Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

An Overview on Immunity Booster Foods in Coronavirus Disease (COVID-19)

Author(s): Nusrat Sahiba, Ayushi Sethiya, Dinesh K. Agarwal and Shikha Agarwal*

Volume 26, Issue 7, 2023

Published on: 23 August, 2022

Page: [1251 - 1284] Pages: 34

DOI: 10.2174/1386207325666220629161828

Price: $65

Abstract

The present COVID-19 pandemic is terrible for the respiratory system and is caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). It has affected millions of people globally and over 511.9 million cases and 6.2 million deaths have been reported across the world. Various drugs have been repurposed, however, no specific medicine has been approved by the FDA to combat this disease till date. In this condition, researchers have been attracted to natural and safe products to improve immunity to viral infections through inhibiting viral cell entry, replication, and modulation. Various natural products, probiotics, and nutrients have antimicrobial, antiviral, analgesic, anti-inflammatory, and antiproliferative activities, and some of the compounds are also utilized in traditional medicine in Ayurveda, Siddha, and other cultures. This review provides a clinical perspective on the application of herbs for the prevention of viral infections.

Keywords: COVID-19, immunity-booster, antioxidant, food supplements, micronutrients, probiotics.

Next »
Graphical Abstract

[1]
WHO. Available from: https://covid19.who.int/ (Accessed on 02 June 2022).
[2]
Huang, P.; Wang, H.; Cao, Z.; Jin, H.; Chi, H.; Zhao, J.; Yu, B.; Yan, F.; Hu, X.; Wu, F.; Jiao, C.; Hou, P.; Xu, S.; Zhao, Y.; Feng, N.; Wang, J.; Sun, W.; Wang, T.; Gao, Y.; Yang, S.; Xia, X. A rapid and specific assay for the detection of MERS-CoV. Front. Microbiol., 2018, 9, 1101.
[http://dx.doi.org/10.3389/fmicb.2018.01101] [PMID: 29896174]
[3]
Coronaviridae study group of the international committee on taxonomy of viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z]
[4]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[5]
Liu, C.; Yang, Y.; Gao, Y.Z.; Shen, C.G.; Ju, B.; Liu, C.C.; Tang, X.; Wei, J.L.; Ma, X.M.; Liu, W.L.; Xu, S.M.; Liu, Y.X.; Yuan, J.; Wu, J.; Liu, Z.; Zhang, Z.; Wang, P.Y.; Liu, L. Viral architecture of SARS-CoV-2 with post-fusion spike revealed by cryo-EM. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.02.972927]
[6]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[7]
Oberfeld, B.; Achanta, A.; Carpenter, K.; Chen, P.; Gilette, N.M.; Langat, P.; Said, J.T.; Schiff, A.E.; Zhou, A.S.; Barczak, A.K.; Pillai, S. SnapShot: COVID-19. Cell, 2020, 181(4), 954-954.e1.
[http://dx.doi.org/10.1016/j.cell.2020.04.013] [PMID: 32413300]
[8]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[9]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66, 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[10]
Pramanick, I.; Sengupta, N.; Mishra, S.; Pandey, S.; Girish, N.; Das, A.; Dutta, S. Conformational flexibility and structural variability of SARS-CoV2 S protein. Structure, 2021, 29(8), 834-845.e5.
[http://dx.doi.org/10.1016/j.str.2021.04.006] [PMID: 33932324]
[11]
Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and coronavirus disease 2019, What we know so far. Pathogens, 2020, 9(3), 231.
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[12]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[13]
Matrajt, L.; Eaton, J.; Leung, T.; Brown, E.R. Vaccine optimization for COVID-19: Who to vaccinate first? Sci. Adv., 2021, 7(6), eabf1374.
[http://dx.doi.org/10.1126/sciadv.abf1374] [PMID: 33536223]
[14]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[15]
Bloch, E.M.; Shoham, S.; Casadevall, A.; Sachais, B.S.; Shaz, B.; Winters, J.L.; van Buskirk, C.; Grossman, B.J.; Joyner, M.; Henderson, J.P.; Pekosz, A.; Lau, B.; Wesolowski, A.; Katz, L.; Shan, H.; Auwaerter, P.G.; Thomas, D.; Sullivan, D.J.; Paneth, N.; Gehrie, E.; Spitalnik, S.; Hod, E.A.; Pollack, L.; Nicholson, W.T.; Pirofski, L.A.; Bailey, J.A.; Tobian, A.A. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Invest., 2020, 130(6), 2757-2765.
[http://dx.doi.org/10.1172/JCI138745] [PMID: 32254064]
[16]
Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; McDermott, A.; Flach, B.; Doria-Rose, N.A.; Corbett, K.S.; Morabito, K.M.; O’Dell, S.; Schmidt, S.D.; Swanson, P.A., II; Padilla, M.; Mascola, J.R.; Neuzil, K.M.; Bennett, H.; Sun, W.; Peters, E.; Makowski, M.; Albert, J.; Cross, K.; Buchanan, W.; Pikaart-Tautges, R.; Ledgerwood, J.E.; Graham, B.S.; Beigel, J.H. An mRNA vaccine against SARS-CoV-2-preliminary report. N. Engl. J. Med., 2020, 383(20), 1920-1931.
[http://dx.doi.org/10.1056/NEJMoa2022483] [PMID: 32663912]
[17]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao, H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu, D.; Zhang, Z.; Liu, Y.; Liu, L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA, 2020, 323(16), 1582-1589.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[18]
Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; Belij-Rammerstorfer, S.; Berry, L.; Bibi, S.; Bittaye, M.; Cathie, K.; Chappell, H.; Charlton, S.; Cicconi, P.; Clutterbuck, E.A.; Colin-Jones, R.; Dold, C.; Emary, K.R.W.; Fedosyuk, S.; Fuskova, M.; Gbesemete, D.; Green, C.; Hallis, B.; Hou, M.M.; Jenkin, D.; Joe, C.C.D.; Kelly, E.J.; Kerridge, S.; Lawrie, A.M.; Lelliott, A.; Lwin, M.N.; Makinson, R.; Marchevsky, N.G.; Mujadidi, Y.; Munro, A.P.S.; Pacurar, M.; Plested, E.; Rand, J.; Rawlinson, T.; Rhead, S.; Robinson, H.; Ritchie, A.J.; Ross-Russell, A.L.; Saich, S.; Singh, N.; Smith, C.C.; Snape, M.D.; Song, R.; Tarrant, R.; Themistocleous, Y.; Thomas, K.M.; Villafana, T.L.; Warren, S.C.; Watson, M.E.E.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Faust, S.N.; Pollard, A.J.; Aboagye, J.; Adams, K.; Ali, A.; Allen, E.R.; Allen, L.; Allison, J.L.; Andritsou, F.; Anslow, R.; Arbe-Barnes, E.H.; Baker, M.; Baker, N.; Baker, P.; Baleanu, I.; Barker, D.; Barnes, E.; Barrett, J.R.; Barrett, K.; Bates, L.; Batten, A.; Beadon, K.; Beckley, R.; Bellamy, D.; Berg, A.; Bermejo, L.; Berrie, E.; Beveridge, A.; Bewley, K.; Bijker, E.M.; Birch, G.; Blackwell, L.; Bletchly, H.; Blundell, C.L.; Blundell, S.R.; Bolam, E.; Boland, E.; Bormans, D.; Borthwick, N.; Boukas, K.; Bower, T.; Bowring, F.; Boyd, A.; Brenner, T.; Brown, P.; Brown-O’Sullivan, C.; Bruce, S.; Brunt, E.; Burbage, J.; Burgoyne, J.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Camara, S.; Cao, M.; Cappuccini, F.; Carr, M.; Carroll, M.W.; Cashen, P.; Cavey, A.; Chadwick, J.; Challis, R.; Chapman, D.; Charles, D.; Chelysheva, I.; Cho, J-S.; Cifuentes, L.; Clark, E.; Collins, S.; Conlon, C.P.; Coombes, N.S.; Cooper, R.; Cooper, C.; Crocker, W.E.M.; Crosbie, S.; Cullen, D.; Cunningham, C.; Cuthbertson, F.; Datoo, B.E.; Dando, L.; Datoo, M.S.; Datta, C.; Davies, H.; Davies, S.; Davis, E.J.; Davis, J.; Dearlove, D.; Demissie, T.; Di Marco, S.; Di Maso, C.; DiTirro, D.; Docksey, C.; Dong, T.; Donnellan, F.R.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Drury, R.E.; Dunachie, S.J.; Edwards, C.J.; Edwards, N.J.; El Muhanna, O.; Elias, S.C.; Elliott, R.S.; Elmore, M.J.; English, M.R.; Felle, S.; Feng, S.; Ferreira Da Silva, C.; Field, S.; Fisher, R.; Fixmer, C.; Ford, K.J.; Fowler, J.; Francis, E.; Frater, J.; Furze, J.; Galian-Rubio, P.; Galloway, C.; Garlant, H.; Gavrila, M.; Gibbons, F.; Gibbons, K.; Gilbride, C.; Gill, H.; Godwin, K.; Gordon-Quayle, K.; Gorini, G.; Goulston, L.; Grabau, C.; Gracie, L.; Graham, N.; Greenwood, N.; Griffiths, O.; Gupta, G.; Hamilton, E.; Hanumunthadu, B.; Harris, S.A.; Harris, T.; Harrison, D.; Hart, T.C.; Hartnell, B.; Haskell, L.; Hawkins, S.; Henry, J.A.; Hermosin Herrera, M.; Hill, D.; Hill, J.; Hodges, G.; Hodgson, S.H.C.; Horton, K.L.; Howe, E.; Howell, N.; Howes, J.; Huang, B.; Humphreys, J.; Humphries, H.E.; Iveson, P.; Jackson, F.; Jackson, S.; Jauregui, S.; Jeffers, H.; Jones, B.; Jones, C.E.; Jones, E.; Jones, K.; Joshi, A.; Kailath, R.; Keen, J.; Kelly, D.M.; Kelly, S.; Kelly, D.; Kerr, D.; Khan, L.; Khozoee, B.; Killen, A.; Kinch, J.; King, L.D.W.; King, T.B.; Kingham, L.; Klenerman, P.; Knight, J.C.; Knott, D.; Koleva, S.; Lang, G.; Larkworthy, C.W.; Larwood, J.P.J.; Law, R.; Lee, A.; Lee, K.Y.N.; Lees, E.A.; Leung, S.; Li, Y.; Lias, A.M.; Linder, A.; Lipworth, S.; Liu, S.; Liu, X.; Lloyd, S.; Loew, L.; Lopez Ramon, R.; Madhavan, M.; Mainwaring, D.O.; Mallett, G.; Mansatta, K.; Marinou, S.; Marius, P.; Marlow, E.; Marriott, P.; Marshall, J.L.; Martin, J.; Masters, S.; McEwan, J.; McGlashan, J.L.; McInroy, L.; McRobert, N.; Megson, C.; Mentzer, A.J.; Mirtorabi, N.; Mitton, C.; Moore, M.; Moran, M.; Morey, E.; Morgans, R.; Morris, S.J.; Morrison, H.M.; Morshead, G.; Morter, R.; Moya, N.A.; Mukhopadhyay, E.; Muller, J.; Munro, C.; Murphy, S.; Mweu, P.; Noé, A.; Nugent, F.L.; O’Brien, K.; O’Connor, D.; Oguti, B.; Olchawski, V.; Oliveira, C.; O’Reilly, P.J.; Osborne, P.; Owen, L.; Owino, N.; Papageorgiou, P.; Parracho, H.; Parsons, K.; Patel, B.; Patrick-Smith, M.; Peng, Y.; Penn, E.J.; Peralta-Alvarez, M.P.; Perring, J.; Petropoulos, C.; Phillips, D.J.; Pipini, D.; Pollard, S.; Poulton, I.; Pratt, D.; Presland, L.; Proud, P.C.; Provstgaard-Morys, S.; Pueschel, S.; Pulido, D.; Rabara, R.; Radia, K.; Rajapaska, D.; Ramos Lopez, F.; Ratcliffe, H.; Rayhan, S.; Rees, B.; Reyes Pabon, E.; Roberts, H.; Robertson, I.; Roche, S.; Rollier, C.S.; Romani, R.; Rose, Z.; Rudiansyah, I.; Sabheha, S.; Salvador, S.; Sanders, H.; Sanders, K.; Satti, I.; Sayce, C.; Schmid, A.B.; Schofield, E.; Screaton, G.; Sedik, C.; Seddiqi, S.; Segireddy, R.R.; Selby, B.; Shaik, I.; Sharpe, H.R.; Shaw, R.; Shea, A.; Silk, S.; Silva-Reyes, L.; Skelly, D.T.; Smith, D.J.; Smith, D.C.; Smith, N.; Spencer, A.J.; Spoors, L.; Stafford, E.; Stamford, I.; Stockdale, L.; Stockley, D.; Stockwell, L.V.; Stokes, M.; Strickland, L.H.; Stuart, A.; Sulaiman, S.; Summerton, E.; Swash, Z.; Szigeti, A.; Tahiri-Alaoui, A.; Tanner, R.; Taylor, I.; Taylor, K.; Taylor, U.; te Water Naude, R.; Themistocleous, A.; Thomas, M.; Thomas, T.M.; Thompson, A.; Thompson, K.; Thornton-Jones, V.; Tinh, L.; Tomic, A.; Tonks, S.; Towner, J.; Tran, N.; Tree, J.A.; Truby, A.; Turner, C.; Turner, R.; Ulaszewska, M.; Varughese, R.; Verbart, D.; Verheul, M.K.; Vichos, I.; Walker, L.; Wand, M.E.; Watkins, B.; Welch, J.; West, A.J.; White, C.; White, R.; Williams, P.; Woodyer, M.; Worth, A.T.; Wright, D.; Wrin, T.; Yao, X.L.; Zbarcea, D-A.; Zizi, D. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet, 2021, 396(10267), 1979-1993.
[http://dx.doi.org/10.1016/S0140-6736(20)32466-1] [PMID: 33220855]
[19]
Walsh, E.E.; Frenck, R.W., Jr; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; Swanson, K.A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes-Garfias, C.; Shi, P.Y.; Türeci, Ö.; Tompkins, K.R.; Lyke, K.E.; Raabe, V.; Dormitzer, P.R.; Jansen, K.U.; Şahin, U.; Gruber, W.C. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N. Engl. J. Med., 2020, 383(25), 2439-2450.
[http://dx.doi.org/10.1056/NEJMoa2027906] [PMID: 33053279]
[20]
Fuzimoto, A.D.; Isidoro, C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? J. Tradit. Complement. Med., 2020, 10(4), 405-419.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.003] [PMID: 32691005]
[21]
Zhang, D.H.; Wu, K.L.; Zhang, X.; Deng, S.Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[22]
Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr., 2020, 60(6), 887-939.
[http://dx.doi.org/10.1080/10408398.2018.1552244] [PMID: 30632782]
[23]
Boozari, M.; Hosseinzadeh, H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother. Res., 2021, 35(2), 864-876.
[http://dx.doi.org/10.1002/ptr.6873] [PMID: 32985017]
[24]
Ang, L.; Lee, H.W.; Kim, A.; Lee, M.S. Herbal medicine for the management of COVID-19 during the medical observation period: A review of guidelines. Integr. Med. Res., 2020, 9(3), 100465.
[http://dx.doi.org/10.1016/j.imr.2020.100465] [PMID: 32691000]
[25]
Sohail, M.N.; Rasul, F.; Karim, A.; Kanwal, U.; Attitalla, I.H. Plant as a source of natural antiviral agents. Asian J. Anim. Vet. Adv., 2011, 6(12), 1125-1152.
[http://dx.doi.org/10.3923/ajava.2011.1125.1152]
[26]
Abdalla, M.A.; McGaw, L.J. Bioprospecting of South African plants as a unique resource for bioactive endophytic microbes. Front. Pharmacol., 2018, 9, 456.
[http://dx.doi.org/10.3389/fphar.2018.00456] [PMID: 29867466]
[27]
COVID-19 Pandemic. A case for phytomedicines. Nat. Prod. Commun, 2020, 15(8), 1934578X20945086.
[28]
Benarba, B.; Pandiella, A. Medicinal plants as sources of active molecules against COVID-19. Front. Pharmacol., 2020, 11, 1189.
[http://dx.doi.org/10.3389/fphar.2020.01189] [PMID: 32848790]
[29]
Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-Ldrissi, M.; Bouachrine, M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2021, 39(8), 2971-2979.
[http://dx.doi.org/10.1080/07391102.2020.1758790] [PMID: 32306860]
[30]
Koe, T. COVID-19 Natural Product Trial: New curcumin, artemisinin supplement to be tested on patients. Available from: https://www.nutraingredients-asia.com/Article/2020/04/23/ (Accessed July 2021).
[31]
Orhan, I.E.; Senol Deniz, F.S. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2? Nat. Prod. Bioprospect., 2020, 10(4), 171-186.
[http://dx.doi.org/10.1007/s13659-020-00250-4] [PMID: 32529545]
[32]
Stirgus, E. Universities across Georgia research ways to prevent, treat COVID-19. Coronavirus pandemic: Research. Atlanta J.-Const; , 2020. Available from: https://www.ajc.com/news/stateregional/the-fight-for-cure/gGkf3FXK5OeP5QVYClLcCJ/
[33]
Morán-López, J.M. Malnutrition and nutrition support in COVID-19: The results of a nutrition support protocol. Endocrinol. Diabetes Nutr., 2021, 68(9), 621-627.
[http://dx.doi.org/10.1016/j.endien.2021.11.019] [PMID: 34906342]
[34]
Piyathilake, C.J.; Badiga, S.; Chappell, A.R.; Johanning, G.L.; Jolly, P.E. Racial differences in dietary choices and their relationship to inflammatory potential in childbearing age women at risk for exposure to COVID-19. Nutr. Res., 2021, 90, 1-12.
[http://dx.doi.org/10.1016/j.nutres.2021.04.004] [PMID: 34049184]
[35]
Wang, Y.; Liu, Y.; Lv, Q.; Zheng, D.; Zhou, L.; Ouyang, W.; Ding, B.; Zou, X.; Yan, F.; Liu, B.; Chen, J.; Liu, T.; Fu, C.; Fang, Q.; Wang, Y.; Li, F.; Chen, A.; Lundborg, C.S.; Guo, J.; Wen, Z.; Zhang, Z. Effect and safety of Chinese herbal medicine granules in patients with severe coronavirus disease 2019 in Wuhan, China: A retrospective, single-center study with propensity score matching. Phytomedicine, 2021, 85, 153404.
[http://dx.doi.org/10.1016/j.phymed.2020.153404] [PMID: 33637412]
[36]
Alves, T.C.H.S.; Guimarães, R.S.; Souza, S.F.; Brandão, N.A.; Daltro, C.H.D.C.; Conceição-Machado, M.E.P.; Oliveira, L.P.M.; Cunha, C.M. Influence of nutritional assistance on mortality by COVID-19 in critically ill patients. Clin. Nutr. ESPEN, 2021, 44, 469-471.
[http://dx.doi.org/10.1016/j.clnesp.2021.05.016] [PMID: 34330508]
[37]
Cobre, A.F.; Surek, M.; Vilhena, R.O.; Böger, B.; Fachi, M.M.; Momade, D.R.; Tonin, F.S.; Sarti, F.M.; Pontarolo, R. Influence of foods and nutrients on COVID-19 recovery: A multivariate analysis of data from 170 countries using a generalized linear model. Clin. Nutr., 2021, S0261-5614(21), 00157-6.
[http://dx.doi.org/10.1016/j.clnu.2021.03.018] [PMID: 33933299]
[38]
Aksoy, N.C.; Kabadayi, E.T.; Alan, A.K. An unintended consequence of COVID-19: Healthy nutrition. Appetite, 2021, 166, 105430.
[http://dx.doi.org/10.1016/j.appet.2021.105430] [PMID: 34089803]
[39]
Luo, Y.; Chen, L.; Xu, F.; Gao, X.; Han, D.; Na, L. Investigation on knowledge, attitudes and practices about food safety and nutrition in the China during the epidemic of corona virus disease 2019. Public Health Nutr., 2021, 24(2), 267-274.
[http://dx.doi.org/10.1017/S1368980020002797] [PMID: 32669149]
[40]
Singh, N.A.; Kumar, P.; Jyoti; Kumar, N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. Phytother. Res., 2021, 35(5), 2745-2757.
[http://dx.doi.org/10.1002/ptr.7019] [PMID: 33511704]
[41]
Mohseni, H.; Amini, S.; Abiri, B.; Kalantar, M.; Kaydani, M.; Barati, B.; Pirabbasi, E.; Bahrami, F. Are history of dietary intake and food habits of patients with clinical symptoms of COVID 19 different from healthy controls? A case-control study. Clin. Nutr. ESPEN, 2021, 42, 280-285.
[http://dx.doi.org/10.1016/j.clnesp.2021.01.021] [PMID: 33745593]
[42]
Angeles-Agdeppa, I.; Nacis, J.S.; Capanzana, M.V.; Dayrit, F.M.; Tanda, K.V. Virgin coconut oil is effective in lowering C-reactive protein levels among suspect and probable cases of COVID-19. J. Funct. Foods, 2021, 83, 104557.
[http://dx.doi.org/10.1016/j.jff.2021.104557] [PMID: 34055047]
[43]
Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, 2014, 186864.
[http://dx.doi.org/10.1155/2014/186864] [PMID: 24877064]
[44]
Mathew, D.; Hsu, W.L. Antiviral potential of curcumin. J. Funct. Foods, 2018, 40, 692-699.
[http://dx.doi.org/10.1016/j.jff.2017.12.017]
[45]
Chattopadhyay, I.; Biswas, K.; Bandyopadhyay, U.; Banerjee, R.K. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci., 2004, 10, 44-53.
[46]
Rathaur, P.; Raja, W.; Ramteke, P.W.; John, S.A. Turmeric: The golden spice of life. Int. J. Pharm. Sci. Res., 2012, 3(7), 1987.
[47]
dos Santos, V.M.; Sugai, T.A.; Modesto, L.C.; Modesto, J.C. Curcumin as a complementary treatment in COVID-19. J. Health Sci. Res., 2022, 7(1), 31-32.
[http://dx.doi.org/10.7324/jhsr.2022.715]
[48]
Ahn, K.S.; Sethi, G.; Jain, A.K.; Jaiswal, A.K.; Aggarwal, B.B. Genetic deletion of NAD(P)H:quinone oxidoreductase 1 abrogates activation of nuclear factor-kappaB, IkappaBalpha kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. J. Biol. Chem., 2006, 281(29), 19798-19808.
[http://dx.doi.org/10.1074/jbc.M601162200] [PMID: 16682409]
[49]
Gunathilake, T.M.S.U.; Ching, Y.C.; Uyama, H.; Hai, N.D.; Chuah, C.H. Enhanced curcumin loaded nanocellulose: A possible inhalable nanotherapeutic to treat COVID-19. Cellulose, 2022, 29(3), 1821-1840.
[http://dx.doi.org/10.1007/s10570-021-04391-8] [PMID: 35002106]
[50]
Praditya, D.; Kirchhoff, L.; Brüning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective properties of the golden spice curcumin. Front. Microbiol., 2019, 10, 912.
[http://dx.doi.org/10.3389/fmicb.2019.00912] [PMID: 31130924]
[51]
Puar, Y.R.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Tergaonkar, V. Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression. Biomedicines, 2018, 6(3), 82.
[http://dx.doi.org/10.3390/biomedicines6030082] [PMID: 30060453]
[52]
Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res., 2017, 115, 133-148.
[http://dx.doi.org/10.1016/j.phrs.2016.11.017] [PMID: 27888157]
[53]
Aggarwal, B.B.; Sung, B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol. Sci., 2009, 30(2), 85-94.
[http://dx.doi.org/10.1016/j.tips.2008.11.002] [PMID: 19110321]
[54]
Pagano, E.; Romano, B.; Izzo, A.A.; Borrelli, F. The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews. Pharmacol. Res., 2018, 134, 79-91.
[http://dx.doi.org/10.1016/j.phrs.2018.06.007] [PMID: 29890252]
[55]
Mounce, B.C.; Cesaro, T.; Carrau, L.; Vallet, T.; Vignuzzi, M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res., 2017, 142, 148-157.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[56]
Park, B.S.; Kim, J.G.; Kim, M.R.; Lee, S.E.; Takeoka, G.R.; Oh, K.B.; Kim, J.H. Curcuma longa L. constituents inhibit sortase A and Staphylococcus aureus cell adhesion to fibronectin. J. Agric. Food Chem., 2005, 53(23), 9005-9009.
[http://dx.doi.org/10.1021/jf051765z] [PMID: 16277395]
[57]
Srivastava, R.M.; Singh, S.; Dubey, S.K.; Misra, K.; Khar, A. Immunomodulatory and therapeutic activity of curcumin. Int. Immunopharmacol., 2011, 11(3), 331-341.
[http://dx.doi.org/10.1016/j.intimp.2010.08.014] [PMID: 20828642]
[58]
Catanzaro, M.; Corsini, E.; Rosini, M.; Racchi, M.; Lanni, C. Immunomodulators inspired by nature: A review on curcumin and echinacea. Molecules, 2018, 23(11), 2778.
[http://dx.doi.org/10.3390/molecules23112778] [PMID: 30373170]
[59]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[60]
Shin, H.S.; See, H.J.; Jung, S.Y.; Choi, D.W.; Kwon, D.A.; Bae, M.J.; Sung, K.S.; Shon, D.H. Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy. J. Ethnopharmacol., 2015, 175, 21-29.
[http://dx.doi.org/10.1016/j.jep.2015.08.038] [PMID: 26342520]
[61]
Ma, C.; Ma, Z.; Fu, Q.; Ma, S. Curcumin attenuates allergic airway inflammation by regulation of CD4+CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice. Fitoterapia, 2013, 87, 57-64.
[http://dx.doi.org/10.1016/j.fitote.2013.02.014] [PMID: 23500387]
[62]
Dao, T.T.; Nguyen, P.H.; Won, H.K.; Kim, E.H.; Park, J.; Won, B.Y.; Oh, W.K. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem., 2012, 134(1), 21-28.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.015]
[63]
Chong, L.; Zhang, W.; Nie, Y.; Yu, G.; Liu, L.; Lin, L.; Wen, S.; Zhu, L.; Li, C. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway. Inflammation, 2014, 37(5), 1476-1485.
[http://dx.doi.org/10.1007/s10753-014-9873-6] [PMID: 24706026]
[64]
Subhashini; Chauhan, P.S.; Singh, R. Ovalbumin-induced allergic inflammation lead to structural alterations in mouse model and protective effects of intranasal curcumin: A comparative study. Allergol. Immunopathol. (Madr.), 2016, 44(3), 246-256.
[http://dx.doi.org/10.1016/j.aller.2016.01.001] [PMID: 27046748]
[65]
von Rhein, C.; Weidner, T.; Henß, L.; Martin, J.; Weber, C.; Sliva, K.; Schnierle, B.S. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro. Antiviral Res., 2016, 125, 51-57.
[http://dx.doi.org/10.1016/j.antiviral.2015.11.007] [PMID: 26611396]
[66]
Funamoto, M.; Sunagawa, Y.; Katanasaka, Y.; Miyazaki, Y.; Imaizumi, A.; Kakeya, H.; Yamakage, H.; Satoh-Asahara, N.; Komiyama, M.; Wada, H.; Hasegawa, K.; Morimoto, T. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 2029-2034.
[http://dx.doi.org/10.2147/COPD.S104490] [PMID: 27616885]
[67]
Sornpet, B.; Potha, T.; Tragoolpua, Y.; Pringproa, K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac. J. Trop. Med., 2017, 10(9), 871-876.
[http://dx.doi.org/10.1016/j.apjtm.2017.08.010] [PMID: 29080615]
[68]
Emami, B.; Shakeri, F.; Ghorani, V.; Boskabady, M.H. Relaxant effect of Curcuma longa on rat tracheal smooth muscle and its possible mechanisms. Pharm. Biol., 2017, 55(1), 2248-2258.
[http://dx.doi.org/10.1080/13880209.2017.1400079] [PMID: 29169285]
[69]
Mustafa, R.; Blumenthal, E. Immunomodulatory effects of turmeric: Proliferation of spleen cells in mice. J. Immunoassay Immunochem., 2017, 38(2), 140-146.
[http://dx.doi.org/10.1080/15321819.2016.1227835] [PMID: 27559614]
[70]
Ichsyani, M.; Ridhanya, A.; Risanti, M.; Desti, H.; Ceria, R.; Putri, D.H.; Sudiro, T.M.; Dewi, B.E. Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo. Earth Environ. Sci. (Ruse), 2017, 101(1), 012005.
[71]
Chauhan, P.S.; Singh, D.K.; Dash, D.; Singh, R. Intranasal curcumin regulates chronic asthma in mice by modulating NF-ĸB activation and MAPK signaling. Phytomedicine, 2018, 51, 29-38.
[http://dx.doi.org/10.1016/j.phymed.2018.06.022] [PMID: 30466625]
[72]
Shakeri, F.; Roshan, N.M.; Kaveh, M.; Eftekhar, N.; Boskabady, M.H. Curcumin affects tracheal responsiveness and lung pathology in asthmatic rats. Pharmacol. Rep., 2018, 70(5), 981-987.
[http://dx.doi.org/10.1016/j.pharep.2018.04.007]
[73]
Manarin, G.; Anderson, D.; Silva, J.M.E.; Coppede, J.D.S.; Roxo-Junior, P.; Pereira, A.M.S.; Carmona, F. Curcuma longa L. ameliorates asthma control in children and adolescents: A randomized, double-blind, controlled trial. J. Ethnopharmacol., 2019, 238, 111882.
[http://dx.doi.org/10.1016/j.jep.2019.111882] [PMID: 30991137]
[74]
Okuda-Hanafusa, C.; Uchio, R.; Fuwa, A.; Kawasaki, K.; Muroyama, K.; Yamamoto, Y.; Murosaki, S. Turmeronol A and turmeronol B from Curcuma longa prevent inflammatory mediator production by lipopolysaccharide-stimulated RAW264.7 macrophages, partially via reduced NF-κB signaling. Food Funct., 2019, 10(9), 5779-5788.
[http://dx.doi.org/10.1039/C9FO00336C] [PMID: 31454011]
[75]
Patel, A.; Rajendran, M.; Shah, A.; Patel, H.; Pakala, S.B.; Karyala, P. Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV. J. Biomol. Struct. Dyn., 2021, 23, 1-9.
[http://dx.doi.org/10.1080/07391102.2020.1868338] [PMID: 33397223]
[76]
Stoner, G.D. Ginger: Is it ready for prime time? Cancer Prev. Res. (Phila.), 2013, 6(4), 257-262.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0055] [PMID: 23559451]
[77]
Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; Merlin, D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 2016, 101, 321-340.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.018] [PMID: 27318094]
[78]
Ho, S.C.; Chang, K.S.; Lin, C.C. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem., 2013, 141(3), 3183-3191.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.010] [PMID: 23871076]
[79]
Nile, S.H.; Park, S.W. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crops Prod., 2015, 70, 238-244.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.033]
[80]
Citronberg, J.; Bostick, R.; Ahearn, T.; Turgeon, D.K.; Ruffin, M.T.; Djuric, Z.; Sen, A.; Brenner, D.E.; Zick, S.M. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, and controlled trial. Cancer Prev. Res. (Phila.), 2013, 6(4), 271-281.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0327] [PMID: 23303903]
[81]
Townsend, E.A.; Siviski, M.E.; Zhang, Y.; Xu, C.; Hoonjan, B.; Emala, C.W. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am. J. Respir. Cell Mol. Biol., 2013, 48(2), 157-163.
[http://dx.doi.org/10.1165/rcmb.2012-0231OC] [PMID: 23065130]
[82]
Kumar, N.V.; Murthy, P.S.; Manjunatha, J.R.; Bettadaiah, B.K. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chem., 2014, 159, 451-457.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.039] [PMID: 24767081]
[83]
Mangprayool, T.; Kupittayanant, S.; Chudapongse, N. Participation of citral in the bronchodilatory effect of ginger oil and possible mechanism of action. Fitoterapia, 2013, 89, 68-73.
[http://dx.doi.org/10.1016/j.fitote.2013.05.012] [PMID: 23685048]
[84]
Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 145(1), 146-151.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[85]
Sahoo, B.M.; Banik, B.K. Medicinal plants: Source for immunosuppressive agents. Immunol. Curr. Res., 2018, 2(106), 2.
[86]
Khan, A.M.; Shahzad, M.; Raza Asim, M.B.; Imran, M.; Shabbir, A. Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. Pharm. Biol., 2015, 53(3), 359-367.
[http://dx.doi.org/10.3109/13880209.2014.920396] [PMID: 25420680]
[87]
Imanishi, N.; Andoh, T.; Mantani, N.; Sakai, S.; Terasawa, K.; Shimada, Y.; Sato, M.; Katada, Y.; Ueda, K.; Ochiai, H. Macrophage-mediated inhibitory effect of Zingiber officinale Rosc, a traditional oriental herbal medicine, on the growth of influenza A/Aichi/2/68 virus. Am. J. Chin. Med., 2006, 34(1), 157-169.
[http://dx.doi.org/10.1142/S0192415X06003722] [PMID: 16437748]
[88]
Sharma, B.K.; Klinzing, D.C.; Ramos, J.D. Modulatory activities of Zingiber officinale Roscoe methanol extract on the expression and activity of MMPs and TIMPs on dengue virus infected cells. Asian Pac. J. Trop. Dis., 2015, 5, S19-S26.
[http://dx.doi.org/10.1016/S2222-1808(15)60849-0]
[89]
Mahboubi, M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clin. Phytoscience, 2019, 5(1), 1-2.
[http://dx.doi.org/10.1186/s40816-018-0097-4]
[90]
Kawamoto, Y.; Ueno, Y.; Nakahashi, E.; Obayashi, M.; Sugihara, K.; Qiao, S.; Iida, M.; Kumasaka, M.Y.; Yajima, I.; Goto, Y.; Ohgami, N.; Kato, M.; Takeda, K. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation. J. Nutr. Biochem., 2016, 27, 112-122.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.025] [PMID: 26403321]
[91]
Kardan, M.; Rafiei, A.; Ghaffari, J.; Valadan, R.; Morsaljahan, Z.; Haj-Ghorbani, S.T. Effect of ginger extract on expression of GATA3, T-bet and ROR-γt in peripheral blood mononuclear cells of patients with Allergic Asthma. Allergol. Immunopathol. (Madr.), 2019, 47(4), 378-385.
[http://dx.doi.org/10.1016/j.aller.2018.12.003] [PMID: 30745246]
[92]
Ran, S.; Sun, F.; Song, Y.; Wang, X.; Hong, Y.; Han, Y. The study of dried ginger and Linggan Wuwei Jiangxin decoction treatment of cold asthma rats using GC-MS based metabolomics. Front. Pharmacol., 2019, 10, 284.
[http://dx.doi.org/10.3389/fphar.2019.00284] [PMID: 31031619]
[93]
Rathinavel, T.; Palanisamy, M.; Palanisamy, S.; Subramanian, A.; Thangaswamy, S. Phytochemical 6-Gingerol-A promising Drug of choice for COVID-19. Int. J. Adv. Sci. Eng., 2020, 6(4), 1482-1489.
[http://dx.doi.org/10.29294/IJASE.6.4.2020.1482-1489]
[94]
Goswami, D.; Kumar, M.; Ghosh, S.K.; Das, A. Natural product compounds in alpinia officinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors. ChemRxiv; Cambridge: Cambridge Open Engage;, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12071997.v1]
[95]
Safa, O.; Hassaniazad, M.; Farashahinejad, M.; Davoodian, P.; Dadvand, H.; Hassanipour, S.; Fathalipour, M. Effects of Ginger on clinical manifestations and paraclinical features of patients with Severe Acute Respiratory Syndrome due to COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials, 2020, 21(1), 841.
[http://dx.doi.org/10.1186/s13063-020-04765-6] [PMID: 33036662]
[96]
Rais, A.; Negi, D.S.; Yadav, A.; Arya, H.; Verma, R.; Galib, R.; Ahmad, A.; Yadav, M.K.; Ahirwar, P.N. A Randomized open label parallel group pilot study to evaluate efficacy of Ayurveda interventions in the management of asymptomatic and mild COVID-19 patients experiences of a Lucknow based Level 2 hospital of Uttar Pradesh, India. J. Ayurveda Integr. Med., 2022, 13(2), 100393.
[http://dx.doi.org/10.1016/j.jaim.2020.12.013] [PMID: 33897204]
[97]
Ifalahma, D.; Ismail, W.A.; Astuti, I.D.; Septiarini, A.D.; Wulansari, M.A. Combination of tea-ginger-mint extract increase the elderly immunity. 2021 Proceeding of the 2nd International Conference Health, Science And Technology (ICOHETECH), 2021.
[98]
Yocum, G.T.; Hwang, J.J.; Mikami, M.; Danielsson, J.; Kuforiji, A.S.; Emala, C.W. Ginger and its bioactive component 6-shogaol mitigate lung inflammation in a murine asthma model. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 318(2), L296-L303.
[http://dx.doi.org/10.1152/ajplung.00249.2019] [PMID: 31800263]
[99]
Ahmad, A.; Rasheed, N.; Gupta, P.; Singh, S.; Siripurapu, K.B.; Ashraf, G.M.; Kumar, R.; Chand, K.; Maurya, R.; Banu, N.; Al-Sheeha, M.; Palit, G. Novel Ocimumoside A and B as anti-stress agents: Modulation of brain monoamines and antioxidant systems in chronic unpredictable stress model in rats. Phytomedicine, 2012, 19(7), 639-647.
[http://dx.doi.org/10.1016/j.phymed.2012.02.012] [PMID: 22455995]
[100]
Gupta, S.K.; Prakash, J.; Srivastava, S. Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant. Indian J. Exp. Biol., 2002, 40(7), 765-773.
[PMID: 12597545]
[101]
Giridharan, V.V.; Thandavarayan, R.A.; Mani, V.; Ashok Dundapa, T.; Watanabe, K.; Konishi, T. Ocimum sanctum Linn. leaf extracts inhibit acetylcholinesterase and improve cognition in rats with experimentally induced dementia. J. Med. Food, 2011, 14(9), 912-919.
[http://dx.doi.org/10.1089/jmf.2010.1516] [PMID: 21812651]
[102]
Ovesná, Z.; Kozics, K.; Slamenová, D. Protective effects of ursolic acid and oleanolic acid in leukemic cells. Mutat. Res., 2006, 600(1-2), 131-137.
[http://dx.doi.org/10.1016/j.mrfmmm.2006.03.008] [PMID: 16831451]
[103]
Mediratta, P.K.; Sharma, K.K.; Singh, S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J. Ethnopharmacol., 2002, 80(1), 15-20.
[http://dx.doi.org/10.1016/S0378-8741(01)00373-7] [PMID: 11891082]
[104]
Joshi, H.; Parle, M. Evaluation of nootropic potential of Ocimum sanctum Linn. in mice. Indian J. Exp. Biol., 2006, 44(2), 133-136.
[PMID: 16480180]
[105]
Satyendra, M. Phytochemical efficiency of Ocimum sanctum (Tulsi) in health enhancement and disease prevention: A review. IJARESM, 2021, 9(2)
[106]
Mondal, S.; Varma, S.; Bamola, V.D.; Naik, S.N.; Mirdha, B.R.; Padhi, M.M.; Mehta, N.; Mahapatra, S.C. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J. Ethnopharmacol., 2011, 136(3), 452-456.
[http://dx.doi.org/10.1016/j.jep.2011.05.012] [PMID: 21619917]
[107]
Goel, A.; Singh, D.K.; Kumar, S.; Bhatia, A.K. Immunomodulating property of Ocimum sanctum by regulating the IL-2 production and its mRNA expression using rat’s splenocytes. Asian Pac. J. Trop. Med., 2010, 3(1), 8-12.
[http://dx.doi.org/10.1016/S1995-7645(10)60021-1]
[108]
Ling, A.P.; Khoo, B.F.; Seah, C.H.; Foo, K.Y.; Cheah, R.K.; Chye, S.M.; Koh, R.Y. Inhibitory activities of methanol extracts of Andrographis paniculata and Ocimum sanctum against dengue-1 virus. International Conference on Biological Environmental and Food Engineering, Bali, Indonesia2014, pp. 4-5.
[109]
Singh, S.; Agrawal, S.S. Anti-asthmatic and anti-inflammatory activity of Ocimum sanctum. Int. J. Pharmacogn. Phytochem, 1991, 29(4), 306-310.
[http://dx.doi.org/10.3109/13880209109082904]
[110]
Shelke, P.; Pawar, S.; Tripathi, A.; Maurya, A.; Srivasthav, M.; Laad, P.; Agrawal, S.; Palsodkar, M.; Kabra, K. An open label, randomized, multicenter, comparative, three arm Phase II clinical study to evaluate the safety and efficacy of mixture of five species of Ocimum in subjects with acute common cold. Ann. Phytomed., 2016, 5(2), 38-44.
[http://dx.doi.org/10.21276/ap.2016.5.2.4]
[111]
Vinaya, M.; Kamdod, M.A.; Swamy, M.; Swamy, M. Bronchodilator activity of Ocimum sanctum Linn.(tulsi) in mild and moderate asthmatic patients in comparison with salbutamol: A single-blind cross-over study. Int. J. Basic Clin. Pharmacol., 2017, 6(3), 511.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20170543]
[112]
Venuprasad, M.P.; Kandikattu, H.K.; Razack, S.; Amruta, N.; Khanum, F. Chemical composition of Ocimum sanctum by LC-ESI-MS/MS analysis and its protective effects against smoke induced lung and neuronal tissue damage in rats. Biomed. Pharmacother., 2017, 91, 1-12.
[http://dx.doi.org/10.1016/j.biopha.2017.04.011] [PMID: 28433747]
[113]
Ghoke, S.S.; Sood, R.; Kumar, N.; Pateriya, A.K.; Bhatia, S.; Mishra, A.; Dixit, R.; Singh, V.K.; Desai, D.N.; Kulkarni, D.D.; Dimri, U.; Singh, V.P. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complement. Altern. Med., 2018, 18(1), 174.
[http://dx.doi.org/10.1186/s12906-018-2238-1] [PMID: 29866088]
[114]
Baruah, T.J.; Dutta, S.P.; Patar, A.K. A preliminary in silico analysis of Ocimum sanctum flavonoids, orientin and vicenin-1, as potential drugs against sars-cov-2 infection. Int. J. Pharm. Sci. Res., 2021, 12(5), 2950-2956.
[115]
Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res., 2003, 17(4), 299-305.
[http://dx.doi.org/10.1002/ptr.1309] [PMID: 12722128]
[116]
Mohebbatia, R.; Khazdair, M.R.; Karimia, S.; Abbasnezhadd, A. Hepatoprotective effects of combination hydroalcoholic extracts of Nigella sativa and Curcuma longa on adriamycin-induced oxidative stress in rat. J. Rep. Pharm. Sci., 2017, 6(2), 93-102.
[117]
Khazdair, M.R.; Anaeigoudari, A.; Kianmehr, M. Anti-asthmatic effects of Portulaca oleracea and its constituents, A review. J. Pharmacopuncture, 2019, 22(3), 122-130.
[http://dx.doi.org/10.3831/KPI.2019.22.016] [PMID: 31673441]
[118]
Mohebbati, R.; Khazdair, M.R.; Hedayati, M. Neuroprotective effects of medicinal plants and their constituents on different induced neurotoxicity methods. A. J. Res. Pharm. Sci., 2016, 6(1), 34-50.
[119]
Emeka, L.B.; Emeka, P.M.; Khan, T.M. Antimicrobial activity of Nigella sativa L. seed oil against multi-drug resistant Staphylococcus aureus isolated from diabetic wounds. Pak. J. Pharm. Sci., 2015, 28(6), 1985-1990.
[PMID: 26639493]
[120]
Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants, 2019, 8(2), 51.
[http://dx.doi.org/10.3390/antiox8020051] [PMID: 30823525]
[121]
Fallahi, M.; Keyhanmanesh, R.; Khamaneh, A.M.; Ebrahimi Saadatlou, M.A.; Saadat, S.; Ebrahimi, H. Effect of Alpha-Hederin, the active constituent of Nigella sativa, on miRNA-126, IL-13 mRNA levels and inflammation of lungs in ovalbumin-sensitized male rats. Avicenna J. Phytomed., 2016, 6(1), 77-85.
[PMID: 27247924]
[122]
Kulyar, M.F.; Li, R.; Mehmood, K.; Waqas, M.; Li, K.; Li, J. Potential influence of Nagella sativa (Black cumin) in reinforcing immune system: A hope to decelerate the COVID-19 pandemic. Phytomedicine, 2021, 85, 153277.
[http://dx.doi.org/10.1016/j.phymed.2020.153277] [PMID: 32773257]
[123]
Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed., 2013, 3(5), 337-352.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[124]
Majdalawieh, A.F.; Hmaidan, R.; Carr, R.I. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J. Ethnopharmacol., 2010, 131(2), 268-275.
[http://dx.doi.org/10.1016/j.jep.2010.06.030] [PMID: 20600757]
[125]
Umar, S.; Rehman, A.; Younus, M.; Ali, A.; Shahzad, M.; Shah, M.; Munir, M.; Aslam, H.; Yaqoob, M. Effects of Nigella sativa on immune responses and pathogenesis of avian influenza (H9N2) virus in turkeys. J. Appl. Poult. Res., 2016, 25(1), 95-103.
[http://dx.doi.org/10.3382/japr/pfv070]
[126]
Khazdair, M.R.; Ghafari, S.; Sadeghi, M. Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. Pharm. Biol., 2021, 59(1), 696-703.
[http://dx.doi.org/10.1080/13880209.2021.1931353] [PMID: 34110959]
[127]
Koshak, A.E.; Yousif, N.M.; Fiebich, B.L.; Koshak, E.A.; Heinrich, M. Comparative immunomodulatory activity of Nigella sativa L. preparations on proinflammatory mediators: A focus on asthma. Front. Pharmacol., 2018, 9, 1075.
[http://dx.doi.org/10.3389/fphar.2018.01075] [PMID: 30333747]
[128]
Bouchentouf, S.; Missoum, N. Identification of compounds from Nigella sativa as new potential inhibitors of, 2019.
[http://dx.doi.org/10.26434/chemrxiv.12055716.v1]
[129]
Pandey, P.; Khan, F.; Mazumder, A.; Rana, A.K.; Srivastava, Y. Inhibitory potential of dietary phytocompounds of Nigella sativa against key targets of novel coronavirus (COVID-19). Indian J. Pharm. Educ. Res., 2021, 55(1), 190-197.
[http://dx.doi.org/10.5530/ijper.55.1.21]
[130]
Prawiro, S.R.; Anam, K.; Prabowo, B.; Fitrianingsih, A.A.; Hidayati, D.Y.; Imawati, S.; Fitria, E.; Winarsih, S. Generating the responses immune with honey, Saussurea costus, and Nigella sativa in cellular and humoral may resolve COVID-19? Sys. Rev. Pharm., 2021, 12(1), 1588-1593.
[131]
Usta, J.; Kreydiyyeh, S.; Barnabe, P.; Bou-Moughlabay, Y.; Nakkash-Chmaisse, H. Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases. Hum. Exp. Toxicol., 2003, 22(7), 355-362.
[PMID: 12929725]
[132]
Premanathan, M.; Rajendran, S.; Ramanathan, T.; Kathiresan, K.; Nakashima, H.; Yamamoto, N. A survey of some Indian medicinal plants for anti-human immunodeficiency virus (HIV) activity. Indian J. Med. Res., 2000, 112, 73-77.
[PMID: 11094851]
[133]
Sunila, E.S.; Kuttan, G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J. Ethnopharmacol., 2004, 90(2-3), 339-346.
[http://dx.doi.org/10.1016/j.jep.2003.10.016] [PMID: 15013199]
[134]
Chaudhry, N.M.; Tariq, P. Bactericidal activity of black pepper, bay leaf, aniseed and coriander against oral isolates. Pak. J. Pharm. Sci., 2006, 19(3), 214-218.
[PMID: 16935829]
[135]
Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and health. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 822-834.
[http://dx.doi.org/10.1080/10408390902773052] [PMID: 20924865]
[136]
Niphade, S.R.; Asad, M.; Chandrakala, G.K.; Toppo, E.; Deshmukh, P. Immunomodulatory activity of Cinnamomum zeylanicum bark. Pharm. Biol., 2009, 47(12), 1168-1173.
[http://dx.doi.org/10.3109/13880200903019234]
[137]
Kandhare, A.D.; Bodhankar, S.L.; Singh, V.; Mohan, V.; Thakurdesai, P.A. Anti-asthmatic effects of type-A procyanidine polyphenols from cinnamon bark in ovalbumin-induced airway hyperresponsiveness in laboratory animals. Biomed. Aging Pathol., 2013, 3(1), 23-30.
[http://dx.doi.org/10.1016/j.biomag.2013.01.003]
[138]
Walanj, S.; Walanj, A.; Mohan, V.; Thakurdesai, P.A. Efficacy and safety of the topical use of intranasal cinnamon bark extract in seasonal allergic rhinitis patients: A double-blind placebo-controlled pilot study. J. Herb. Med., 2014, 4(1), 37-47.
[http://dx.doi.org/10.1016/j.hermed.2013.12.002]
[139]
Kandhare, A.D.; Aswar, U.M.; Mohan, V.; Thakurdesai, P.A. Ameliorative effects of type-A procyanidins polyphenols from cinnamon bark in compound 48/80-induced mast cell degranulation. Anat. Cell Biol., 2017, 50(4), 275-283.
[http://dx.doi.org/10.5115/acb.2017.50.4.275] [PMID: 29354299]
[140]
Steels, E.; Steels, E.; Deshpande, P.; Thakurdesai, P.; Dighe, S.; Collet, T. A randomized, double-blind placebo-controlled study of intranasal standardized cinnamon bark extract for seasonal allergic rhinitis. Complement. Ther. Med., 2019, 47, 102198.
[http://dx.doi.org/10.1016/j.ctim.2019.102198] [PMID: 31780001]
[141]
Moshaverinia, M.; Rastegarfar, M.; Moattari, A.; Lavaee, F. Evaluation of the effect of hydro alcoholic extract of cinnamon on herpes simplex virus-1. Dent. Res. J. (Isfahan), 2020, 17(2), 114-119.
[http://dx.doi.org/10.4103/1735-3327.280889] [PMID: 32435433]
[142]
Butt, M.S.; Pasha, I.; Sultan, M.T.; Randhawa, M.A.; Saeed, F.; Ahmed, W. Black pepper and health claims: A comprehensive treatise. Crit. Rev. Food Sci. Nutr., 2013, 53(9), 875-886.
[http://dx.doi.org/10.1080/10408398.2011.571799] [PMID: 23768180]
[143]
Meghwal, M.; Goswami, T.K. Piper nigrum and piperine: An update. Phytother. Res., 2013, 27(8), 1121-1130.
[http://dx.doi.org/10.1002/ptr.4972] [PMID: 23625885]
[144]
Mujumdar, A.M.; Dhuley, J.N.; Deshmukh, V.K.; Raman, P.H.; Naik, S.R. Anti-inflammatory activity of piperine. Jpn. J. Med. Sci. Biol., 1990, 43(3), 95-100.
[http://dx.doi.org/10.7883/yoken1952.43.95] [PMID: 2283727]
[145]
Zhai, W.J.; Zhang, Z.B.; Xu, N.N.; Guo, Y.F.; Qiu, C.; Li, C.Y.; Deng, G.Z.; Guo, M.Y. Piperine plays an anti-inflammatory role in Staphylococcus aureus endometritis by inhibiting activation of NF-κB and MAPK pathways in mice. Evid. Based Complement. Alternat. Med., 2016, 2016, 8597208.
[http://dx.doi.org/10.1155/2016/8597208] [PMID: 27293467]
[146]
Bang, J.S.; Oh, D.H.; Choi, H.M.; Sur, B.J.; Lim, S.J.; Kim, J.Y.; Yang, H.I.; Yoo, M.C.; Hahm, D.H.; Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Ther., 2009, 11(2), R49.
[http://dx.doi.org/10.1186/ar2662] [PMID: 19327174]
[147]
Chatterjee, S.; Niaz, Z.; Gautam, S.; Adhikari, S.; Variyar, P.S.; Sharma, A. Antioxidant activity of some phenolic constituents from green pepper (Piper nigrum L.) and fresh nutmeg mace (Myristica fragrans). Food Chem., 2007, 101(2), 515-523.
[http://dx.doi.org/10.1016/j.foodchem.2006.02.008]
[148]
Ying, X.; Yu, K.; Chen, X.; Chen, H.; Hong, J.; Cheng, S.; Peng, L. Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cell. Immunol., 2013, 285(1-2), 49-54.
[http://dx.doi.org/10.1016/j.cellimm.2013.09.001] [PMID: 24071564]
[149]
Bawazeer, S.; Khan, I.; Rauf, A.; Aljohani, A.S.; Alhumaydhi, F.A.; Khalil, A.A.; Qureshi, M.N.; Ahmad, L.; Khan, S.A. Black pepper (Piper nigrum) fruit-based gold nanoparticles (BP-AuNPs): Synthesis, characterization, biological activities, and catalytic applications-A green approach. Green Process. Synth., 2022, 11(1), 11-28.
[http://dx.doi.org/10.1515/gps-2022-0002]
[150]
Bernardo, A.R.; da Rocha, J.D.; de Lima, M.E.; Ricardo, D.D.; da Silva, L.H.; Peçanha, L.M.; Danelli, M.D. Modulating effect of the piperine, the main alkaloid from Piper nigrum Linn., on murine B lymphocyte function. Braz. J. Vet. Pathol., 2015, 37(3), 209-216.
[151]
Priya, N.C.; Kumari, P.S. Antiviral activities and cytotoxicity assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int. J. Pharm. Sci. Rev. Res., 2017, 44(1), 197-202.
[152]
Vasavirama, K.; Upender, M. Piperine: A valuable alkaloid from piper species. Int. J. Pharm. Pharm. Sci., 2014, 6(4), 34-38.
[153]
Aswar, U.; Shintre, S.; Chepurwar, S.; Aswar, M. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharm. Biol., 2015, 53(9), 1358-1366.
[http://dx.doi.org/10.3109/13880209.2014.982299] [PMID: 25868617]
[154]
Bui, T.T.; Piao, C.H.; Song, C.H.; Shin, H.S.; Shon, D.H.; Chai, O.H. Piper nigrum extract ameliorated allergic inflammation through inhibiting Th2/Th17 responses and mast cells activation. Cell. Immunol., 2017, 322, 64-73.
[http://dx.doi.org/10.1016/j.cellimm.2017.10.005] [PMID: 29066080]
[155]
Bui, T.T.; Piao, C.H.; Hyeon, E.; Fan, Y.; Van Nguyen, T.; Jung, S.Y.; Choi, D.W.; Lee, S.Y.; Shin, H.S.; Song, C.H.; Chai, O.H. The protective role of Piper nigrum fruit extract in an ovalbumin-induced allergic rhinitis by targeting of NFκBp65 and STAT3 signalings. Biomed. Pharmacother., 2019, 109, 1915-1923.
[http://dx.doi.org/10.1016/j.biopha.2018.11.073] [PMID: 30551446]
[156]
Bui, T.T.; Fan, Y.; Piao, C.H.; Nguyen, T.V.; Shin, D.U.; Jung, S.Y.; Hyeon, E.; Song, C.H.; Lee, S.Y.; Shin, H.S.; Chai, O.H. Piper nigrum extract improves OVA-induced nasal epithelial barrier dysfunction via activating Nrf2/HO-1 signaling. Cell. Immunol., 2020, 351, 104035.
[http://dx.doi.org/10.1016/j.cellimm.2019.104035] [PMID: 32051090]
[157]
Choudhary, P.; Chakdar, H.; Singh, D.; Selvaraj, C.; Singh, S.K.; Kumar, S.; Saxena, A.K. Computational studies reveal piperine, the predominant oleoresin of black pepper (Piper nigrum) as a potential inhibitor of SARS-CoV-2 (COVID-19). Curr. Sci., 2020, 119(8), 1333-1342.
[http://dx.doi.org/10.18520/cs/v119/i8/1333-1342]
[158]
De Jesus, M.; Gaza, J.; Junio, H.A.; Nellas, R. Molecular docking of secondary metabolites from Psidium guajava L. and Piper nigrum L. to COVID-19 associated receptors ACE2, spike protein RBD, and TMPRSS2. 2020.
[http://dx.doi.org/10.26434/chemrxiv.12867350.v1]
[159]
Pandey, P.; Singhal, D.; Khan, F.; Arif, M. An in silico screening on Piper nigrum; Syzygium aromaticum and Zingiber officinale roscoe derived compounds against SARS-CoV-2: A drug repurposing approach. Biointerface Res. Appl. Chem., 2020, 11(4), 11122-11134.
[http://dx.doi.org/10.33263/BRIAC114.1112211134]
[160]
Davella, R.; Gurrapu, S.; Mamidala, E. Phenolic compounds as promising drug candidates against COVID-19 - An integrated molecular docking and dynamics simulation study. Mater. Today Proc., 2022, 51, 522-527.
[http://dx.doi.org/10.1016/j.matpr.2021.05.595] [PMID: 34094885]
[161]
Nassiri-Asl, M.; Hosseinzadeh, H. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytother. Res., 2009, 23(9), 1197-1204.
[http://dx.doi.org/10.1002/ptr.2761] [PMID: 19140172]
[162]
Casazza, A.A.; Aliakbarian, B.; Perego, P. Recovery of phenolic compounds from grape seeds: Effect of extraction time and solid-liquid ratio. Nat. Prod. Res., 2011, 25(18), 1751-1761.
[http://dx.doi.org/10.1080/14786419.2010.524889] [PMID: 21707256]
[163]
Batiha, G.E.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[164]
Squillaci, G.; Zannella, C.; Carbone, V.; Minasi, P.; Folliero, V.; Stelitano, D.; Cara, F.; Galdiero, M.; Franci, G.; Morana, A. Grape canes from typical cultivars of campania (southern italy) as a source of high-value bioactive compounds: Phenolic profile, antioxidant and antimicrobial activities. Molecules, 2021, 26(9), 2746.
[http://dx.doi.org/10.3390/molecules26092746] [PMID: 34067026]
[165]
Barthomeuf, C.; Lamy, S.; Blanchette, M.; Boivin, D.; Gingras, D.; Béliveau, R. Inhibition of sphingosine-1-phosphate- and vascular endothelial growth factor-induced endothelial cell chemotaxis by red grape skin polyphenols correlates with a decrease in early platelet-activating factor synthesis. Free Radic. Biol. Med., 2006, 40(4), 581-590.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.015] [PMID: 16458188]
[166]
Handoussa, H.; Hanafi, R.; Eddiasty, I.; El-Gendy, M.; El Khatib, A.; Linscheid, M.; Mahran, L.; Ayoub, N. Anti-inflammatory and cytotoxic activities of dietary phenolics isolated from Corchorus olitorius and Vitis vinifera. J. Funct. Foods, 2013, 5(3), 1204-1216.
[http://dx.doi.org/10.1016/j.jff.2013.04.003]
[167]
Ahmad, F.; Khan, G.M. Study of aging and hepatoprotective activity of Vitis vinifera L. seeds in albino rats. Asian Pac. J. Trop. Biomed., 2012, 2(3), S1770-S1774.
[http://dx.doi.org/10.1016/S2221-1691(12)60492-4]
[168]
Masani, Y.A.; Mathew, N.; Chakraborty, M.; Kamath, J.V. Effects of Vitis vinifera against Trition-X-100 induced hyperlipidaemia in rats. Inter. Res. J. Pharm., 2012, 3(12), 101-103.
[169]
Marzulli, G.; Magrone, T.; Vonghia, L.; Kaneko, M.; Takimoto, H.; Kumazawa, Y.; Jirillo, E. Immunomodulating and anti-allergic effects of Negroamaro and Koshu Vitis vinifera fermented grape marc (FGM). Curr. Pharm. Des., 2014, 20(6), 864-868.
[http://dx.doi.org/10.2174/138161282006140220120640] [PMID: 23701568]
[170]
Duan, J.; Zhan, J.C.; Wang, G.Z.; Zhao, X.C.; Huang, W.D.; Zhou, G.B. The red wine component ellagic acid induces autophagy and exhibits anti-lung cancer activity in vitro and in vivo. J. Cell. Mol. Med., 2019, 23(1), 143-154.
[http://dx.doi.org/10.1111/jcmm.13899] [PMID: 30353639]
[171]
Lee, J.W.; Kim, Y.I.; Im, C.N.; Kim, S.W.; Kim, S.J.; Min, S.; Joo, Y.H.; Yim, S.V.; Chung, N. Grape seed proanthocyanidin inhibits mucin synthesis and viral replication by suppression of AP-1 and NF-κB via p38 MAPKs/JNK signaling pathways in respiratory syncytial virus-infected A549 cells. J. Agric. Food Chem., 2017, 65(22), 4472-4483.
[http://dx.doi.org/10.1021/acs.jafc.7b00923] [PMID: 28502165]
[172]
Saadaoui, N.; Weslati, A.; Barkaoui, T.; Khemiri, I.; Gadacha, W.; Souli, A.; Mokni, M.; Harbi, M.; Ben-Attia, M. Gastroprotective effect of leaf extract of two varieties grapevine (Vitis vinifera L.) native wild and cultivar grown in North of Tunisia against the oxidative stress induced by ethanol in rats. Biomarker, 2020, 25(1), 48-61.
[http://dx.doi.org/10.1080/1354750X.2019.1691266] [PMID: 31714159]
[173]
Kim, H.Y.; Hong, M.H.; Yoon, J.J.; Kim, D.S.; Na, S.W.; Jang, Y.J.; Lee, Y.J.; Kang, D.G.; Lee, H.S. Protective effect of Vitis labrusca leaves extract on cardiovascular dysfunction through HMGB1-TLR4-NFκB signaling in spontaneously hypertensive rats. Nutrients, 2020, 12(10), 3096.
[http://dx.doi.org/10.3390/nu12103096]
[174]
Arora, P.; Ansari, S.H.; Najmi, A.K.; Anjum, V.; Ahmad, S. Investigation of anti-asthmatic potential of dried fruits of Vitis vinifera L. in animal model of bronchial asthma. Allergy Asthma Clin. Immunol., 2016, 12(1), 42.
[http://dx.doi.org/10.1186/s13223-016-0145-x] [PMID: 27536321]
[175]
Khazri, O.; Charradi, K.; Limam, F.; El May, M.V.; Aouani, E. Grape seed and skin extract protects against bleomycin-induced oxidative stress in rat lung. Biomed. Pharmacother., 2016, 81, 242-249.
[http://dx.doi.org/10.1016/j.biopha.2016.04.004] [PMID: 27261600]
[176]
Liu, Q.; Jiang, J.X.; Liu, Y.N.; Ge, L.T.; Guan, Y.; Zhao, W.; Jia, Y.L.; Dong, X.W.; Sun, Y.; Xie, Q.M. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis. Toxicol. Lett., 2017, 273, 1-9.
[http://dx.doi.org/10.1016/j.toxlet.2017.03.012] [PMID: 28300665]
[177]
Zannella, C.; Giugliano, R.; Chianese, A.; Buonocore, C.; Vitale, G.A.; Sanna, G.; Sarno, F.; Manzin, A.; Nebbioso, A.; Termolino, P.; Altucci, L.; Galdiero, M.; de Pascale, D.; Franci, G. Antiviral activity of Vitis vinifera leaf extract against SARS-CoV-2 and HSV-1. Viruses, 2021, 13(7), 1263.
[http://dx.doi.org/10.3390/v13071263] [PMID: 34209556]
[178]
Mishra, L.C.; Singh, B.B.; Dagenais, S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Altern. Med. Rev., 2000, 5(4), 334-346.
[PMID: 10956379]
[179]
Alam, N.; Hossain, M.; Khalil, M.I.; Moniruzzaman, M.; Sulaiman, S.A.; Gan, S.H. High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complement. Altern. Med., 2011, 11(1), 65.
[http://dx.doi.org/10.1186/1472-6882-11-65] [PMID: 21854608]
[180]
Teixeira, S.T.; Valadares, M.C.; Gonçalves, S.A.; de Melo, A.; Queiroz, M.L. Prophylactic administration of Withania somnifera extract increases host resistance in Listeria monocytogenes infected mice. Int. Immunopharmacol., 2006, 6(10), 1535-1542.
[http://dx.doi.org/10.1016/j.intimp.2006.03.016] [PMID: 16919825]
[181]
Kalra, R.; Kaushik, N. Withania somnifera (Linn.) Dunal: A review of chemical and pharmacological diversity. Phytochem. Rev., 2017, 16(5), 953-987.
[http://dx.doi.org/10.1007/s11101-017-9504-6]
[182]
Saggam, A.; Limgaokar, K.; Borse, S.; Chavan-Gautam, P.; Dixit, S.; Tillu, G.; Patwardhan, B. Withania somnifera (L.) Dunal: Opportunity for clinical repurposing in COVID-19 management. Front. Pharmacol., 2021, 12, 623795.
[http://dx.doi.org/10.3389/fphar.2021.623795] [PMID: 34012390]
[183]
Kambizi, L.G.; Goosen, B.M.; Taylor, M.B.; Afolayan, A.J. Anti-viral effects of aqueous extracts of Aloe ferox and Withania somnifera on herpes simplex virus type 1 in cell culture: Research in action. S. Afr. J. Sci., 2007, 103(9), 359-360.
[184]
Pant, M.; Ambwani, T.; Umapathi, V. Antiviral activity of Ashwagandha extract on infectious bursal disease virus replication. Indian J. Sci. Technol., 2012, 5(5), 2750-2751.
[http://dx.doi.org/10.17485/ijst/2012/v5i5.20]
[185]
Minhas, U.; Minz, R.; Bhatnagar, A. Prophylactic effect of Withania somnifera on inflammation in a non-autoimmune prone murine model of lupus. Drug Discov. Ther., 2011, 5(4), 195-201.
[http://dx.doi.org/10.5582/ddt.2011.v5.4.195] [PMID: 22466301]
[186]
Cai, Z.; Zhang, G.; Tang, B.; Liu, Y.; Fu, X.; Zhang, X. Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: Computational study. Cell Biochem. Biophys., 2015, 72(3), 727-739.
[http://dx.doi.org/10.1007/s12013-015-0524-9] [PMID: 25627548]
[187]
Minhas, U.; Minz, R.; Das, P.; Bhatnagar, A. Therapeutic effect of Withania somnifera on pristane-induced model of SLE. Inflammopharmacology, 2012, 20(4), 195-205.
[http://dx.doi.org/10.1007/s10787-011-0102-8] [PMID: 22160928]
[188]
Srivastava, A.; Siddiqui, S.; Ahmad, R.; Mehrotra, S.; Ahmad, B.; Srivastava, A.N. Exploring nature’s bounty: Identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation. J. Biomol. Struct. Dyn., 2022, 40(4), 1858-1908.
[PMID: 33246398]
[189]
Tripathi, M.K.; Singh, P.; Sharma, S.; Singh, T.P.; Ethayathulla, A.S.; Kaur, P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J. Biomol. Struct. Dyn., 2021, 39(5), 5668-5681.
[PMID: 32643552]
[190]
Khanal, P.; Chikhale, R.; Dey, Y.N.; Pasha, I.; Chand, S.; Gurav, N.; Ayyanar, M.; Patil, B.M.; Gurav, S. Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19. J. Biomol. Struct. Dyn., 2022, 40(12), 5295-5308.
[http://dx.doi.org/10.1080/07391102.2020.1869588] [PMID: 33459174]
[191]
Balkrishna, A.; Pokhrel, S.; Singh, H.; Joshi, M.; Mulay, V.P.; Haldar, S.; Varshney, A. Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized zebrafish model. Drug Des. Devel. Ther., 2021, 15, 1111-1133.
[http://dx.doi.org/10.2147/DDDT.S292805] [PMID: 33737804]
[192]
Yuan, Q.; Zhao, L. The Mulberry (Morus Alba L.) Fruit-A review of characteristic components and health benefits. J. Agric. Food Chem., 2017, 65(48), 10383-10394.
[http://dx.doi.org/10.1021/acs.jafc.7b03614] [PMID: 29129054]
[193]
Ju, W.T.; Kwon, O.C.; Lee, M.K.; Kim, H.B.; Sung, G.B.; Kim, Y.S. Quali-quantitative analysis of flavonoids for mulberry leaf and fruit of ‘Suhyang’. Korean J. Environ. Agric., 2017, 36(4), 249-255.
[http://dx.doi.org/10.5338/KJEA.2017.36.4.39]
[194]
Kim, H.; Chung, M.S. Antiviral activities of mulberry (Morus Alba) juice and seed against influenza viruses. Evid. Based Complementary Altern Med, 2018, 2606583.
[http://dx.doi.org/10.1155/2018/2606583]
[195]
Wang, D.; Zhao, L.; Jiang, J.; Liu, J.; Wang, D.; Yu, X.; Wei, Y.; Ouyang, Z. Cloning, expression, and functional analysis of lysine decarboxylase in mulberry (Morus Alba L.). Protein Expr. Purif., 2018, 151, 30-37.
[http://dx.doi.org/10.1016/j.pep.2018.06.004] [PMID: 29894803]
[196]
Eo, H.; Lim, Y. Combined mulberry leaf and fruit extract improved early stage of cutaneous wound healing in high-fat diet-induced obese mice. J. Med. Food, 2016, 19(2), 161-169.
[http://dx.doi.org/10.1089/jmf.2015.3510] [PMID: 26491791]
[197]
Sutaryono, S.; Budiman, H.; Styawan, A.A.; Hidayati, N.; Ainus, D. D. Gel formulation for hand sanitizer from ethanol extract of mulberry leaf (Morus Alba L.). UJAS 2021, 1(1), 17-24.
[198]
Huang, H.P.; Shih, Y.W.; Chang, Y.C.; Hung, C.N.; Wang, C.J. Chemoinhibitory effect of mulberry anthocyanins on melanoma metastasis involved in the Ras/PI3K pathway. J. Agric. Food Chem., 2008, 56(19), 9286-9293.
[http://dx.doi.org/10.1021/jf8013102] [PMID: 18767864]
[199]
Lee, J.H.; Bae, S.Y.; Oh, M.; Kim, K.H.; Chung, M.S. Antiviral effects of mulberry (Morus Alba) juice and its fractions on foodborne viral surrogates. Foodborne Pathog. Dis., 2014, 11(3), 224-229.
[http://dx.doi.org/10.1089/fpd.2013.1633] [PMID: 24350883]
[200]
Chang, B.Y.; Kim, S.B.; Lee, M.K.; Park, H.; Kim, S.Y. Improved chemotherapeutic activity by Morus Alba fruits through immune response of toll-like receptor 4. Int. J. Mol. Sci., 2015, 16(10), 24139-24158.
[http://dx.doi.org/10.3390/ijms161024139] [PMID: 26473845]
[201]
Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere Groza, F.; Venter, A.C.; Vicas, S.I. Phytochemical composition of different botanical parts of Morus species, health benefits and application in food industry. Plants, 2022, 11(2), 152.
[http://dx.doi.org/10.3390/plants11020152] [PMID: 35050040]
[202]
Bilancio, A.; Rinaldi, B.; Oliviero, M.A.; Donniacuo, M.; Monti, M.G.; Boscaino, A.; Marino, I.; Friedman, L.; Rossi, F.; Vanhaesebroeck, B.; Migliaccio, A. Inhibition of p110δ PI3K prevents inflammatory response and restenosis after artery injury. Biosci. Rep., 2017, 37(5), BSR20171112.
[http://dx.doi.org/10.1042/BSR20171112] [PMID: 28851839]
[203]
Jung, S.; Lee, M.S.; Choi, A.J.; Kim, C.T.; Kim, Y. Anti-inflammatory effects of high hydrostatic pressure extract of mulberry (Morus Alba) fruit on LPS-stimulated RAW264. 7 Cells. Molecules, 2019, 24(7), 1425.
[http://dx.doi.org/10.3390/molecules24071425] [PMID: 30978947]
[204]
Thabti, I.; Albert, Q.; Philippot, S.; Dupire, F.; Westerhuis, B.; Fontanay, S.; Risler, A.; Kassab, T.; Elfalleh, W.; Aferchichi, A.; Varbanov, M. Advances on antiviral activity of Morus spp. plant extracts: human coronavirus and virus-related respiratory tract infections in the spotlight. Molecules, 2020, 25(8), 1876.
[http://dx.doi.org/10.3390/molecules25081876] [PMID: 32325742]
[205]
Vora, J.; Velhal, S.; Sinha, S.; Patel, V.; Shrivastava, N. Bioactive phytocompound mulberroside C and endophytes of Morus Alba as potential inhibitors of HIV-1 replication: A mechanistic evaluation. HIV Med., 2021, 22(8), 690-704.
[http://dx.doi.org/10.1111/hiv.13116] [PMID: 33987901]
[206]
Shakya, A.; Chikhale, R.V.; Bhat, H.R.; Alasmary, F.A.; Almutairi, T.M.; Ghosh, S.K.; Alhajri, H.M.; Alissa, S.A.; Nagar, S.; Islam, M.A. Pharmacoinformatics-based identification of transmembrane protease serine-2 inhibitors from Morus Alba as SARS-CoV-2 cell entry inhibitors. Mol. Divers., 2022, 26(1), 265-278.
[PMID: 33786727]
[207]
Cerdá, B.; Llorach, R.; Cerón, J.J.; Espín, J.C.; Tomás-Barberán, F.A. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. Eur. J. Nutr., 2003, 42(1), 18-28.
[http://dx.doi.org/10.1007/s00394-003-0396-4] [PMID: 12594538]
[208]
Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol., 2007, 109(2), 177-206.
[http://dx.doi.org/10.1016/j.jep.2006.09.006] [PMID: 17157465]
[209]
Braga, L.C.; Shupp, J.W.; Cummings, C.; Jett, M.; Takahashi, J.A.; Carmo, L.S.; Chartone-Souza, E.; Nascimento, A.M. Pomegranate extract inhibits Staphylococcus aureus growth and subsequent enterotoxin production. J. Ethnopharmacol., 2005, 96(1-2), 335-339.
[http://dx.doi.org/10.1016/j.jep.2004.08.034] [PMID: 15588686]
[210]
Reddy, M.K.; Gupta, S.K.; Jacob, M.R.; Khan, S.I.; Ferreira, D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med., 2007, 73(5), 461-467.
[http://dx.doi.org/10.1055/s-2007-967167] [PMID: 17566148]
[211]
Dkhil, M.A. Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitol. Res., 2013, 112(7), 2639-2646.
[http://dx.doi.org/10.1007/s00436-013-3430-3] [PMID: 23609599]
[212]
Gracious Ross, R.; Selvasubramanian, S.; Jayasundar, S. Immunomodulatory activity of Punica granatum in rabbits-A preliminary study. J. Ethnopharmacol., 2001, 78(1), 85-87.
[http://dx.doi.org/10.1016/S0378-8741(01)00287-2] [PMID: 11585693]
[213]
Khan, J.A.; Hanee, S. Antibacterial properties of Punica granatum peels. Int. J. Appl. Biol. Pharm., 2011, 2(3), 23-27.
[214]
Marques, L.C.; Pinheiro, A.J.; Araújo, J.G.; de Oliveira, R.A.; Silva, S.N.; Abreu, I.C.; de Sousa, E.M.; Fernandes, E.S.; Luchessi, A.D.; Silbiger, V.N.; Nicolete, R.; Lima-Neto, L.G. Anti-inflammatory effects of a pomegranate leaf extract in LPS-induced peritonitis. Planta Med., 2016, 82(17), 1463-1467.
[http://dx.doi.org/10.1055/s-0042-108856] [PMID: 27352385]
[215]
Kadi, H.; Moussaoui, A.; Benmehdi, H.; Lazouni, H.A.; Benayahia, A. Antibacterial activity of ethanolic and aqueous extracts of Punica granatum L. bark. J. Appl. Pharm. Sci., 2011, 1(10), 18.
[216]
Moradi, M.T.; Karimi, A.; Alidadi, S.; Hashemi, L. In vitro anti-herpes simplex virus activity, antioxidant potential and total phenolic compounds of selected Iranian medicinal plant extracts. Indian J. Tradit. Knowl., 2018, 17(2), 25-262.
[217]
Labsi, M.; Khelifi, L.; Mezioug, D.; Soufli, I.; Touil-Boukoffa, C. Antihydatic and immunomodulatory effects of Punica granatum peel aqueous extract in a murine model of echinococcosis. Asian Pac. J. Trop. Med., 2016, 9(3), 211-220.
[http://dx.doi.org/10.1016/j.apjtm.2016.01.038] [PMID: 26972390]
[218]
Moradi, M.T.; Karimi, A.; Lorigooini, Z.; Pourgheysari, B.; Alidadi, S.; Hashemi, L. In vitro anti influenza virus activity, antioxidant potential and total phenolic content of twelve Iranian medicinal plants. Marmara Pharm. J., 2017, 21(4), 843-851.
[http://dx.doi.org/10.12991/mpj.2017.10]
[219]
Pinheiro, A.J.M.C.R.; Mendes, A.R.S.; Neves, M.D.F.J.; Prado, C.M.; Bittencourt-Mernak, M.I.; Santana, F.P.R.; Lago, J.H.G.; de Sá, J.C.; da Rocha, C.Q.; de Sousa, E.M.; Fontes, V.C.; Grisoto, M.A.G.; Falcai, A.; Lima-Neto, L.G. Galloyl-hexahydroxy diphenoyl (HHDP)-glucose isolated from Punica granatum L. leaves protects against lipopolysaccharide (LPS)-induced acute lung injury in BALB/c mice. Front. Immunol., 2019, 10, 1978.
[http://dx.doi.org/10.3389/fimmu.2019.01978] [PMID: 31481965]
[220]
Mosa, A.F.; Mustafa, A.; Mohammad, M.E. Potential effect of pomegranate peels extract (Punica granatum.) against COVID-19 virus. Res. Sq. 2021.
[http://dx.doi.org/10.21203/rs.3.rs-474809/VI]
[221]
Chen, F.; Liu, D.L.; Wang, W.; Lv, X.M.; Li, W.; Shao, L.D.; Wang, W.J. Bioactive triterpenoids from Sambucus javanica Blume. Nat. Prod. Res., 2020, 34(19), 2816-2821.
[http://dx.doi.org/10.1080/14786419.2019.1596092] [PMID: 30968700]
[222]
Chen, W.; Li, K.Q.; Xiong, X.J.; Zhang, J.H. Research on the effective chemical constituents of Sumbucus chinensis Lindl. against hepatitis. J. Nanchang Univ., 2001, 25(2), 165-167.
[223]
Barak, V.; Halperin, T.; Kalickman, I. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. Eur. Cytokine Netw., 2001, 12(2), 290-296.
[PMID: 11399518]
[224]
Pinto, J.; Spínola, V.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Molina-García, L.; Castilho, P.C. Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Res. Int., 2017, 100(Pt 3), 404-410.
[http://dx.doi.org/10.1016/j.foodres.2017.03.044] [PMID: 28964363]
[225]
Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med., 2011, 11(1), 16.
[http://dx.doi.org/10.1186/1472-6882-11-16] [PMID: 21352539]
[226]
Pliszka, B. Polyphenolic content, antiradical activity, stability and microbiological quality of elderberry (Sambucus nigra L.) extracts. Acta Sci. Pol. Technol. Aliment., 2017, 16(4), 393-401.
[PMID: 29241318]
[227]
Weng, J.R.; Lin, C.S.; Lai, H.C.; Lin, Y.P.; Wang, C.Y.; Tsai, Y.C.; Wu, K.C.; Huang, S.H.; Lin, C.W. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res., 2019, 273, 197767.
[http://dx.doi.org/10.1016/j.virusres.2019.197767] [PMID: 31560964]
[228]
Pandey, K.; Lokhande, K.B. In silico exploration of phytoconstituents from Phyllanthus emblica and Aegle marmelos as potential therapeutics against SARS-CoV-2 RdRp. Bioinform. Biol. Insights, 2021, 15, 117793222-11027403.
[http://dx.doi.org/10.1177/11779322211027403]
[229]
Liu, H.; Ye, F.; Sun, Q.; Liang, H.; Li, C.; Li, S.; Lu, R.; Huang, B.; Tan, W.; Lai, L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 497-503.
[http://dx.doi.org/10.1080/14756366.2021.1873977] [PMID: 33491508]
[230]
Thuy, B.T.P.; My, T.T.A.; Hai, N.T.T.; Hieu, L.T.; Hoa, T.T.; Thi Phuong Loan, H.; Triet, N.T.; Anh, T.T.V.; Quy, P.T.; Tat, P.V.; Hue, N.V.; Quang, D.T.; Trung, N.T.; Tung, V.T.; Huynh, L.K.; Nhung, N.T.A. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 2020, 5(14), 8312-8320.
[http://dx.doi.org/10.1021/acsomega.0c00772] [PMID: 32363255]
[231]
Adem, Ş.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Zahoor, A.F.; Ali, M.; Abdalla, M.; Ibrahim, I.M.; Elfiky, A.A. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine, 2021, 85, 153310.
[http://dx.doi.org/10.1016/j.phymed.2020.153310] [PMID: 32948420]
[232]
Yang, L.J.; Chen, R.H.; Hamdoun, S.; Coghi, P.; Ng, J.P.L.; Zhang, D.W.; Guo, X.; Xia, C.; Law, B.Y.K.; Wong, V.K.W. Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding. Phytomedicine, 2021, 87, 153591.
[http://dx.doi.org/10.1016/j.phymed.2021.153591] [PMID: 34029937]
[233]
Azim, K.F.; Ahmed, S.R.; Banik, A.; Khan, M.M.R.; Deb, A.; Somana, S.R. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach. Inform. Med. Unlocked., 2020, 20, 100367.
[http://dx.doi.org/10.1016/j.imu.2020.100367] [PMID: 32537482]
[234]
Bhowmik, A.; Biswas, S.; Hajra, S.; Saha, P. In silico validation of potent phytochemical orientin as inhibitor of SARS-CoV-2 spike and host cell receptor GRP78 binding. Heliyon, 2021, 7(1), e05923.
[http://dx.doi.org/10.1016/j.heliyon.2021.e05923] [PMID: 33458435]
[235]
Dharmashekara, C.; Pradeep, S.; Prasad, S.K.; Jain, A.S.; Syed, A.; Prasad, K.S.; Patil, S.S.; Beelagi, M.S.; Srinivasa, C.; Shivamallu, C. Virtual screening of potential phyto-candidates as therapeutic leads against SARS-CoV-2 infection. Environm. Challen., 2021, 4, 100136.
[http://dx.doi.org/10.1016/j.envc.2021.100136]
[236]
Halder, P.; Pal, U.; Paladhi, P.; Dutta, S.; Paul, P.; Pal, S.; Das, D.; Ganguly, A.; Dutta, I.; Mandal, S.; Ray, A.; Ghosh, S. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis. J. Ayurveda Integr. Med., 2022, 13(2), 100449.
[http://dx.doi.org/10.1016/j.jaim.2021.05.003] [PMID: 34054246]
[237]
Khanal, P.; Dey, Y.N.; Patil, R.; Chikhale, R.; Wanjari, M.M.; Gurav, S.S.; Patil, B.M.; Srivastava, B.; Gaidhani, S.N. Combination of system biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. RSC Advances, 2021, 11(9), 5065-5079.
[http://dx.doi.org/10.1039/D0RA10529E] [PMID: 35424441]
[238]
Xu, J.; Gao, L.; Liang, H.; Chen, S.D. In silico screening of potential anti-COVID-19 bioactive natural constituents from food sources by molecular docking. Nutrition, 2021, 82, 111049.
[http://dx.doi.org/10.1016/j.nut.2020.111049] [PMID: 33290972]
[239]
Fakhar, Z.; Faramarzi, B.; Pacifico, S.; Faramarzi, S. Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: An in silico perspective of therapeutic targets against COVID-19 pandemic. J. Biomol. Struct. Dyn., 2021, 39(16), 6171-6183.
[http://dx.doi.org/10.1080/07391102.2020.1801510] [PMID: 32741312]
[240]
Patil, R.; Chikhale, R.; Khanal, P.; Gurav, N.; Ayyanar, M.; Sinha, S.; Prasad, S.; Dey, Y.N.; Wanjari, M.; Gurav, S.S. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. Inform. Med. Unlocked., 2021, 22, 100504.
[http://dx.doi.org/10.1016/j.imu.2020.100504] [PMID: 33363251]
[241]
Giri, S.; Lal, A.F. Battle against coronavirus: Repurposing old friends (Food borne polyphenols) for new enemy (COVID-19). 2020.
[http://dx.doi.org/10.26434/chemrxiv.12108546.v1]
[242]
Alagu Lakshmi, S.; Shafreen, R.M.; Priya, A.; Shunmugiah, K.P. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: Using structure-based drug discovery approach. J. Biomol. Struct. Dyn., 2021, 39(13), 4594-4609.
[PMID: 32573351]
[243]
Silva, J.K.R.D.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: An in silico investigation. Int. J. Mol. Sci., 2020, 21(10), 3426.
[http://dx.doi.org/10.3390/ijms21103426] [PMID: 32408699]
[244]
Maurya, D.K.; Sharma, D. Evaluation of traditional ayurvedic preparation for prevention and management of the novel coronavirus (SARS-CoV-2) using molecular docking approach. J. Biomol. Struct. Dyn., 2022, 40(9), 3946-3964.
[245]
Mohammadi, N.; Shaghaghi, N. Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID_19 virus protease by molecular docking analysis. 2020.
[http://dx.doi.org/10.26434/chemrxiv.11987475.v1]
[246]
Joshi, R.S.; Jagdale, S.S.; Bansode, S.B.; Shankar, S.S.; Tellis, M.B.; Pandya, V.K.; Chugh, A.; Giri, A.P.; Kulkarni, M.J. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J. Biomol. Struct. Dyn., 2021, 39(9), 3099-3114.
[PMID: 32329408]
[247]
Khan, M.; Khan, M.; Khan, Z.; Ahamad, T.; Ansari, W. Identification of dietary molecules as therapeutic agents to combat COVID-19 using molecular docking studies; Res. Sq, 2020.
[http://dx.doi.org/10.21203/rs.3.rs-19560/v1]
[248]
Singh, J.; Malik, D.; Raina, A. Computational investigation for identification of potential phytochemicals and antiviral drugs as potential inhibitors for RNA-dependent RNA polymerase of COVID-19. J. Biomol. Struct. Dyn., 2022, 40(8), 3492-3507.
[http://dx.doi.org/10.1080/07391102.2020.1858966] [PMID: 33200678]
[249]
Utomo, R.Y.; Meiyanto, E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints, 2020, 2020030214.
[http://dx.doi.org/10.20944/preprints202003.0214.v1]
[250]
Serseg, T.; Benarous, K.; Yousfi, M. Hispidin and Lepidine E: Two natural compounds and folic acid as potential inhibitors of 2019-novel coronavirus main protease (2019- nCoVM pro), Molecular Docking and SAR Study. Curr. Comput. Aided Drug Des., 2021, 17(3), 469-479.
[251]
Sharma, A.D.; Kaur, I. Molecular docking studies on Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. arXiv preprint arXiv:2004.00217., 2020.
[252]
Rajendran, M.; Roy, S.; Ravichandran, K.; Mishra, B.; Gupta, D.K.; Nagarajan, S.; Arul Selvaraj, R.C.; Provaznik, I. In silico screening and molecular dynamics of phytochemicals from Indian cuisine against SARS-CoV-2 MPro. J. Biomol. Struct. Dyn., 2022, 40(7), 3155-3169.
[http://dx.doi.org/10.1080/07391102.2020.1845980] [PMID: 33200680]
[253]
Srivastava, A.K.; Kumar, A.; Misra, N. On the inhibition of COVID-19 protease by Indian herbal plants: An in silico investigation. arXiv preprint arXiv:2004.03411., 2020.
[254]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[255]
Rolta, R.; Yadav, R.; Salaria, D.; Trivedi, S.; Imran, M.; Sourirajan, A.; Baumler, D.J.; Dev, K. In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: An approach to prevent virus assembly. J. Biomol. Struct. Dyn., 2020, 1-8.
[PMID: 32851912]
[256]
Umadevi, P.; Manivannan, S.; Fayad, A.M.; Shelvy, S. In silico analysis of phytochemicals as potential inhibitors of proteases involved in SARS-CoV-2 infection. J. Biomol. Struct. Dyn., 2020, 1-9.
[http://dx.doi.org/10.1080/07391102.2020.1866669] [PMID: 33372574]
[257]
Sen, D.; Debnath, P.; Debnath, B.; Bhaumik, S.; Debnath, S. Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. J. Biomol. Struct. Dyn., 2022, 40(2), 941-962.
[http://dx.doi.org/10.1080/07391102.2020.1819883] [PMID: 32948116]
[258]
Sharma, P.; Joshi, T.; Mathpal, S.; Joshi, T.; Pundir, H.; Chandra, S.; Tamta, S. Identification of natural inhibitors against Mpro of SARS-CoV-2 by molecular docking, molecular dynamics simulation, and MM/PBSA methods. J. Biomol. Struct. Dyn., 2022, 40(6), 2757-2768.
[http://dx.doi.org/10.1080/07391102.2020.1842806] [PMID: 33143552]
[259]
Parida, P.K.; Paul, D.; Chakravorty, D. The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets. Phytother. Res., 2020, 34(12), 3420-3433.
[http://dx.doi.org/10.1002/ptr.6868] [PMID: 32969524]
[260]
Maurya, V.K.; Kumar, S.; Prasad, A.K.; Bhatt, M.L.B.; Saxena, S.K. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease, 2020, 31(2), 179-193.
[http://dx.doi.org/10.1007/s13337-020-00598-8] [PMID: 32656311]
[261]
Singh, S.; Sk, M.F.; Sonawane, A.; Kar, P.; Sadhukhan, S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: An in-silico analysis. J. Biomol. Struct. Dyn., 2021, 39(16), 6249-6264.
[http://dx.doi.org/10.1080/07391102.2020.1796810] [PMID: 32720577]
[262]
Tallei, T.E.; Tumilaar, S.G.; Niode, N.J. Fatimawali; Kepel, B.J.; Idroes, R.; Effendi, Y.; Sakib, S.A.; Emran, T.B. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica (Cairo), 2020, 2020, 6307457.
[http://dx.doi.org/10.1155/2020/6307457] [PMID: 33425427]
[263]
Albohy, A.; Zahran, E.M.; Abdelmohsen, U.R.; Salem, M.A.; Al-Warhi, T.; Al-Sanea, M.M.; Abelyan, N.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Multitarget in silico studies of Ocimum menthiifolium, family Lamiaceae against SARS-CoV-2 supported by molecular dynamics simulation. J. Biomol. Struct. Dyn., 2022, 40(9), 4062-4072.
[http://dx.doi.org/10.1080/07391102.2020.1852964] [PMID: 33317409]
[264]
Shaghaghi, N. Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plants; Chem Rxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.11935722.v1]
[265]
Sivaraman, D.; Pradeep, P.S. Scope of phytotherapeutics in targeting ACE2 mediated host-viral interface of SARS CoV2 that causes COVID-19; Chem Rxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12089730.v1]
[266]
Joshi, C.; Chaudhari, A.; Joshi, C.; Joshi, M.; Bagatharia, S. Repurposing of the herbal formulations: molecular docking and molecular dynamics simulation studies to validate the efficacy of phytocompounds against SARS-CoV-2 proteins. J. Biomol. Struct. Dyn., 2021, 1-15.
[http://dx.doi.org/10.1080/07391102.2021.1922095] [PMID: 33988079]
[267]
Wang, B.; Kovalchuk, A.; Li, D.; Ilnytskyy, Y.; Kovalchuk, I.; Kovalchuk, O. In search of preventative strategies: novel anti-inflammatory high-CBD cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Aging, 2020, 22425-22444.
[http://dx.doi.org/10.20944/preprints202004.0315.v1]
[268]
Upadhyay, S.; Tripathi, P.K.; Singh, M.; Raghavendhar, S.; Bhardwaj, M.; Patel, A.K. Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. Phytother. Res., 2020, 34(12), 3411-3419.
[http://dx.doi.org/10.1002/ptr.6802] [PMID: 32748969]
[269]
Available from: https://clinicaltrials.gov (Accessed on April 2022).
[270]
Dhar, D.; Mohanty, A. Gut microbiota and COVID-19- possible link and implications. Virus Res., 2020, 285, 198018.
[http://dx.doi.org/10.1016/j.virusres.2020.198018] [PMID: 32430279]
[271]
Ng, S.C.; Tilg, H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut, 2020, 69(6), 973-974.
[http://dx.doi.org/10.1136/gutjnl-2020-321195] [PMID: 32273292]
[272]
Luo, X.; Zhou, G.Z.; Zhang, Y.; Peng, L.H.; Zou, L.P.; Yang, Y.S. Coronaviruses and gastrointestinal diseases. Mil. Med. Res., 2020, 7(1), 49.
[http://dx.doi.org/10.1186/s40779-020-00279-z] [PMID: 33054860]
[273]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[274]
Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[275]
Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis., 2020, 20(4), 411-412.
[http://dx.doi.org/10.1016/S1473-3099(20)30113-4] [PMID: 32105638]
[276]
Bradley, K.C.; Finsterbusch, K.; Schnepf, D.; Crotta, S.; Llorian, M.; Davidson, S.; Fuchs, S.Y.; Staeheli, P.; Wack, A. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep., 2020, 28, 245-256.
[277]
Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, 2020, 158(6), 1831-1833.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.02.055] [PMID: 32142773]
[278]
Ji, L.N.; Chao, S.; Wang, Y.J.; Li, X.J.; Mu, X.D.; Lin, M.G.; Jiang, R.M. Clinical features of pediatric patients with COVID-19: A report of two family cluster cases. World J. Clin. Pediatr., 2020, 16(3), 267-270.
[http://dx.doi.org/10.1007/s12519-020-00356-2] [PMID: 32180140]
[279]
Zhou, J.; Li, C.; Zhao, G.; Chu, H.; Wang, D.; Yan, H.H.; Poon, V.K.; Wen, L.; Wong, B.H.; Zhao, X.; Chiu, M.C.; Yang, D.; Wang, Y.; Au-Yeung, R.K.H.; Chan, I.H.; Sun, S.; Chan, J.F.; To, K.K.; Memish, Z.A.; Corman, V.M.; Drosten, C.; Hung, I.F.; Zhou, Y.; Leung, S.Y.; Yuen, K.Y. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci. Adv., 2017, 3(11), eaao4966.
[http://dx.doi.org/10.1126/sciadv.aao4966] [PMID: 29152574]
[280]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[281]
Yeoh, Y.K.; Zuo, T.; Lui, G.C.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.; Chow, K.M.; Ng, S.S.S.; Li, T.C.; Ng, R.W.; Yip, T.C.; Wong, G.L.; Chan, F.K.; Wong, C.K.; Chan, P.K.; Ng, S.C. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70(4), 698-706.
[http://dx.doi.org/10.1136/gutjnl-2020-323020] [PMID: 33431578]
[282]
Chang, C.S.; Kao, C.Y. Current understanding of the gut microbiota shaping mechanisms. J. Biomed. Sci., 2019, 26(1), 59.
[http://dx.doi.org/10.1186/s12929-019-0554-5] [PMID: 31434568]
[283]
Fanos, V.; Pintus, M.C.; Pintus, R.; Marcialis, M.A. Lung microbiota in the acute respiratory disease: From coronavirus to metabolomics. J. Pediatr. Neonatal Individ. Med., 2020, 9(1), e090139.
[284]
Luo, J.; Liang, S.; Jin, F. Gut microbiota in antiviral strategy from bats to humans: A missing link in COVID-19. Sci. China Life Sci., 2021, 64(6), 942-956.
[http://dx.doi.org/10.1007/s11427-020-1847-7] [PMID: 33521857]
[285]
Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; Lai, C.K.C.; Chen, Z.; Tso, E.Y.K.; Fung, K.S.C.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.C.; Chan, F.K.L.; Chan, P.K.S.; Ng, S.C. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 2020, 159(3), 944-955.e8.
[http://dx.doi.org/10.1053/j.gastro.2020.05.048] [PMID: 32442562]
[286]
Gou, W.; Fu, Y.; Yue, L.; Chen, G.D.; Cai, X.; Shuai, M.; Xu, F.; Yi, X.; Chen, H.; Zhu, Y.J.; Xiao, M.L. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.22.20076091]
[287]
Khani, S.; Hosseini, M. Probiotics as an alternative strategy for prevention and treatment of human diseases: A review. Inflamm. Allergy Drug Targets, 2012, 11(2), 79-89.
[288]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[289]
Hotel, A.C.; Cordoba, A. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention, 2001, 5(1), 1-0.
[290]
Olaimat, A.N.; Aolymat, I.; Al-Holy, M.; Ayyash, M.; Abu Ghoush, M.; Al-Nabulsi, A.A.; Osaili, T.; Apostolopoulos, V.; Liu, S.Q.; Shah, N.P. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. NPJ Sci. Food, 2020, 4(1), 17.
[http://dx.doi.org/10.1038/s41538-020-00078-9] [PMID: 33083549]
[291]
Lehtoranta, L.; Pitkäranta, A.; Korpela, R. Probiotics in respiratory virus infections. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(8), 1289-1302.
[http://dx.doi.org/10.1007/s10096-014-2086-y] [PMID: 24638909]
[292]
Al Kassa, I. New Insights on Antiviral Probiotics: From Research to Applications, 1st ed; Springer: Cham, 2017.
[http://dx.doi.org/10.1007/978-3-319-49688-7]
[293]
Anwar, F.; Altayb, H.N.; Al-Abbasi, F.A.; Al-Malki, A.L.; Kamal, M.A.; Kumar, V. Antiviral effects of probiotic metabolites on COVID-19. J. Biomol. Struct. Dyn., 2021, 39(11), 4175-4184.
[http://dx.doi.org/10.1080/07391102.2020.1775123] [PMID: 32475223]
[294]
Luoto, R.; Ruuskanen, O.; Waris, M.; Kalliomäki, M.; Salminen, S.; Isolauri, E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. J. Allergy Clin. Immunol., 2014, 133(2), 405-413.
[http://dx.doi.org/10.1016/j.jaci.2013.08.020] [PMID: 24131826]
[295]
Yan, F.; Polk, D.B. Probiotics and immune health. Curr. Opin. Gastroenterol., 2011, 27(6), 496-501.
[http://dx.doi.org/10.1097/MOG.0b013e32834baa4d] [PMID: 21897224]
[296]
Budden, K.F.; Gellatly, S.L.; Wood, D.L.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol., 2017, 15(1), 55-63.
[http://dx.doi.org/10.1038/nrmicro.2016.142] [PMID: 27694885]
[297]
Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab., 2012, 61(2), 160-174.
[http://dx.doi.org/10.1159/000342079] [PMID: 23037511]
[298]
Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of probiotics. Adv. Nutr., 2019, 10(Suppl. 1), S49-S66.
[http://dx.doi.org/10.1093/advances/nmy063] [PMID: 30721959]
[299]
Anderson, J.L.; Miles, C.; Tierney, A.C. Effect of probiotics on respiratory, gastrointestinal and nutritional outcomes in patients with cystic fibrosis: A systematic review. J. Cyst. Fibros., 2017, 16(2), 186-197.
[http://dx.doi.org/10.1016/j.jcf.2016.09.004] [PMID: 27693010]
[300]
Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-dairy probiotic products. Food Microbiol., 2010, 27(1), 1-11.
[http://dx.doi.org/10.1016/j.fm.2008.06.008] [PMID: 19913684]
[301]
Guidelines for the Evaluation of Probiotics in Food. 2002. Available from: https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf
[302]
Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 1995, 125(6), 1401-1412.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[303]
Bustamante, M.; Oomah, B.D.; Oliveira, W.P.; Burgos-Díaz, C.; Rubilar, M.; Shene, C. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. Folia Microbiol. (Praha), 2020, 65(2), 245-264.
[http://dx.doi.org/10.1007/s12223-019-00759-3] [PMID: 31773556]
[304]
Saad, N.; Delattre, C.; Urdaci, M.; Schmitter, J.M.; Bressollier, P. An overview of the last advances in probiotic and prebiotic field. Lebensm. Wiss. Technol., 2013, 50(1), 1-6.
[http://dx.doi.org/10.1016/j.lwt.2012.05.014]
[305]
Bron, P.A.; van Baarlen, P.; Kleerebezem, M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol., 2011, 10(1), 66-78.
[http://dx.doi.org/10.1038/nrmicro2690] [PMID: 22101918]
[306]
Santosa, S.; Farnworth, E.; Jones, P.J. Probiotics and their potential health claims. Nutr. Rev., 2006, 64(6), 265-274.
[http://dx.doi.org/10.1111/j.1753-4887.2006.tb00209.x] [PMID: 16808112]
[307]
de Vrese, M.; Winkler, P.; Rautenberg, P.; Harder, T.; Noah, C.; Laue, C.; Ott, S.; Hampe, J.; Schreiber, S.; Heller, K.; Schrezenmeir, J. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: A double blind, randomized, controlled trial. Clin. Nutr., 2005, 24(4), 481-491.
[http://dx.doi.org/10.1016/j.clnu.2005.02.006] [PMID: 16054520]
[308]
Guillemard, E.; Tondu, F.; Lacoin, F.; Schrezenmeir, J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J. Nutr., 2010, 103(1), 58-68.
[http://dx.doi.org/10.1017/S0007114509991395] [PMID: 19747410]
[309]
Murosaki, S.; Yamamoto, Y.; Ito, K.; Inokuchi, T.; Kusaka, H.; Ikeda, H.; Yoshikai, Y. Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice. J. Allergy Clin. Immunol., 1998, 102(1), 57-64.
[http://dx.doi.org/10.1016/S0091-6749(98)70055-7] [PMID: 9679848]
[310]
Maeda, N.; Nakamura, R.; Hirose, Y.; Murosaki, S.; Yamamoto, Y.; Kase, T.; Yoshikai, Y. Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int. Immunopharmacol., 2009, 9(9), 1122-1125.
[http://dx.doi.org/10.1016/j.intimp.2009.04.015] [PMID: 19410659]
[311]
Tomosada, Y.; Chiba, E.; Zelaya, H.; Takahashi, T.; Tsukida, K.; Kitazawa, H.; Alvarez, S.; Villena, J. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol., 2013, 14(1), 40.
[http://dx.doi.org/10.1186/1471-2172-14-40] [PMID: 23947615]
[312]
Kawase, M.; He, F.; Kubota, A.; Harata, G.; Hiramatsu, M. Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett. Appl. Microbiol., 2010, 51(1), 6-10.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02849.x] [PMID: 20438618]
[313]
Iwabuchi, N.; Xiao, J.Z.; Yaeshima, T.; Iwatsuki, K. Oral administration of Bifidobacterium longum ameliorates influenza virus infection in mice. Biol. Pharm. Bull., 2011, 34(8), 1352-1355.
[http://dx.doi.org/10.1248/bpb.34.1352] [PMID: 21804232]
[314]
Wu, Q.; Liu, M.C.; Yang, J.; Wang, J.F.; Zhu, Y.H. Lactobacillus rhamnosus GR-1 ameliorates Escherichia coli-induced inflammation and cell damage via attenuation of ASC-independent NLRP3 inflammasome activation. Appl. Environ. Microbiol., 2015, 82(4), 1173-1182.
[http://dx.doi.org/10.1128/AEM.03044-15] [PMID: 26655757]
[315]
Xie, J.; Nie, S.; Yu, Q.; Yin, J.; Xiong, T.; Gong, D.; Xie, M. Lactobacillus plantarum NCU116 attenuates cyclophosphamide-induced immunosuppression and regulates Th17/Treg cell immune responses in mice. J. Agric. Food Chem., 2016, 64(6), 1291-1297.
[http://dx.doi.org/10.1021/acs.jafc.5b06177] [PMID: 26822718]
[316]
West, N.P.; Horn, P.L.; Pyne, D.B.; Gebski, V.J.; Lahtinen, S.J.; Fricker, P.A.; Cripps, A.W. Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin. Nutr., 2014, 33(4), 581-587.
[http://dx.doi.org/10.1016/j.clnu.2013.10.002] [PMID: 24268677]
[317]
Song, J.A.; Kim, H.J.; Hong, S.K.; Lee, D.H.; Lee, S.W.; Song, C.S.; Kim, K.T.; Choi, I.S.; Lee, J.B.; Park, S.Y. Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus. J. Microbiol. Immunol. Infect., 2016, 49(1), 16-23.
[http://dx.doi.org/10.1016/j.jmii.2014.07.011] [PMID: 25304268]
[318]
Gao, X.; Huang, L.; Zhu, L.; Mou, C.; Hou, Q.; Yu, Q. Inhibition of H9N2 virus invasion into dendritic cells by the S-Layer protein from L. acidophilus ATCC 4356. Front. Cell. Infect. Microbiol., 2016, 6, 137.
[http://dx.doi.org/10.3389/fcimb.2016.00137] [PMID: 27826541]
[319]
Kokubo, T.; Komano, Y.; Tsuji, R.; Fujiwara, D.; Fujii, T.; Kanauchi, O. The effects of plasmacytoid dendritic cell-stimulative lactic acid bacteria, Lactococcus lactis strain plasma, on exercise-induced fatigue and recovery via immunomodulatory action. Int. J. Sport Nutr. Exerc. Metab., 2019, 29(4), 354-358.
[http://dx.doi.org/10.1123/ijsnem.2018-0377] [PMID: 31034253]
[320]
Liu, F.; Ye, S.; Zhu, X.; He, X.; Wang, S.; Li, Y.; Lin, J.; Wang, J.; Lin, Y.; Ren, X.; Li, Y.; Deng, Z. Gastrointestinal disturbance and effect of fecal microbiota transplantation in discharged COVID-19 patients. J. Med. Case Reports, 2021, 15(1), 60.
[http://dx.doi.org/10.1186/s13256-020-02583-7] [PMID: 33557941]
[321]
Manna, S.; Chowdhury, T.; Chakraborty, R.; Mandal, S.M. Probiotics-derived peptides and their immunomodulatory molecules can play a preventive role against viral diseases including COVID-19. Probiotics Antimicrob, 2020, 1-3.
[322]
WHO (World Health Organization). Guidelines on Food Fortification with Micronutrients - Part 2 - Evaluating the Public Health Significance of Micronutrient Malnutrition. 2006. Available from: https://www.who.int/nutrition/publications/micronutrients/GFF_Part_2_en.pdf?ua=1 (Accessed on 25 August 2021).
[323]
WHO (World Health Organization) (2017) The Double Burden of Malnutrition: Policy Brief. 2017. Available from: https://www.who.int/publications-detail/WHO-NMH-NHD-17.3 (Accessed on 25 August 2021).
[324]
WHO (World Health Organization) (2019) Technical Note: Quality and Regulatory Considerations for the Use of Vitamin A Supplements in Public Health Programmes for Infants and Children Aged 6-59 Months.. 2019. Available from: https://www.who.int/publications-detail/quality-and-regulatory-considerations-for-the-use-ofvitamin-a-supplements-in-public-health-programmes-for-infantsand-children-aged-6-59-months (Accessed on 25 August 2021).
[325]
Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 2020, 12(4), 1181.
[http://dx.doi.org/10.3390/nu12041181] [PMID: 32340216]
[326]
Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 2020, 12(1), 236.
[http://dx.doi.org/10.3390/nu12010236] [PMID: 31963293]
[327]
Bousquet, J.; Anto, J.M.; Iaccarino, G.; Czarlewski, W.; Haahtela, T.; Anto, A.; Akdis, C.A.; Blain, H.; Canonica, G.W.; Cardona, V.; Cruz, A.A.; Illario, M.; Ivancevich, J.C.; Jutel, M.; Klimek, L.; Kuna, P.; Laune, D.; Larenas-Linnemann, D.; Mullol, J.; Papadopoulos, N.G.; Pfaar, O.; Samolinski, B.; Valiulis, A.; Yorgancioglu, A.; Zuberbier, T. Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin. Transl. Allergy, 2020, 10(1), 16.
[http://dx.doi.org/10.1186/s13601-020-00323-0] [PMID: 32499909]
[328]
Li, T.; Zhang, Y.; Gong, C.; Wang, J.; Liu, B.; Shi, L.; Duan, J. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur. J. Clin. Nutr., 2020, 74(6), 871-875.
[http://dx.doi.org/10.1038/s41430-020-0642-3] [PMID: 32322046]
[329]
Jayawardena, R.; Jeyakumar, D.T.; Francis, T.V.; Misra, A. Impact of the vitamin D deficiency on COVID-19 infection and mortality in Asian countries. Diabetes Metab. Syndr., 2021, 15(3), 757-764.
[http://dx.doi.org/10.1016/j.dsx.2021.03.006] [PMID: 33823331]
[330]
Ali, N.; Fariha, K.A.; Islam, F.; Mohanto, N.C.; Ahmad, I.; Hosen, M.J.; Ahmed, S. Assessment of the role of zinc in the prevention of COVID-19 infections and mortality: A retrospective study in the Asian and European population. J. Med. Virol., 2021, 93(7), 4326-4333.
[http://dx.doi.org/10.1002/jmv.26932] [PMID: 33710631]
[331]
Lv, Y.; Chen, L.; Liang, X.; Liu, X.; Gao, M.; Wang, Q.; Wei, Q.; Liu, L. Association between iron status and the risk of adverse outcomes in COVID-19. Clin. Nutr., 2021, 40(5), 3462-3469.
[http://dx.doi.org/10.1016/j.clnu.2020.11.033] [PMID: 33380357]
[332]
Gonçalves, T.J.M.; Gonçalves, S.E.A.B.; Guarnieri, A.; Risegato, R.C.; Guimarães, M.P.; de Freitas, D.C.; Razuk-Filho, A.; Junior, P.B.B.; Parrillo, E.F. Association between low zinc levels and severity of acute respiratory distress syndrome by new coronavirus SARS-CoV-2. Nutr. Clin. Pract., 2021, 36(1), 186-191.
[http://dx.doi.org/10.1002/ncp.10612] [PMID: 33368619]
[333]
Heller, R.A.; Sun, Q.; Hackler, J.; Seelig, J.; Seibert, L.; Cherkezov, A.; Minich, W.B.; Seemann, P.; Diegmann, J.; Pilz, M.; Bachmann, M.; Ranjbar, A.; Moghaddam, A.; Schomburg, L. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol., 2021, 38, 101764.
[http://dx.doi.org/10.1016/j.redox.2020.101764] [PMID: 33126054]
[334]
Çimke, S.; Yıldırım Gürkan, D. Determination of interest in vitamin use during COVID-19 pandemic using Google Trends data: Infodemiology study. Nutrition, 2021, 85, 111138.
[http://dx.doi.org/10.1016/j.nut.2020.111138] [PMID: 33578243]
[335]
Cereda, E.; Bogliolo, L.; Klersy, C.; Lobascio, F.; Masi, S.; Crotti, S.; De Stefano, L.; Bruno, R.; Corsico, A.G.; Di Sabatino, A.; Perlini, S.; Montecucco, C.; Caccialanza, R.; Belliato, M.; Ludovisi, S.; Mariani, F.; Ferrari, A.; Musella, V.; Muggia, C.; Croce, G.; Barteselli, C.; Mambella, J.; Di Terlizzi, F. Vitamin D 25OH deficiency in COVID-19 patients admitted to a tertiary referral hospital. Clin. Nutr., 2021, 40(4), 2469-2472.
[http://dx.doi.org/10.1016/j.clnu.2020.10.055] [PMID: 33187772]
[336]
Notz, Q.; Herrmann, J.; Schlesinger, T.; Kranke, P.; Sitter, M.; Helmer, P.; Stumpner, J.; Roeder, D.; Amrein, K.; Stoppe, C.; Lotz, C.; Meybohm, P. Vitamin D deficiency in critically ill COVID-19 ARDS patients. Clin. Nutr., 2021, S0261-5614(21), 00135-7.
[http://dx.doi.org/10.1016/j.clnu.2021.03.001] [PMID: 33745749]
[337]
ClinicalTrails.gov. Available from: https://clinicaltrials.gov/ct2/results?cond=COVID&term=vitamin&cntry=&state=&city=&dist= (Accessed on 30 july 2021).
[338]
Samanta, S. Fat-soluble vitamins: The key role players in immunomodulation and digestion. In: Nutrition and functional foods in boosting digestion, metabolism and immune health; Academic Press, 2021; pp. 329-364.
[339]
Shakoor, H.; Feehan, J.; Mikkelsen, K.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Stojanovska, L.; Apostolopoulos, V. Be well: A potential role for vitamin B in COVID-19. Maturitas, 2021, 144, 108-111.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.007] [PMID: 32829981]
[340]
Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem., 2012, 23(8), 853-859.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.003] [PMID: 22749138]
[341]
Zittermann, A.; Schleithoff, S.S.; Koerfer, R. Putting cardiovascular disease and vitamin D insufficiency into perspective. Br. J. Nutr., 2005, 94(4), 483-492.
[http://dx.doi.org/10.1079/BJN20051544] [PMID: 16197570]
[342]
Wamberg, L.; Kampmann, U.; Stødkilde-Jørgensen, H.; Rejnmark, L.; Pedersen, S.B.; Richelsen, B. Effects of vitamin D supplementation on body fat accumulation, inflammation, and metabolic risk factors in obese adults with low vitamin D levels - results from a randomized trial. Eur. J. Intern. Med., 2013, 24(7), 644-649.
[http://dx.doi.org/10.1016/j.ejim.2013.03.005] [PMID: 23566943]
[343]
Piyathilake, C.J.; Badiga, S.; Paul, P.; Vijayaraghavan, K.; Vedantham, H.; Sudula, M.; Sowjanya, P.; Ramakrishna, G.; Shah, K.V.; Partridge, E.E.; Gravitt, P.E. Indian women with higher serum concentrations of folate and vitamin B12 are significantly less likely to be infected with carcinogenic or high-risk (HR) types of human papillomaviruses (HPVs). Int. J. Womens Health, 2010, 2, 7-12.
[http://dx.doi.org/10.2147/IJWH.S6522] [PMID: 21072292]
[344]
Herceg, Z. Epigenetics and cancer: Towards an evaluation of the impact of environmental and dietary factors. Mutagenesis, 2007, 22(2), 91-103.
[http://dx.doi.org/10.1093/mutage/gel068] [PMID: 17284773]
[345]
Stubbs, J.R.; Idiculla, A.; Slusser, J.; Menard, R.; Quarles, L.D. Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J. Am. Soc. Nephrol., 2010, 21(2), 353-361.
[http://dx.doi.org/10.1681/ASN.2009040451] [PMID: 20007751]
[346]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[347]
Shea, M.K.; Booth, S.L.; Massaro, J.M.; Jacques, P.F.; D’Agostino, R.B., Sr; Dawson-Hughes, B.; Ordovas, J.M.; O’Donnell, C.J.; Kathiresan, S.; Keaney, J.F., Jr; Vasan, R.S.; Benjamin, E.J. Vitamin K and vitamin D status: Associations with inflammatory markers in the Framingham Offspring Study. Am. J. Epidemiol., 2008, 167(3), 313-320.
[http://dx.doi.org/10.1093/aje/kwm306] [PMID: 18006902]
[348]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[349]
Ogoina, D.; Onyemelukwe, G.C. The role of infections in the emergence of non-communicable diseases (NCDs): Compelling needs for novel strategies in the developing world. J. Infect. Public Health, 2009, 2(1), 14-29.
[http://dx.doi.org/10.1016/j.jiph.2009.02.001] [PMID: 20701857]
[350]
Hemilä, H. Vitamin C and SARS coronavirus. J. Antimicrob. Chemother., 2003, 52(6), 1049-1050.
[http://dx.doi.org/10.1093/jac/dkh002] [PMID: 14613951]
[351]
Ong, T.P.; Pérusse, L. Impact of nutritional epigenomics on disease risk and prevention. Introduction. J. Nutrigenet. Nutrigenomics, 2011, 4(5), 245-247.
[http://dx.doi.org/10.1159/000334813] [PMID: 22353661]
[352]
Zhang, N.; Wang, L.; Deng, X.; Liang, R.; Su, M.; He, C.; Hu, L.; Su, Y.; Ren, J.; Yu, F.; Du, L.; Jiang, S. Recent advances in the detection of respiratory virus infection in humans. J. Med. Virol., 2020, 92(4), 408-417.
[http://dx.doi.org/10.1002/jmv.25674] [PMID: 31944312]
[353]
Wee, A.K.H. COVID-19's toll on the elderly and those with diabetes mellitus - Is vitamin B12 deficiency an accomplice? Med. Hypotheses, 2021, 146, 110374.
[http://dx.doi.org/10.1016/j.mehy.2020.110374] [PMID: 33257090]
[354]
Vyas, N.; Kurian, S.J.; Bagchi, D.; Manu, M.K.; Saravu, K.; Unnikrishnan, M.K.; Mukhopadhyay, C.; Rao, M.; Miraj, S.S. Vitamin D in prevention and treatment of COVID-19: Current perspective and future prospects. J. Am. Coll. Nutr., 2021, 40(7), 632-645.
[http://dx.doi.org/10.1080/07315724.2020.1806758] [PMID: 32870735]
[355]
de Andrade, M.I.; de Macêdo, P.F.; de Oliveira, T.L.; da Silva Lima, N.M.; da Costa Ribeiro, I.; Santos, T.M. Vitamin A and D deficiencies in the prognosis of respiratory tract infections: A systematic review with perspectives for COVID-19 and a critical analysis on supplementation., 2021.
[http://dx.doi.org/10.1590/SciELOPreprints.839]
[356]
Hiedra, R.; Lo, K.B.; Elbashabsheh, M.; Gul, F.; Wright, R.M.; Albano, J.; Azmaiparashvili, Z.; Patarroyo Aponte, G. The use of IV vitamin C for patients with COVID-19: A case series. Expert Rev. Anti Infect. Ther., 2020, 18(12), 1259-1261.
[http://dx.doi.org/10.1080/14787210.2020.1794819] [PMID: 32662690]
[357]
Cheng, R.Z. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med. Drug Discov., 2020, 5, 100028.
[http://dx.doi.org/10.1016/j.medidd.2020.100028] [PMID: 32328576]
[358]
Lau, F.H.; Majumder, R.; Torabi, R.; Saeg, F.; Hoffman, R.; Cirillo, J.D.; Greiffenstein, P. Vitamin D insufficiency is prevalent in severe COVID-19. 2020.MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.24.20075838]
[359]
Daneshkhah, A.; Eshein, A.; Subramanian, H.; Roy, H.K.; Backman, V. The role of vitamin D in suppressing cytokine storm in COVID-19 patients and associated mortality. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.08.20058578]
[360]
Anuk, A.T.; Polat, N.; Akdas, S.; Erol, S.A.; Tanacan, A.; Biriken, D.; Keskin, H.L.; Moraloglu Tekin, O.; Yazihan, N.; Sahin, D. The relation between trace element status (zinc, copper, magnesium) and clinical outcomes in COVID-19 infection during pregnancy. Biol. Trace Elem. Res., 2021, 199(10), 3608-3617.
[http://dx.doi.org/10.1007/s12011-020-02496-y] [PMID: 33236293]
[361]
Yadav, D.; Birdi, A.; Tomo, S.; Charan, J.; Bhardwaj, P.; Sharma, P. Association of vitamin D status with COVID-19 infection and mortality in the Asia Pacific region: A cross-sectional study. Indian J. Clin. Biochem., 2021, 36(4), 492-497.
[http://dx.doi.org/10.1007/s12291-020-00950-1] [PMID: 33551585]
[362]
Story, M.J. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie, 2021, 187, 94-109.
[http://dx.doi.org/10.1016/j.biochi.2021.05.013] [PMID: 34082041]
[363]
Khabour, O.F.; Hassanein, S.F.M. Use of vitamin/zinc supplements, medicinal plants, and immune boosting drinks during COVID-19 pandemic: A pilot study from Benha city, Egypt. Heliyon, 2021, 7(3), e06538.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06538] [PMID: 33748511]
[364]
Collins, J.F. Molecular, genetic, and nutritional aspects of major and trace minerals; Academic Press, 2016.
[365]
Zhang, Y.; Wang, Y.; Liu, Q. The role of zinc in antiviral remedy for cancer patients. Eur. J. Cancer Prev., 2022, 31(1), 104.
[http://dx.doi.org/10.1097/CEJ.0000000000000659] [PMID: 33369950]
[366]
Gammoh, N.Z.; Rink, L. Zinc in infection and inflammation. Nutrients, 2017, 9(6), 624.
[http://dx.doi.org/10.3390/nu9060624] [PMID: 28629136]
[367]
Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 2017, 25(1), 11-24.
[http://dx.doi.org/10.1007/s10787-017-0309-4] [PMID: 28083748]
[368]
Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The role of zinc in antiviral immunity. Adv. Nutr., 2019, 10(4), 696-710.
[http://dx.doi.org/10.1093/advances/nmz013] [PMID: 31305906]
[369]
Meydani, S.N.; Barnett, J.B.; Dallal, G.E.; Fine, B.C.; Jacques, P.F.; Leka, L.S.; Hamer, D.H. Serum zinc and pneumonia in nursing home elderly. Am. J. Clin. Nutr., 2007, 86(4), 1167-1173.
[http://dx.doi.org/10.1093/ajcn/86.4.1167] [PMID: 17921398]
[370]
Anderson, L.J.; Dormitzer, P.R.; Nokes, D.J.; Rappuoli, R.; Roca, A.; Graham, B.S. Strategic priorities for respiratory syncytial virus (RSV) vaccine development. Vaccine, 2013, 31(Suppl. 2), B209-B215.
[http://dx.doi.org/10.1016/j.vaccine.2012.11.106] [PMID: 23598484]
[371]
Pal, A.; Squitti, R.; Picozza, M.; Pawar, A.; Rongioletti, M.; Dutta, A.K.; Sahoo, S.; Goswami, K.; Sharma, P.; Prasad, R. Zinc and COVID-19, Basis of current clinical trials. Biol. Trace Elem. Res., 2020, 1-1.
[PMID: 33094446]
[372]
Rahman, M.T.; Idid, S.Z. Can Zn be a critical element in COVID-19 treatment? Biol. Trace Elem. Res., 2021, 199, 550-558.
[http://dx.doi.org/10.1007/s12011-020-02194-9]
[373]
Rerksuppaphol, S.; Rerksuppaphol, L. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. Pediatr. Rep., 2019, 11(2), 7954.
[http://dx.doi.org/10.4081/pr.2019.7954] [PMID: 31214301]
[374]
Yazar, A.S.; Güven, Ş.; Dinleyici, E.Ç. Effects of zinc or synbiotic on the duration of diarrhea in children with acute infectious diarrhea. Turk. J. Gastroenterol., 2016, 27(6), 537-540.
[http://dx.doi.org/10.5152/tjg.2016.16396] [PMID: 27852545]
[375]
Singh, M.; Das, R.R. Zinc for the common cold. Cochrane Database Syst. Rev., 2013, (6), CD001364.
[PMID: 23775705]
[376]
te Velthuis, A.J.; van den Worm, S.H.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog., 2010, 6(11), e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[377]
Celik, C.; Gencay, A.; Ocsoy, I. Can food and food supplements be deployed in the fight against the COVID 19 pandemic? Biochimica et Biophysica Acta (BBA)-General Subjects, 2020, 129801
[378]
Mossink, J.P. Zinc as nutritional intervention and prevention measure for COVID-19 disease. BMJ Nutr. Prev. Health., 2020, 3(1), 111-117.
[http://dx.doi.org/10.1136/bmjnph-2020-000095] [PMID: 33235974]
[379]
Guillin, O.M.; Vindry, C.; Ohlmann, T.; Chavatte, L. Selenium, selenoproteins and viral infection. Nutrients, 2019, 11(9), 2101.
[http://dx.doi.org/10.3390/nu11092101] [PMID: 31487871]
[380]
Avery, J.C.; Hoffmann, P.R. Selenium, selenoproteins, and immunity. Nutrients, 2018, 10(9), 1203.
[http://dx.doi.org/10.3390/nu10091203] [PMID: 30200430]
[381]
Beck, M.A.; Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J., 2001, 15(8), 1481-1483.
[http://dx.doi.org/10.1096/fj.00-0721fje] [PMID: 11387264]
[382]
Dhanjal, N.I.K.; Sharma, S.; Prabhu, K.S.; Prakash, N.T. Selenium supplementation through Se-rich dietary matrices can upregulate the anti-inflammatory responses in lipopolysaccharide-stimulated murine macrophages. Food Agric. Immunol., 2017, 28(6), 1374-1392.
[http://dx.doi.org/10.1080/09540105.2017.1343805] [PMID: 29563666]
[383]
Stone, C.A.; Kawai, K.; Kupka, R.; Fawzi, W.W. Role of selenium in HIV infection. Nutr. Rev., 2010, 68(11), 671-681.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00337.x] [PMID: 20961297]
[384]
Mahmoodpoor, A.; Hamishehkar, H.; Shadvar, K.; Ostadi, Z.; Sanaie, S.; Saghaleini, S.H.; Nader, N.D. The effect of intravenous selenium on oxidative stress in critically Ill patients with acute respiratory distress syndrome. Immunol. Invest., 2019, 48(2), 147-159.
[http://dx.doi.org/10.1080/08820139.2018.1496098] [PMID: 30001171]
[385]
Harthill, M. Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol. Trace Elem. Res., 2011, 143(3), 1325-1336.
[http://dx.doi.org/10.1007/s12011-011-8977-1] [PMID: 21318622]
[386]
Ma, X.; Bi, S.; Wang, Y.; Chi, X.; Hu, S. Combined adjuvant effect of ginseng stem-leaf saponins and selenium on immune responses to a live bivalent vaccine of Newcastle disease virus and infectious bronchitis virus in chickens. Poult. Sci., 2019, 98(9), 3548-3556.
[http://dx.doi.org/10.3382/ps/pez207] [PMID: 31220864]
[387]
Beck, M.A.; Shi, Q.; Morris, V.C.; Levander, O.A. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat. Med., 1995, 1(5), 433-436.
[http://dx.doi.org/10.1038/nm0595-433] [PMID: 7585090]
[388]
Alfthan, G.; Xu, G.L.; Tan, W.H.; Aro, A.; Wu, J.; Yang, Y.X.; Liang, W.S.; Xue, W.L.; Kong, L.H. Selenium supplementation of children in a selenium-deficient area in China: Blood selenium levels and glutathione peroxidase activities. Biol. Trace Elem. Res., 2000, 73(2), 113-125.
[http://dx.doi.org/10.1385/BTER:73:2:113] [PMID: 11049204]
[389]
Xia, Y.; Hill, K.E.; Byrne, D.W.; Xu, J.; Burk, R.F. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr., 2005, 81(4), 829-834.
[http://dx.doi.org/10.1093/ajcn/81.4.829] [PMID: 15817859]
[390]
Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A.; Beck, M.A. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J., 2001, 15(10), 1727-1738.
[http://dx.doi.org/10.1096/fj.01-0108com] [PMID: 11481250]
[391]
Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol., 2020, 92(5), 479-490.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[392]
Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr., 2020, 111(6), 1297-1299.
[http://dx.doi.org/10.1093/ajcn/nqaa095] [PMID: 32342979]
[393]
Seale, L.A.; Torres, D.J.; Berry, M.J.; Pitts, M.W. A role for selenium-dependent GPX1 in SARS-CoV-2 virulence. Am. J. Clin. Nutr., 2020, 112(2), 447-448.
[http://dx.doi.org/10.1093/ajcn/nqaa177] [PMID: 32592394]
[394]
Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington (DC); National Academies Press: US, 1997.
[395]
Costello, R.B.; Elin, R.J.; Rosanoff, A.; Wallace, T.C.; Guerrero-Romero, F.; Hruby, A.; Lutsey, P.L.; Nielsen, F.H.; Rodriguez-Moran, M.; Song, Y.; Van Horn, L.V. Perspective: The case for an evidence-based reference interval for serum magnesium: The time has come. Adv. Nutr., 2016, 7(6), 977-993.
[http://dx.doi.org/10.3945/an.116.012765] [PMID: 28140318]
[396]
Nielsen, F.H. Magnesium, inflammation, and obesity in chronic disease. Nutr. Rev., 2010, 68(6), 333-340.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00293.x] [PMID: 20536778]
[397]
Sugimoto, J.; Romani, A.M.; Valentin-Torres, A.M.; Luciano, A.A.; Ramirez Kitchen, C.M.; Funderburg, N.; Mesiano, S.; Bernstein, H.B. Magnesium decreases inflammatory cytokine production: A novel innate immunomodulatory mechanism. J. Immunol., 2012, 188(12), 6338-6346.
[http://dx.doi.org/10.4049/jimmunol.1101765] [PMID: 22611240]
[398]
Chacko, S.A.; Song, Y.; Nathan, L.; Tinker, L.; de Boer, I.H.; Tylavsky, F.; Wallace, R.; Liu, S. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care, 2010, 33(2), 304-310.
[http://dx.doi.org/10.2337/dc09-1402] [PMID: 19903755]
[399]
Mahalle, N.; Garg, M.K.; Kulkarni, M.V.; Naik, S.S. Relation of magnesium with insulin resistance and inflammatory markers in subjects with known Coronary artery disease. J. Cardiovasc. Dis. Res., 2014, 5(1), 22-29.
[http://dx.doi.org/10.5530/jcdr.2014.1.4]
[400]
Mazidi, M.; Rezaie, P.; Banach, M. Effect of magnesium supplements on serum C-reactive protein: A systematic review and meta-analysis. Arch. Med. Sci., 2018, 14(4), 707-716.
[http://dx.doi.org/10.5114/aoms.2018.75719] [PMID: 30002686]
[401]
Simental-Mendia, L.E.; Sahebkar, A.; Rodriguez-Moran, M.; Zambrano-Galvan, G.; Guerrero-Romero, F. Effect of magnesium supplementation on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials. Curr. Pharm. Des., 2017, 23(31), 4678-4686.
[http://dx.doi.org/10.2174/1381612823666170525153605] [PMID: 28545353]
[402]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[403]
Wallace, T.C. Combating COVID-19 and building immune resilience: A potential role for magnesium nutrition? J. Am. Coll. Nutr., 2020, 39(8), 685-693.
[http://dx.doi.org/10.1080/07315724.2020.1785971] [PMID: 32649272]
[404]
Iotti, S.; Wolf, F.; Mazur, A.; Maier, J.A. The COVID-19 pandemic: Is there a role for magnesium? Hypotheses and perspectives. Magnes. Res., 2020, 33(2), 21-27.
[http://dx.doi.org/10.1684/mrh.2020.0465] [PMID: 32554340]
[405]
Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr., 2020, 14(4), 367-382.
[http://dx.doi.org/10.1016/j.dsx.2020.04.015] [PMID: 32334392]
[406]
Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; Nagarajan, C.; Sultana, R.; Low, J.G.H.; Ng, H.J. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition, 2020, 79-80, 111017.
[http://dx.doi.org/10.1016/j.nut.2020.111017] [PMID: 33039952]
[407]
Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.; The, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.; Chandran, M.; Chay, J.W.; Nagarajan, C. A cohort study to evaluate the effect of combination vitamin D, magnesium and vitamin B12 (DMB) on progression to severe outcome in older COVID-19 patients. Infectious Diseases (except HIV/AIDS). MedRxiv, 2020.
[408]
Gutiérrez, D.; Benavides, A.; Valenzuela, B.; Mascayano, C.; Aldabaldetrecu, M.; Olguín, A.; Guerrero, J.; Modak, B. Evaluation of the antiviral activity against infectious pancreatic necrosis virus (IPNV) of a copper (I) homoleptic complex with a coumarin as ligand. Molecules, 2021, 27(1), 32.
[http://dx.doi.org/10.3390/molecules27010032] [PMID: 35011264]
[409]
Osredkar, J.; Sustar, N. Copper and zinc, biological role and significance of copper/zinc imbalance. J. Clin. Toxicol., 2011, 3(2161), 495.
[http://dx.doi.org/10.4172/2161-0495.S3-001]
[410]
Pvsn, K.K.; Tomo, S.; Purohit, P.; Sankanagoudar, S.; Charan, J.; Purohit, A.; Nag, V.; Bhatia, P.; Singh, K.; Dutt, N.; Garg, M.K.; Sharma, P.; Misra, S.; Yadav, D. Comparative analysis of serum zinc, copper and magnesium level and their relations in association with severity and mortality in SARS-CoV-2 patients. Biol. Trace Elem. Res., 2022, 1-8.
[http://dx.doi.org/10.1007/s12011-022-03124-7] [PMID: 35064475]
[411]
Percival, S.S. Copper and immunity. Am. J. Clin. Nutr., 1998, 67(5)(Suppl.), 1064S-1068S.
[http://dx.doi.org/10.1093/ajcn/67.5.1064S] [PMID: 9587153]
[412]
Raha, S.; Mallick, R.; Basak, S.; Duttaroy, A.K. Is copper beneficial for COVID-19 patients? Med. Hypotheses, 2020, 142, 109814.
[http://dx.doi.org/10.1016/j.mehy.2020.109814] [PMID: 32388476]
[413]
Warnes, S.L.; Little, Z.R.; Keevil, C.W. Human coronavirus 229E remains infectious on common touch surface materials. MBio, 2015, 6(6), e01697-e15.
[http://dx.doi.org/10.1128/mBio.01697-15] [PMID: 26556276]
[414]
Borkow, G.; Lara, H.H.; Covington, C.Y.; Nyamathi, A.; Gabbay, J. Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters. Antimicrob. Agents, 2008, 518-525.
[415]
Thanawongnuwech, R.; Brown, G.B.; Halbur, P.G.; Roth, J.A.; Royer, R.L.; Thacker, B.J. Pathogenesis of porcine reproductive and respiratory syndrome virus-induced increase in susceptibility to Streptococcus suis infection. Vet. Pathol., 2000, 37(2), 143-152.
[http://dx.doi.org/10.1354/vp.37-2-143] [PMID: 10714643]
[416]
Besold, A.N.; Culbertson, E.M.; Culotta, V.C. The Yin and Yang of copper during infection. Eur. J. Biochem., 2016, 21(2), 137-144.
[http://dx.doi.org/10.1007/s00775-016-1335-1] [PMID: 26790881]
[417]
Alexander, J.; Tinkov, A.; Strand, T.A.; Alehagen, U.; Skalny, A.; Aaseth, J. Early nutritional interventions with zinc, selenium and vitamin D for raising antiviral resistance against progressive COVID-19. Nutrients, 2020, 12(8), 2358.
[http://dx.doi.org/10.3390/nu12082358] [PMID: 32784601]
[418]
Ha, T.; Pham, T.T.M.; Kim, M.; Kim, Y.H.; Park, J.H.; Seo, J.H.; Kim, K.M.; Ha, E. Antiviral activities of high energy e-beam induced copper nanoparticles against H1N1 influenza virus. Nanomaterials (Basel), 2022, 12(2), 268.
[http://dx.doi.org/10.3390/nano12020268] [PMID: 35055284]
[419]
Ishida, T. Antiviral activities of Cu2+ ions in viral prevention, replication, RNA degradation, and for antiviral efficacies of lytic virus, ROS-mediated virus, copper chelation. World Sci. News, 2018, 99, 148-168.
[420]
Lepanto, M.S.; Rosa, L.; Paesano, R.; Valenti, P.; Cutone, A. Lactoferrin in aseptic and septic inflammation. Molecules, 2019, 24(7), 1323.
[http://dx.doi.org/10.3390/molecules24071323] [PMID: 30987256]
[421]
Ekiz, C.; Agaoglu, L.; Karakas, Z.; Gurel, N.; Yalcin, I. The effect of iron deficiency anemia on the function of the immune system. Hematol. J., 2005, 5(7), 579-583.
[http://dx.doi.org/10.1038/sj.thj.6200574] [PMID: 15692603]
[422]
Sun, Y.; Chen, P.; Zhai, B.; Zhang, M.; Xiang, Y.; Fang, J.; Xu, S.; Gao, Y.; Chen, X.; Sui, X.; Li, G. The emerging role of ferroptosis in inflammation. Biomed. Pharmacother., 2020, 127, 110108.
[http://dx.doi.org/10.1016/j.biopha.2020.110108] [PMID: 32234642]
[423]
Maggini, S.; Wintergerst, E.S.; Beveridge, S.; Hornig, D.H. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr., 2007, 98(1)(Suppl. 1), S29-S35.
[http://dx.doi.org/10.1017/S0007114507832971] [PMID: 17922955]
[424]
Maggini, S.; Pierre, A.; Calder, P.C. Immune function and micronutrient requirements change over the life course. Nutrients, 2018, 10(10), 1531.
[http://dx.doi.org/10.3390/nu10101531] [PMID: 30336639]
[425]
Wang, H.; Li, Z.; Niu, J.; Xu, Y.; Ma, L.; Lu, A.; Wang, X.; Qian, Z.; Huang, Z.; Jin, X.; Leng, Q.; Wang, J.; Zhong, J.; Sun, B.; Meng, G. Antiviral effects of ferric ammonium citrate. Cell Discov., 2018, 4(1), 14.
[http://dx.doi.org/10.1038/s41421-018-0013-6] [PMID: 29619244]
[426]
Agoro, R.; Taleb, M.; Quesniaux, V.F.J.; Mura, C. Cell iron status influences macrophage polarization. PLoS One, 2018, 13(5), e0196921.
[http://dx.doi.org/10.1371/journal.pone.0196921] [PMID: 29771935]
[427]
Kumar, R.; Nayak, M.; Sahoo, G.C.; Pandey, K.; Sarkar, M.C.; Ansari, Y.; Das, V.N.R.; Topno, R.K. Bhawna; Madhukar, M.; Das, P. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J. Infect. Chemother., 2019, 25(5), 325-329.
[http://dx.doi.org/10.1016/j.jiac.2018.12.006] [PMID: 30770182]
[428]
Tolentino, K.; Friedman, J.F. An update on anemia in less developed countries. Am. J. Trop. Med. Hyg., 2007, 77(1), 44-51.
[http://dx.doi.org/10.4269/ajtmh.2007.77.44] [PMID: 17620629]
[429]
Cassat, J.E.; Skaar, E.P. Iron in infection and immunity. Cell Host Microbe, 2013, 13(5), 509-519.
[http://dx.doi.org/10.1016/j.chom.2013.04.010] [PMID: 23684303]
[430]
Qin, T.; Ma, R.; Yin, Y.; Miao, X.; Chen, S.; Fan, K.; Xi, J.; Liu, Q.; Gu, Y.; Yin, Y.; Hu, J.; Liu, X.; Peng, D.; Gao, L. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics, 2019, 9(23), 6920-6935.
[http://dx.doi.org/10.7150/thno.35826] [PMID: 31660077]
[431]
Wessling-Resnick, M. Crossing the iron gate: Why and how transferrin receptors mediate viral entry. Annu. Rev. Nutr., 2018, 38(1), 431-458.
[http://dx.doi.org/10.1146/annurev-nutr-082117-051749] [PMID: 29852086]
[432]
Deugnier, Y.; Battistelli, D.; Jouanolle, H.; Guyader, D.; Gueguen, M.; Loréal, O.; Jacquelinet, C.; Bourel, M.; Brissot, P. Hepatitis B virus infection markers in genetic haemochromatosis. A study of 272 patients. J. Hepatol., 1991, 13(3), 286-290.
[http://dx.doi.org/10.1016/0168-8278(91)90070-R] [PMID: 1667016]
[433]
Aboda, A.; Taha, W.; Attia, I.; Gad, A.; Mostafa, M.M.; Abdelwadod, M.A.; Mohsen, M.; Kanwar, R.K.; Kanwar, J.R. Iron bond bovine lactoferrin for the treatment of cancers and anemia associated with cancer cachexia. In: Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents; Academic Press, 2020; pp. 243-254.
[http://dx.doi.org/10.1016/B978-0-12-819666-3.00008-0]
[434]
Perricone, C.; Bartoloni, E.; Bursi, R.; Cafaro, G.; Guidelli, G.M.; Shoenfeld, Y.; Gerli, R. COVID-19 as part of the hyperferritinemic syndromes: The role of iron depletion therapy. Immunol. Res., 2020, 68(4), 213-224.
[http://dx.doi.org/10.1007/s12026-020-09145-5] [PMID: 32681497]
[435]
Khiroya, H.; Turner, A.M. The role of iron in pulmonary pathology. Multidiscip. Respir. Med., 2015, 10(1), 34.
[http://dx.doi.org/10.1186/s40248-015-0031-2] [PMID: 26629341]
[436]
Ghio, A.J.; Carter, J.D.; Richards, J.H.; Richer, L.D.; Grissom, C.K.; Elstad, M.R. Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome. Crit. Care Med., 2003, 31(2), 395-400.
[http://dx.doi.org/10.1097/01.CCM.0000050284.35609.97] [PMID: 12576942]
[437]
Ganz, T. Iron and infection. Int. J. Hematol., 2018, 107(1), 7-15.
[http://dx.doi.org/10.1007/s12185-017-2366-2] [PMID: 29147843]
[438]
Kim, J.; Wessling-Resnick, M. The role of iron metabolism in lung inflammation and injury. J. Allergy Ther., 2012, 3(4), 004.
[http://dx.doi.org/10.4172/2155-6121.S4-004]
[439]
Cavezzi, A.; Troiani, E.; Corrao, S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin. Pract., 2020, 10(2), 1271.
[http://dx.doi.org/10.4081/cp.2020.1271] [PMID: 32509258]
[440]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res., 2020, 34(10), 2471-2492.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy