

Page: [1285 - 1297] Pages: 13

DOI: 10.2174/1386207325666220909104803

Price: $65

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs 19-25 nucleotides in size involved in gene regulation and diverse processes in tumor cells. Abnormal expression of miRNAs is closely related to carcinogenesis. MiR-96 is a salient cancer-related miRNA in a variety of tumors. Recent evidence indicates that miR-96 has been observed to be wrapped in exosome and associated with drug resistance or radio-chemosensitivity in cancers. miR-96 is also inextricably linked with the competing endogenous RNAs (ceRNAs) in cancers. Notably, miR-96 plays both a tumor suppressor role and plays a carcinogenic role in the same cancers. This review summarizes the critical role of cancer-related miR-96 in drug resistance or radio-chemosensitivity and ceRNA mechanisms of miR-96 in cancer. And we innovatively propose that miR-96 has a yin-yang effect in cancers. Based on these several major roles of miR-96 in cancer as described above, we speculate that the abnormal expression of miR-96 is likely to be novel potential therapeutic targets in cancers. It is expected to solve the treatment problems such as low chemoradiotherapy sensitivity, poor prognosis quality of life and easy recurrence in cancer patients.

Keywords: MiR-96, cancer, exosome, drug resistance, radio-chemosensitivity, ceRNAs

Graphical Abstract

[1]
Huang, S.; Li, X.; Zheng, H.; Si, X.; Li, B.; Wei, G.; Li, C.; Chen, Y.; Chen, Y.; Liao, W.; Liao, Y.; Bin, J. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 2019, 139(25), 2857-2876.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038361] [PMID: 30947518]
[2]
Wang, Y.; Mo, Y.; Peng, M.; Zhang, S.; Gong, Z.; Yan, Q.; Tang, Y.; He, Y.; Liao, Q.; Li, X.; Wu, X.; Xiang, B.; Zhou, M.; Li, Y.; Li, G.; Li, X.; Zeng, Z.; Guo, C.; Xiong, W. The influence of circular RNAs on autophagy and disease progression. Autophagy, 2022, 18(2), 240-253.
[http://dx.doi.org/10.1080/15548627.2021.1917131] [PMID: 33904341]
[3]
Rosalind, C. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 843-854.
[4]
Ørom, U.A.; Nielsen, F.C.; Lund, A.H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell, 2008, 30(4), 460-471.
[http://dx.doi.org/10.1016/j.molcel.2008.05.001] [PMID: 18498749]
[5]
Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem., 2019, 88(1), 487-514.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111902] [PMID: 31220978]
[6]
Chen, Q.; Li, Y.; Liu, Y.; Xu, W.; Zhu, X. Exosomal non-coding RNAs-mediated crosstalk in the tumor microenvironment. Front. Cell Dev. Biol., 2021, 9, 646864.
[http://dx.doi.org/10.3389/fcell.2021.646864] [PMID: 33912560]
[7]
Wu, Y.; Niu, D.; Deng, S.; Lei, X.; Xie, Z.; Yang, X. Tumor-derived or non-tumor-derived exosomal noncodingRNAs and signaling pathways in tumor microenvironment. Int. Immunopharmacol., 2022, 106, 108626.
[http://dx.doi.org/10.1016/j.intimp.2022.108626] [PMID: 35189470]
[8]
Bai, Q.; Pan, Z.; Nabi, G.; Rashid, F.; Liu, Y.; Khan, S. Emerging role of competing endogenous RNA and associated noncoding RNAs in thyroid cancer. Am. J. Cancer Res., 2022, 12(3), 961-973.
[PMID: 35411240]
[9]
Sanchez-Mejias, A.; Tay, Y. Competing endogenous RNA networks: Tying the essential knots for cancer biology and therapeutics. J. Hematol. Oncol., 2015, 8(1), 30.
[http://dx.doi.org/10.1186/s13045-015-0129-1] [PMID: 25888444]
[10]
Chan, Y.; Singh, S.K.; Gulati, M.; Wadhwa, S.; Prasher, P.; Kumar, D.; Kumar, A.P.; Gupta, G.; Kuppusamy, G.; Haghi, M.; George Oliver, B.G.; Adams, J.; Chellappan, D.K.; Dua, K. Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. J. Drug Deliv. Sci. Technol., 2022, 74, 103541.
[http://dx.doi.org/10.1016/j.jddst.2022.103541] [PMID: 35774068]
[11]
Schoener, C.A.; Carillo-Conde, B.; Hutson, H.N.; Peppas, N.A. An inulin and doxorubicin conjugate for improving cancer therapy. J. Drug Deliv. Sci. Technol., 2013, 23(2), 111-118.
[http://dx.doi.org/10.1016/S1773-2247(13)50018-9] [PMID: 24734120]
[12]
Zhu, C.; Ji, Z.; Ma, J.; Ding, Z.; Shen, J.; Wang, Q. Recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems for cancer treatment. Pharmaceutics, 2021, 13(7), 940.
[http://dx.doi.org/10.3390/pharmaceutics13070940] [PMID: 34202452]
[13]
Hasselgren, C.; Myatt, G.J. Computational toxicology and drug discovery. Methods Mol. Biol., 2018, 1800, 233-244.
[http://dx.doi.org/10.1007/978-1-4939-7899-1_11] [PMID: 29934896]
[14]
Mencía, Á.; Modamio-Høybjør, S.; Redshaw, N.; Morín, M.; Mayo-Merino, F.; Olavarrieta, L.; Aguirre, L.A.; del Castillo, I.; Steel, K.P.; Dalmay, T.; Moreno, F.; Moreno-Pelayo, M.Á. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat. Genet., 2009, 41(5), 609-613.
[http://dx.doi.org/10.1038/ng.355] [PMID: 19363479]
[15]
Kinoshita, C.; Aoyama, K.; Matsumura, N.; Kikuchi-Utsumi, K.; Watabe, M.; Nakaki, T. Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. Nat. Commun., 2014, 5(1), 3823.
[http://dx.doi.org/10.1038/ncomms4823] [PMID: 24804999]
[16]
Cheng, N.; Wang, M.Y.; Wu, Y.B.; Cui, H.M.; Wei, S.X.; Liu, B.; Wang, R. Circular RNA POSTN promotes myocardial infarction-induced myocardial injury and cardiac remodeling by regulating miR-96-5p/BNIP3 axis. Front. Cell Dev. Biol., 2021, 8, 618574.
[http://dx.doi.org/10.3389/fcell.2020.618574] [PMID: 33681183]
[17]
Thiel, J.; Alter, C.; Luppus, S.; Eckstein, A.; Tan, S.; Führer, D.; Pastille, E.; Westendorf, A.M.; Buer, J.; Hansen, W. MicroRNA-183 and microRNA-96 are associated with autoimmune responses by regulating T cell activation. J. Autoimmun., 2019, 96, 94-103.
[http://dx.doi.org/10.1016/j.jaut.2018.08.010] [PMID: 30201436]
[18]
Costales, M.G.; Matsumoto, Y.; Velagapudi, S.P.; Disney, M.D. Small molecule targeted recruitment of a nuclease to RNA. J. Am. Chem. Soc., 2018, 140(22), 6741-6744.
[http://dx.doi.org/10.1021/jacs.8b01233] [PMID: 29792692]
[19]
Karmakar, S.; Kaushik, G.; Nimmakayala, R.; Rachagani, S.; Ponnusamy, M.P.; Batra, S.K. MicroRNA regulation of K-Ras in pancreatic cancer and opportunities for therapeutic intervention. Semin. Cancer Biol., 2019, 54, 63-71.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.020] [PMID: 29199014]
[20]
Wang, B.D.; Ceniccola, K.; Yang, Q.; Andrawis, R.; Patel, V.; Ji, Y.; Rhim, J.; Olender, J.; Popratiloff, A.; Latham, P.; Lai, Y.; Patierno, S.R.; Lee, N.H. Identification and functional validation of reciprocal microRNA–mRNA pairings in African American prostate cancer disparities. Clin. Cancer Res., 2015, 21(21), 4970-4984.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1566] [PMID: 26089375]
[21]
Long, M.D.; Singh, P.K.; Russell, J.R.; Llimos, G.; Rosario, S.; Rizvi, A.; van den Berg, P.R.; Kirk, J.; Sucheston-Campbell, L.E.; Smiraglia, D.J.; Campbell, M.J. The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression. Oncogene, 2019, 38(3), 421-444.
[http://dx.doi.org/10.1038/s41388-018-0450-6] [PMID: 30120411]
[22]
Stone, L. miR-96 influences RARγ expression. Nat. Rev. Urol., 2018, 15, 656-657.
[23]
Yoshino, H.; Seki, N.; Itesako, T.; Chiyomaru, T.; Nakagawa, M.; Enokida, H. Aberrant expression of microRNAs in bladder cancer. Nat. Rev. Urol., 2013, 10(7), 396-404.
[http://dx.doi.org/10.1038/nrurol.2013.113] [PMID: 23712207]
[24]
Wu, Z.; Liu, K.; Wang, Y.; Xu, Z.; Meng, J.; Gu, S. Upregulation of microRNA-96 and its oncogenic functions by targeting CDKN1A in bladder cancer. Cancer Cell Int., 2015, 15(1), 107.
[http://dx.doi.org/10.1186/s12935-015-0235-8] [PMID: 26582573]
[25]
Vahabi, M.; Pulito, C.; Sacconi, A. miR-96-5p targets PTEN expression affecting radio-chemosensitivity of HNSCC cells. J. Exp. Clin. Cancer Res., 2019, 38, 141.
[26]
Wei, S.; Zheng, Y.; Jiang, Y.; Li, X.; Geng, J.; Shen, Y.; Li, Q.; Wang, X.; Zhao, C.; Chen, Y.; Qian, Z.; Zhou, J.; Li, W. The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine, 2019, 44, 182-193.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.032] [PMID: 31160270]
[27]
Matsui, T.; Hamada-Tsutsumi, S.; Naito, Y. Identification of microRNA-96-5p as a postoperative, prognostic microRNA predictor in nonviral hepatocellular carcinoma. Hepatol. Res., 2022, 52(1), 93-104.
[28]
Yu, N.; Fu, S.; Liu, Y. miR-96 suppresses renal cell carcinoma invasion via downregulation of Ezrin expression. J. Exp. Clin. Cancer Res., 2015, 34, 107.
[29]
Yao, Q.; Pei, Y.; Zhang, X.; Xie, B. microRNA-96 acts as a tumor suppressor gene in human osteosarcoma via target regulation of EZRIN. Life Sci., 2018, 203, 1-11.
[http://dx.doi.org/10.1016/j.lfs.2018.04.012] [PMID: 29656060]
[30]
Vishwamitra, D.; Li, Y.; Wilson, D.; Manshouri, R.; Curry, C.V.; Shi, B.; Tang, X.M.; Sheehan, A.M.; Wistuba, I.I.; Shi, P.; Amin, H.M. MicroRNA 96 is a post-transcriptional suppressor of anaplastic lymphoma kinase expression. Am. J. Pathol., 2012, 180(5), 1772-1780.
[http://dx.doi.org/10.1016/j.ajpath.2012.01.008] [PMID: 22414602]
[31]
Yang, B.; Sun, L.; Liang, L. LncRNA HOXC-AS3 suppresses the formation of mature miR-96 in ovarian cancer cells to promote cell proliferation. Reprod. Sci., 2021, 28(8), 2342-2349.
[http://dx.doi.org/10.1007/s43032-021-00500-x] [PMID: 33651311]
[32]
Gilam, A.; Conde, J.; Weissglas-Volkov, D.; Oliva, N.; Friedman, E.; Artzi, N.; Shomron, N. Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat. Commun., 2016, 7(1), 12868.
[http://dx.doi.org/10.1038/ncomms12868] [PMID: 27641360]
[33]
Gao, X.; Zhang, Y.; Zhang, Z.; Guo, S.; Chen, X.; Guo, Y. MicroRNA-96-5p represses breast cancer proliferation and invasion through Wnt/β-catenin signaling via targeting CTNND1. Sci. Rep., 2020, 10(1), 44.
[http://dx.doi.org/10.1038/s41598-019-56571-z] [PMID: 31913290]
[34]
Sun, D.; Zhong, J.; Wei, W.; Chen, X.; Liu, J.; Hu, Z. Identification of microRNA expression in sentinel lymph nodes from patients with breast cancer via RNA sequencing for diagnostic accuracy. J. Gene Med., 2019, 21(4), e3075.
[http://dx.doi.org/10.1002/jgm.3075] [PMID: 30716792]
[35]
Guttilla, I.K.; White, B.A. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J. Biol. Chem., 2009, 284(35), 23204-23216.
[http://dx.doi.org/10.1074/jbc.M109.031427] [PMID: 19574223]
[36]
Qin, W.; Feng, S.; Sun, Y.; Jiang, G. MiR‐96‐5p promotes breast cancer migration by activating MEK/ERK signaling. J. Gene Med., 2020, 22(8), e3188.
[http://dx.doi.org/10.1002/jgm.3188] [PMID: 32196830]
[37]
Zhang, J.; Kong, X.; Li, J.; Luo, Q.; Li, X.; Shen, L.; Chen, L.; Fang, L. miR-96 promotes tumor proliferation and invasion by targeting RECK in breast cancer. Oncol. Rep., 2014, 31(3), 1357-1363.
[http://dx.doi.org/10.3892/or.2013.2934] [PMID: 24366472]
[38]
Hong, Y.; Liang, H. Uzair-ur-Rehman; Wang, Y.; Zhang, W.; Zhou, Y.; Chen, S.; Yu, M.; Cui, S.; Liu, M.; Wang, N.; Ye, C.; Zhao, C.; Liu, Y.; Fan, Q.; Zhang, C.Y.; Sang, J.; Zen, K.; Chen, X. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci. Rep., 2016, 6(1), 37421.
[http://dx.doi.org/10.1038/srep37421] [PMID: 27857177]
[39]
Gao, Z.; Wang, H.; Li, H.; Li, M.; Wang, J.; Zhang, W.; Liang, X.; Su, D.; Tang, J. Long non-coding RNA CASC2 inhibits breast cancer cell growth and metastasis through the regulation of the miR-96-5p/SYVN1 pathway. Int. J. Oncol., 2018, 53(5), 2081-2090.
[http://dx.doi.org/10.3892/ijo.2018.4522] [PMID: 30106139]
[40]
Maurel, M.; Jalvy, S.; Ladeiro, Y.; Combe, C.; Vachet, L.; Sagliocco, F.; Bioulac-Sage, P.; Pitard, V.; Jacquemin-Sablon, H.; Zucman-Rossi, J.; Laloo, B.; Grosset, C.F. A functional screening identifies five micrornas controlling glypican-3: role of mir-1271 down-regulation in hepatocellular carcinoma. Hepatology, 2013, 57(1), 195-204.
[http://dx.doi.org/10.1002/hep.25994] [PMID: 22865282]
[41]
Huang, J.F.; Jiang, H.Y.; Cai, H.; Liu, Y.; Zhu, Y.Q.; Lin, S.S.; Hu, T.T.; Wang, T.T.; Yang, W.J.; Xiao, B.; Sun, S.H.; Ma, L.Y.; Yin, H.R.; Wang, F. Genome-wide screening identifies oncofetal lncRNA Ptn-dt promoting the proliferation of hepatocellular carcinoma cells by regulating the Ptn receptor. Oncogene, 2019, 38(18), 3428-3445.
[http://dx.doi.org/10.1038/s41388-018-0643-z] [PMID: 30643194]
[42]
Baik, S.H.; Lee, J.; Lee, Y.S.; Jang, J.Y.; Kim, C.W. ANT2 shRNA downregulates miR-19a and miR-96 through the PI3K/Akt pathway and suppresses tumor growth in hepatocellular carcinoma cells. Exp. Mol. Med., 2016, 48(3), e222.
[http://dx.doi.org/10.1038/emm.2015.126] [PMID: 27012708]
[43]
Leung, W.K.C.; He, M.; Chan, A.W.H.; Law, P.T.Y.; Wong, N. Wnt/β-Catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett., 2015, 362(1), 97-105.
[http://dx.doi.org/10.1016/j.canlet.2015.03.023] [PMID: 25813403]
[44]
Yang, N.; Zhou, J.; Li, Q.; Han, F.; Yu, Z. miR-96 exerts carcinogenic effect by activating AKT/GSK-3β/β-catenin signaling pathway through targeting inhibition of FOXO1 in hepatocellular carcinoma. Cancer Cell Int., 2019, 19(1), 38.
[http://dx.doi.org/10.1186/s12935-019-0756-7] [PMID: 30828264]
[45]
Xu, D.; He, X.; Chang, Y.; Xu, C.; Jiang, X.; Sun, S.; Lin, J. Inhibition of miR-96 expression reduces cell proliferation and clonogenicity of HepG2 hepatoma cells. Oncol. Rep., 2013, 29(2), 653-661.
[http://dx.doi.org/10.3892/or.2012.2138] [PMID: 23151657]
[46]
Wang, T.H.; Yeh, C.T.; Ho, J.Y.; Ng, K.F.; Chen, T.C. OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Mol. Carcinog., 2016, 55(4), 366-375.
[http://dx.doi.org/10.1002/mc.22286] [PMID: 25663355]
[47]
Iwai, N.; Yasui, K.; Tomie, A.; Gen, Y.; Terasaki, K.; Kitaichi, T.; Soda, T.; Yamada, N.; Dohi, O.; Seko, Y.; Umemura, A.; Nishikawa, T.; Yamaguchi, K.; Moriguchi, M.; Konishi, H.; Naito, Y.; Itoh, Y. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int. J. Oncol., 2018, 53(1), 237-245.
[http://dx.doi.org/10.3892/ijo.2018.4369] [PMID: 29658604]
[48]
Huang, Y.; Zhang, J.; Li, H.; Peng, H.; Gu, M.; Wang, H. miR-96 regulates liver tumor-initiating cells expansion by targeting TP53INP1 and predicts Sorafenib resistance. J. Cancer, 2020, 11(22), 6545-6555.
[http://dx.doi.org/10.7150/jca.48333] [PMID: 33046975]
[49]
Zheng, Y.; Yu, K.; Huang, C.; Liu, L.; Zhao, H.; Huo, M.; Zhang, J. Integrated bioinformatics analysis reveals role of the LINC01093/miR 96 5p/ZFAND5/NF κB signaling axis in hepatocellular carcinoma. Exp. Ther. Med., 2019, 18(5), 3853-3860.
[http://dx.doi.org/10.3892/etm.2019.8046] [PMID: 31641376]
[50]
Ma, R.R.; Zhang, H.; Chen, H.F.; Zhang, G.H.; Tian, Y.R.; Gao, P. MiR-19a/miR-96-mediated low expression of KIF26A suppresses metastasis by regulating FAK pathway in gastric cancer. Oncogene, 2021, 40(14), 2524-2538.
[http://dx.doi.org/10.1038/s41388-020-01610-7] [PMID: 33674746]
[51]
Tang, X.; Zheng, D.; Hu, P.; Zeng, Z.; Li, M.; Tucker, L.; Monahan, R.; Resnick, M.B.; Liu, M.; Ramratnam, B. Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the β-Catenin/TCF/LEF-1 pathway in gastric cancer cells. Nucleic Acids Res., 2014, 42(5), 2988-2998.
[http://dx.doi.org/10.1093/nar/gkt1275] [PMID: 24335145]
[52]
Zhou, H.Y.; Wu, C.Q.; Bi, E.X. MiR-96-5p inhibition induces cell apoptosis in gastric adenocarcinoma. World J. Gastroenterol., 2019, 25(47), 6823-6834.
[http://dx.doi.org/10.3748/wjg.v25.i47.6823] [PMID: 31885423]
[53]
Mandal, R.; Hardin, H.; Baus, R.; Rehrauer, W.; Lloyd, R.V. Analysis of miR-96 and miR-133a expression in gastrointestinal neuroendocrine neoplasms. Endocr. Pathol., 2017, 28(4), 345-350.
[http://dx.doi.org/10.1007/s12022-017-9504-5] [PMID: 29032398]
[54]
Li, J.; Chen, Y.; Guo, X.; Zhou, L.; Jia, Z.; Peng, Z.; Tang, Y.; Liu, W.; Zhu, B.; Wang, L.; Ren, C. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J. Cell. Mol. Med., 2017, 21(5), 838-847.
[http://dx.doi.org/10.1111/jcmm.12941] [PMID: 28233416]
[55]
Ress, A.L.; Stiegelbauer, V.; Winter, E.; Schwarzenbacher, D.; Kiesslich, T.; Lax, S.; Jahn, S.; Deutsch, A.; Bauernhofer, T.; Ling, H.; Samonigg, H.; Gerger, A.; Hoefler, G.; Pichler, M. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol. Carcinog., 2015, 54(11), 1442-1450.
[http://dx.doi.org/10.1002/mc.22218] [PMID: 25256312]
[56]
Yue, C.; Chen, J.; Li, Z.; Li, L.; Chen, J.; Guo, Y. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis. J. Exp. Clin. Cancer Res., 2020, 39(1), 240.
[http://dx.doi.org/10.1186/s13046-020-01731-7] [PMID: 33183350]
[57]
Jin, G.; Liu, Y.; Zhang, J.; Bian, Z.; Yao, S.; Fei, B.; Zhou, L.; Yin, Y.; Huang, Z. A panel of serum exosomal microRNAs as predictive markers for chemoresistance in advanced colorectal cancer. Cancer Chemother. Pharmacol., 2019, 84(2), 315-325.
[http://dx.doi.org/10.1007/s00280-019-03867-6] [PMID: 31089750]
[58]
Zheng, Q.; Ding, H.; Wang, L.; Yan, Y.; Wan, Y.; Yi, Y.; Tao, L.; Zhu, C. Circulating exosomal miR-96 as a novel biomarker for radioresistant non-small-cell lung cancer. J. Oncol., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/5893981] [PMID: 33727921]
[59]
Wu, H.; Zhou, J.; Mei, S.; Wu, D.; Mu, Z.; Chen, B.; Xie, Y.; Ye, Y.; Liu, J. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J. Cell. Mol. Med., 2017, 21(6), 1228-1236.
[http://dx.doi.org/10.1111/jcmm.13056] [PMID: 28026121]
[60]
Guo, Z.; Wang, X.; Yang, Y.; Chen, W.; Zhang, K.; Teng, B.; Huang, C.; Zhao, Q.; Qiu, Z. Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Mol. Ther. Nucleic Acids, 2020, 22, 179-195.
[http://dx.doi.org/10.1016/j.omtn.2020.08.021] [PMID: 32942233]
[61]
Zhou, Y.; Chen, Y.; Ding, W.; Hua, Z.; Wang, L.; Zhu, Y.; Qian, H.; Dai, T. LncRNA UCA1 impacts cell proliferation, invasion, and migration of pancreatic cancer through regulating miR-96/FOXO3. IUBMB Life, 2018, 70(4), 276-290.
[http://dx.doi.org/10.1002/iub.1699] [PMID: 29500870]
[62]
Liu, T.; Zhou, L.; He, Z.; Chen, Y.; Jiang, X.; Xu, J.; Jiang, J. Circular RNA hsa_circ_0006117 facilitates pancreatic cancer progression by regulating the miR-96-5p/KRAS/MAPK signaling pathway. J. Oncol., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/9213205] [PMID: 34512755]
[63]
Wan, J.; Jiang, S.; Jiang, Y.; Ma, W.; Wang, X.; He, Z.; Wang, X.; Cui, R. Data mining and expression analysis of differential lncRNA ADAMTS9-AS1 in prostate cancer. Front. Genet., 2020, 10, 1377.
[http://dx.doi.org/10.3389/fgene.2019.01377] [PMID: 32153626]
[64]
Li, R.; Chen, Y.; Wu, J.; Cui, X.; Zheng, S.; Yan, H.; Wu, Y.; Wang, F. LncRNA FGF14‐AS2 represses growth of prostate carcinoma cells via modulating miR‐96‐5p/AJAP1 axis. J. Clin. Lab. Anal., 2021, 35(11), e24012.
[http://dx.doi.org/10.1002/jcla.24012] [PMID: 34655124]
[65]
Zhao, M.; Xin, X.F.; Zhang, J.Y.; Dai, W.; Lv, T.F.; Song, Y. LncRNA GMDS‐AS1 inhibits lung adenocarcinoma development by regulating miR‐96‐5p/CYLD signaling. Cancer Med., 2020, 9(3), 1196-1208.
[http://dx.doi.org/10.1002/cam4.2776] [PMID: 31860169]
[66]
Zhang, Y.; Yang, H.; Du, Y.; Liu, P.; Zhang, J.; Li, Y.; Shen, H.; Xing, L.; Xue, X.; Chen, J.; Zhang, X. Long noncoding RNA TP53TG1 promotes pancreatic ductal adenocarcinoma development by acting as a molecular sponge of microRNA‐96. Cancer Sci., 2019, 110(9), 2760-2772.
[http://dx.doi.org/10.1111/cas.14136] [PMID: 31325400]
[67]
Shao, S.; Wang, C.; Wang, S.; Zhang, H.; Zhang, Y. LncRNA STXBP5-AS1 suppressed cervical cancer progression via targeting miR-96-5p/PTEN axis. Biomed. Pharmacother., 2019, 117, 109082.
[68]
Dong, W.; Zhao, L.; Zhang, S.; Zhang, S.; Si, H. Circ-KIAA0907 inhibits the progression of oral squamous cell carcinoma by regulating the miR-96-5p/UNC13C axis. World J. Surg. Oncol., 2021, 19(1), 75.
[http://dx.doi.org/10.1186/s12957-021-02184-8] [PMID: 33715625]
[69]
Song, C.Q.; Wang, M.; Zhang, S.M.; Ma, X.Y. LncRNA GAS5 inhibits cell proliferation and resistance to doxorubicin in anaplastic thyroid carcinoma by regulating miR-96. J. Biol. Regul. Homeost. Agents, 2020, 34(5), 1787-1792.
[PMID: 33164472]
[70]
Liu, G.; Zhao, X.; Zhou, J.; Cheng, X.; Ye, Z.; Ji, Z. Long non-coding RNA MEG3 suppresses the development of bladder urothelial carcinoma by regulating miR-96 and TPM1. Cancer Biol. Ther., 2018, 19(11), 1039-1056.
[http://dx.doi.org/10.1080/15384047.2018.1480279] [PMID: 30461333]
[71]
Fang, Q.; Sang, L.; Du, S. Long noncoding RNA LINC00261 regulates endometrial carcinoma progression by modulating miRNA/FOXO1 expression. Cell Biochem. Funct., 2018, 36(6), 323-330.
[http://dx.doi.org/10.1002/cbf.3352] [PMID: 30019459]
[72]
Ge, T.; Xiang, P.; Mao, H.; Tang, S.; Zhou, J.; Zhang, Y. Inhibition of miR 96 enhances the sensitivity of colorectal cancer cells to oxaliplatin by targeting TPM1. Exp. Ther. Med., 2020, 20(3), 2134-2140.
[http://dx.doi.org/10.3892/etm.2020.8936] [PMID: 32765688]
[73]
Kim, S.A.; Kim, I.; Yoon, S.K.; Lee, E.K.; Kuh, H.J. Indirect modulation of sensitivity to 5-fluorouracil by microRNA-96 in human colorectal cancer cells. Arch. Pharm. Res., 2015, 38(2), 239-248.
[http://dx.doi.org/10.1007/s12272-014-0528-9] [PMID: 25502560]
[74]
Xia, H.; Chen, S.; Chen, K.; Huang, H.; Ma, H. MiR-96 promotes proliferation and chemo- or radioresistance by down-regulating RECK in esophageal cancer. Biomed. Pharmacother., 2014, 68, 951-958.
[75]
Wang, Y.; Huang, J.W.; Calses, P.; Kemp, C.J.; Taniguchi, T. MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res., 2012, 72(16), 4037-4046.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0103] [PMID: 22761336]
[76]
Guo, P.; Yu, Y.; Tian, Z.; Lin, Y.; Qiu, Y.; Yao, W.; Zhang, L. Upregulation of miR-96 promotes radioresistance in glioblastoma cells via targeting PDCD4. Int. J. Oncol., 2018, 53(4), 1591-1600.
[http://dx.doi.org/10.3892/ijo.2018.4498] [PMID: 30066909]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy