Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

COVID-19 and Diabetes: will Novel Drugs for Diabetes Help in COVID-19?

Author(s): Hayder Mutter Al-Kuraishy, Ali Ismail Al-Gareeb, Gomaa Mostafa-Hedeab, Rupal Dubey, Pranav Kumar Prabhakar* and Gaber El-Saber Batiha*

Volume 16, Issue 4, 2023

Published on: 03 November, 2022

Article ID: e080922208629 Pages: 13

DOI: 10.2174/1874467215666220908091604

Price: $65

Abstract

COVID-19 is caused by the SARS-CoV-2 virus, which has afflicted more than 245.37 million individuals worldwide and resulted in more than 4.9 million deaths as of today, with a mortality rate of 2.1%. Diabetes mellitus (DM) and its secondary complications are the major serious global health concerns today due to its growth rate, and it is the fastest-growing non-communicable disease. According to International Diabetes Federation (IDF) data, one out of 11 adults is diabetic, and the projection says that the figure will reach 642 million by 2040 globally. The occurrence of DM and its secondary complications is also associated with the severity of COVID-19 and high mortality. People with DM have a weakened immune system owing to innate immunity defects affecting phagocytosis, neutrophil chemotaxis, and cellmediated immunity; however, the high prevalence of diabetes in serious cases of COVID-19 may reflect the higher prevalence of type 2 DM (T2DM) in older people. Moreover, DM is linked to cardiovascular illness in older people, which could underlie the correlation between COVID-19 and fatal outcomes. SARS-CoV-2 infects via the angiotensin-converting enzyme 2 (ACE2), which is found in pancreatic islets, and infection with SARS-CoV-1 has been linked to hyperglycemia in individuals who do not have DM. And hence diabetic patients need to take more precautions and maintain their blood glucose levels. Many pieces of research say that COVID-19 and DM, especially its secondary complications are interlinked. But it also needs more elaborative evidence on whether the anti-diabetic drugs can manage only blood glucose or SARS-CoV-2.

Keywords: Coronavirus, diabetes, ACE2 receptor, secondary complications, antidiabetic drugs, hyperglycemia

Graphical Abstract

[1]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Almulaiky, Y.Q.; Cruz-Martins, N.; El-Saber Batiha, G. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of COVID-19: The enigmatic entity. Eur. J. Pharmacol., 2021, 904, 174196.
[http://dx.doi.org/10.1016/j.ejphar.2021.174196] [PMID: 34004207]
[2]
Moubarak, M.; Kasozi, K.I.; Hetta, H.F.; Shaheen, H.M.; Rauf, A.; Al-Kuraishy, H.M.; Qusti, S.; Alshammari, E.M.; Ayikobua, E.T.; Ssempijja, F.; Afodun, A.M.; Kenganzi, R.; Usman, I.M.; Ochieng, J.J.; Osuwat, L.O.; Matama, K.; Al-Gareeb, A.I.; Kairania, E.; Musenero, M.; Welburn, S.C.; Batiha, G.E-S. The Rise of SARS-CoV-2 variants and the role of convalescent plasma therapy for management of infections. Life (Basel), 2021, 11(8), 734.
[http://dx.doi.org/10.3390/life11080734] [PMID: 34440478]
[3]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alqarni, M.; Cruz-Martins, N.; El-Saber Batiha, G. Pleiotropic effects of tetracyclines in the management of COVID-19: Emerging perspectives. Front. Pharmacol., 2021, 12, 642822.
[http://dx.doi.org/10.3389/fphar.2021.642822] [PMID: 33967777]
[4]
Al-Kuraishy, H.M.; Al-Gareeb, A.I. From SARS-CoV to nCoV-2019: Ruction and argument. Arch. Clin. Infect. Dis., 2020, 15(2), e102624.
[http://dx.doi.org/10.5812/archcid.102624]
[5]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alzahrani, K.J.; Cruz-Martins, N.; Batiha, G.E-S. The potential role of neopterin in Covid-19: A new perspective. Mol. Cell. Biochem., 2021, 476(11), 4161-4166.
[http://dx.doi.org/10.1007/s11010-021-04232-z] [PMID: 34319496]
[6]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Faidah, H.; Al-Maiahy, T.J.; Cruz-Martins, N.; Batiha, G.E-S. The looming effects of estrogen in COVID-19: A rocky rollout. Front. Nutr., 2021, 8, 649128.
[http://dx.doi.org/10.3389/fnut.2021.649128] [PMID: 33816542]
[7]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Guerreiro, S.G.; Cruz-Martins, N.; Batiha, G.E. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front. Cardiovasc. Med., 2021, 8, 644095.
[http://dx.doi.org/10.3389/fcvm.2021.644095] [PMID: 34124187]
[8]
Shimizu, E.; Yamaguchi, T.; Yagi-Yaguchi, Y.; Dogru, M.; Satake, Y.; Tsubota, K.; Shimazaki, J. Corneal higher-order aberrations in infectious keratitis. Am. J. Ophthalmol., 2017, 175, 148-158.
[http://dx.doi.org/10.1016/j.ajo.2016.12.014] [PMID: 28040524]
[9]
Rilinger, J.; Kern, W.V.; Duerschmied, D.; Supady, A.; Bode, C.; Staudacher, D.L.; Wengenmayer, T. A prospective, randomised, double blind placebo-controlled trial to evaluate the efficacy and safety of tocilizumab in patients with severe COVID-19 pneumonia (TOC-COVID): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21(1), 470.
[http://dx.doi.org/10.1186/s13063-020-04447-3] [PMID: 32493514]
[10]
Rasheed, H.A.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Hussien, N.R.; Al-Nami, M.S. Effects of diabetic pharmacotherapy on prolactin hormone in patients with type 2 diabetes mellitus: Bane or Boon. J. Adv. Pharm. Technol. Res., 2019, 10(4), 163-168.
[http://dx.doi.org/10.4103/japtr.JAPTR_65_19] [PMID: 31742116]
[11]
Towbin, J.A. Left ventricular noncompaction cardiomyopathy. Cardioskeletal Myopathies in Children and Young Adults; Elsevier, 2017, pp. 153-171.
[http://dx.doi.org/10.1016/B978-0-12-800040-3.00008-X]
[12]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[13]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Cruz-Martins, N.; Batiha, G.E-S. COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type II diabetes mellitus: The anti-inflammatory role of metformin. Front. Med. (Lausanne), 2021, 8, 644295.
[http://dx.doi.org/10.3389/fmed.2021.644295] [PMID: 33718411]
[14]
Gupta, R.; Ghosh, A.; Singh, A.K.; Misra, A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab. Syndr., 2020, 14(3), 211-212.
[http://dx.doi.org/10.1016/j.dsx.2020.03.002] [PMID: 32172175]
[15]
Al-kuraishy, H.M.; Al-Maiahy, T.J.; Al-Gareeb, A.I.; Musa, R.A.; Ali, Z.H. COVID-19 pneumonia in an Iraqi pregnant woman with preterm delivery. Asian Pac. J. Reprod., 2020, 9(3), 156.
[http://dx.doi.org/10.4103/2305-0500.282984]
[16]
Onohuean, H.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Batiha, G.E-S. COVID-19 and development of heart failure: Mystery and truth. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(10), 2013-2021.
[http://dx.doi.org/10.1007/s00210-021-02147-6] [PMID: 34480616]
[17]
Al-Kuraishy, H.M.; Al-Naimi, M.S.; Lungnier, C.M.; Al-Gareeb, A.I. Macrolides and COVID-19: An optimum premise. Biomed. Biotechnol. Res. J., 2020, 4(3), 189.
[http://dx.doi.org/10.4103/bbrj.bbrj_103_20]
[18]
Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Is ivermectin–Azithromycin combination the next step for COVID-19? Biomed. Biotechnol. Res. J., 2020, 4(5), 101.
[19]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Abdullah, S.M.; Cruz-Martins, N.; Batiha, G.E-S. Case Report: Hyperbilirubinemia in Gilbert Syndrome attenuates COVID-19-induced metabolic disturbances. Front. Cardiovasc. Med., 2021, 8, 642181.
[http://dx.doi.org/10.3389/fcvm.2021.642181] [PMID: 33681310]
[20]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Niemi, M.S.; Al-Buhadily, A.K.; Al-Harchan, N.A.; Lugnier, C. COVID-19 and phosphodiesterase enzyme type 5 inhibitors. J. Microsc. Ultrastruct., 2020, 8(4), 141-145.
[http://dx.doi.org/10.4103/JMAU.JMAU_63_20] [PMID: 33623736]
[21]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Cruz-Martins, N.; El-Saber Batiha, G. Sequential doxycycline and colchicine combination therapy in COVID-19: The salutary effects. Pulm. Pharmacol. Ther., 2021, 67, 102008.
[http://dx.doi.org/10.1016/j.pupt.2021.102008] [PMID: 33727066]
[22]
Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Renin-Angiotensin system and fibrinolytic pathway in COVID-19: One-way skepticism. Biomed. Biotechnol. Res. J., 2020, 4(5), 33.
[23]
Hussien, N.R.; Al-Niemi, M.S.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Statins and COVID-19: The neglected front of bidirectional effects. J. Pak. Med. Assoc., 2021, 71(12), S133-S136.
[PMID: 35130236]
[24]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alkazmi, L.; Alexiou, A.; Batiha, G.E-S. Levamisole therapy in COVID-19. Viral Immunol., 2021, 34(10), 722-725.
[http://dx.doi.org/10.1089/vim.2021.0042] [PMID: 34388031]
[25]
Al-Kuraishy, H.M.; Al-Gareeb, A.I. Acute kidney injury and COVID-19. Egypt. J. Intern. Med., 2021, 33(1), 34.
[http://dx.doi.org/10.1186/s43162-021-00064-x] [PMID: 34629845]
[26]
Zhang, J-J.; Dong, X.; Cao, Y-Y.; Yuan, Y-D.; Yang, Y-B.; Yan, Y-Q.; Akdis, C.A.; Gao, Y-D. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 2020, 75, 1730-1741.
[27]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[28]
Lugnier, C.; Al-Kuraishy, H.M.; Rousseau, E. PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in COVID-19 and cigarette smoking. Biochem. Pharmacol., 2021, 185, 114431.
[http://dx.doi.org/10.1016/j.bcp.2021.114431] [PMID: 33515531]
[29]
Akbar, D.H. Bacterial pneumonia: Comparison between diabetics and non-diabetics. Acta Diabetol., 2001, 38(2), 77-82.
[http://dx.doi.org/10.1007/s005920170017] [PMID: 11757805]
[30]
Yang, J.K.; Feng, Y.; Yuan, M.Y.; Yuan, S.Y.; Fu, H.J.; Wu, B.Y.; Sun, G.Z.; Yang, G.R.; Zhang, X.L.; Wang, L.; Xu, X.; Xu, X.P.; Chan, J.C. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet. Med., 2006, 23(6), 623-628.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01861.x] [PMID: 16759303]
[31]
Allard, R.; Leclerc, P.; Tremblay, C.; Tannenbaum, T-N. Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care, 2010, 33(7), 1491-1493.
[http://dx.doi.org/10.2337/dc09-2215] [PMID: 20587722]
[32]
Al-Tawfiq, J.A.; Alfaraj, S.H.; Altuwaijri, T.A.; Memish, Z.A. A cohort-study of patients suspected for MERS-CoV in a referral hospital in Saudi Arabia. J. Infect., 2017, 75(4), 378-379.
[http://dx.doi.org/10.1016/j.jinf.2017.06.002] [PMID: 28606432]
[33]
Badawi, A.; Ryoo, S.G. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): A systematic review and meta-analysis. Int. J. Infect. Dis., 2016, 49, 129-133.
[http://dx.doi.org/10.1016/j.ijid.2016.06.015] [PMID: 27352628]
[34]
Deng, S-Q.; Peng, H-J. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. J. Clin. Med., 2020, 9(2), 575.
[http://dx.doi.org/10.3390/jcm9020575] [PMID: 32093211]
[35]
Schoen, K.; Horvat, N.; Guerreiro, N.F.C.; de Castro, I.; de Giassi, K.S. Spectrum of clinical and radiographic findings in patients with diagnosis of H1N1 and correlation with clinical severity. BMC Infect. Dis., 2019, 19(1), 964.
[http://dx.doi.org/10.1186/s12879-019-4592-0] [PMID: 31718571]
[36]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[37]
Lippi, G.; Plebani, M. Laboratory abnormalities in patients with COVID-2019 infection. Clin. Chem. Lab. Med., 2020, 58(7), 1131-1134.
[http://dx.doi.org/10.1515/cclm-2020-0198] [PMID: 32119647]
[38]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Gyebi, G.A.; Batiha, G.E-S. COVID-19-induced dysautonomia: A menace of sympathetic storm. ASN Neuro, 2021, 13, 17590914211057635.
[http://dx.doi.org/10.1177/17590914211057635] [PMID: 34755562]
[39]
Batiha, G. E.-S.; Al-Gareeb, A. I.; Qusti, S.; Alshammari, E. M.; Rotimi, D.; Adeyemi, O. S.; Al-Kuraishy, H. M. Common NLRP3 inflammasome inhibitors and COVID-19: Divide and conquer. Scientific African, 2021, e01084.
[40]
Chen, X.; Hu, W.; Ling, J.; Mo, P.; Zhang, Y.; Jiang, Q.; Ma, Z.; Cao, Q.; Deng, L.; Song, S. Hypertension and diabetes delay the viral clearance in COVID-19 patients. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.22.20040774]
[41]
Roca-Ho, H.; Riera, M.; Palau, V.; Pascual, J.; Soler, M.J. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int. J. Mol. Sci., 2017, 18(3), 563.
[http://dx.doi.org/10.3390/ijms18030563] [PMID: 28273875]
[42]
Rao, S.; Lau, A.; So, H-C. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A Mendelian Randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care, 2020, 43(7), 1416-1426.
[http://dx.doi.org/10.2337/dc20-0643] [PMID: 32430459]
[43]
Fernandez, C. Rysä, J.; Almgren, P.; Nilsson, J.; Engström, G.; Orho-Melander, M.; Ruskoaho, H.; Melander, O. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med., 2018, 284(4), 377-387.
[http://dx.doi.org/10.1111/joim.12783] [PMID: 29888466]
[44]
Kulcsar, K.A.; Coleman, C.M.; Beck, S.E.; Frieman, M.B. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight, 2019, 4(20), 131774.
[http://dx.doi.org/10.1172/jci.insight.131774] [PMID: 31550243]
[45]
Al-Kuraishy, H.M.; Al-Gareeb, A.I. Covid-19 in Iraq: Events and wisdom. Pak. Med. Assoc., 2021, 71(suppl 8) (12), S2-S3.
[46]
Batiha, G.E-S.; Gari, A.; Elshony, N.; Shaheen, H.M.; Abubakar, M.B.; Adeyemi, S.B.; Al-Kuraishy, H.M. Hypertension and its management in COVID-19 patients: The assorted view. Int. J. Cardiol. Cardiovasc. Risk Prev., 2021, 11, 200121.
[http://dx.doi.org/10.1016/j.ijcrp.2021.200121] [PMID: 34806090]
[47]
Al-Kuraishy, H.M.; Al-Gareeb, A.I. Erectile dysfunction and low sex drive in men with type 2 DM: The potential role of diabetic pharmacotherapy. J. Clin. Diagn. Res., 2016, 10(12), FC21-FC26.
[http://dx.doi.org/10.7860/JCDR/2016/19971.8996] [PMID: 28208875]
[48]
Al-Nami, M.S.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Mamoori, F. Metabolic profile and prolactin serum levels in men with type 2 diabetes mellitus: Old-new rubric. Int. J. Crit. Illn. Inj. Sci., 2019, 9(3), 120-126.
[http://dx.doi.org/10.4103/IJCIIS.IJCIIS_40_19] [PMID: 31620350]
[49]
Memish, Z.A.; Perlman, S.; Van Kerkhove, M.D.; Zumla, A. Middle East respiratory syndrome. Lancet, 2020, 395(10229), 1063-1077.
[http://dx.doi.org/10.1016/S0140-6736(19)33221-0] [PMID: 32145185]
[50]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Niemi, M.S.; Aljowaie, R.M.; Almutairi, S.M.; Alexiou, A.; Batiha, G.E-S. The prospective effect of allopurinol on the oxidative stress index and endothelial dysfunction in COVID-19. Inflammation, 2022, 45, 1651-1667.
[http://dx.doi.org/10.1007/s10753-022-01648-7] [PMID: 35199285]
[51]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Shams, H.A.; Al-Mamorri, F. Endothelial dysfunction and inflammatory biomarkers as a response factor of concurrent coenzyme Q10 add-on metformin in patients with type 2 diabetes mellitus. J. Lab. Physicians, 2019, 11(4), 317-322.
[http://dx.doi.org/10.4103/JLP.JLP_123_19] [PMID: 31929697]
[52]
Abdul-Hadi, M.H.; Naji, M.T.; Shams, H.A.; Sami, O.M.; Al-Harchan, N.A-A.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: The potential role of metformin and sitagliptin. Biomed. Biotechnol. Res. J., 2020, 4(2), 166.
[53]
Al-Nami, M.S.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Impact of thioctic acid on glycemic indices and associated inflammatory-induced endothelial dysfunction in patients with type 2 diabetes mellitus: A case control study. Int. J. Crit. Illn. Inj. Sci., 2020, 10(Suppl. 1), 21-27.
[http://dx.doi.org/10.4103/IJCIIS.IJCIIS_62_19] [PMID: 33376686]
[54]
Joshi, N.; Caputo, G.M.; Weitekamp, M.R.; Karchmer, A.W. Infections in patients with diabetes mellitus. N. Engl. J. Med., 1999, 341(25), 1906-1912.
[http://dx.doi.org/10.1056/NEJM199912163412507] [PMID: 10601511]
[55]
Muller, L.M.; Gorter, K.J.; Hak, E.; Goudzwaard, W.L.; Schellevis, F.G.; Hoepelman, A.I.; Rutten, G.E. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis., 2005, 41(3), 281-288.
[http://dx.doi.org/10.1086/431587] [PMID: 16007521]
[56]
Shah, B.R.; Hux, J.E. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care, 2003, 26(2), 510-513.
[http://dx.doi.org/10.2337/diacare.26.2.510] [PMID: 12547890]
[57]
Hodgson, K.; Morris, J.; Bridson, T.; Govan, B.; Rush, C.; Ketheesan, N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology, 2015, 144(2), 171-185.
[http://dx.doi.org/10.1111/imm.12394] [PMID: 25262977]
[58]
Li, K.; Wohlford-Lenane, C.L.; Channappanavar, R.; Park, J-E.; Earnest, J.T.; Bair, T.B.; Bates, A.M.; Brogden, K.A.; Flaherty, H.A.; Gallagher, T.; Meyerholz, D.K.; Perlman, S.; McCray, P.B. Jr Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc. Natl. Acad. Sci. USA, 2017, 114(15), E3119-E3128.
[http://dx.doi.org/10.1073/pnas.1619109114] [PMID: 28348219]
[59]
Fan, C.; Wu, X.; Liu, Q.; Li, Q.; Liu, S.; Lu, J.; Yang, Y.; Cao, Y.; Huang, W.; Liang, C.; Ying, T.; Jiang, S.; Wang, Y. A human DPP4-knockin mouse’s susceptibility to infection by authentic and pseudotyped MERS-CoV. Viruses, 2018, 10(9), 448.
[http://dx.doi.org/10.3390/v10090448] [PMID: 30142928]
[60]
Conarello, S.L.; Li, Z.; Ronan, J.; Roy, R.S.; Zhu, L.; Jiang, G.; Liu, F.; Woods, J.; Zycband, E.; Moller, D.E.; Thornberry, N.A.; Zhang, B.B. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6825-6830.
[http://dx.doi.org/10.1073/pnas.0631828100] [PMID: 12748388]
[61]
Iacobellis, G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat. Rev. Endocrinol., 2015, 11(6), 363-371.
[http://dx.doi.org/10.1038/nrendo.2015.58] [PMID: 25850659]
[62]
Shams, H.A.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Osteocalcin serum levels in obese patients with type 2 diabetes mellitus: The virtual points observed in a case control study. J. Pak. Med. Assoc., 2021, 71(12), S4-S10.
[PMID: 35130209]
[63]
Sexton, P.; Metcalf, P.; Kolbe, J. Respiratory effects of insulin sensitisation with metformin: A prospective observational study. COPD, 2014, 11(2), 133-142.
[http://dx.doi.org/10.3109/15412555.2013.808614] [PMID: 23848509]
[64]
Hitchings, A.W.; Archer, J.R.; Srivastava, S.A.; Baker, E.H. Safety of metformin in patients with chronic obstructive pulmonary disease and type 2 diabetes mellitus. COPD, 2015, 12(2), 126-131.
[http://dx.doi.org/10.3109/15412555.2015.898052]
[65]
Bishwakarma, R.; Zhang, W.; Lin, Y-L.; Kuo, Y-F.; Cardenas, V.J.; Sharma, G. Metformin use and health care utilization in patients with coexisting chronic obstructive pulmonary disease and diabetes mellitus. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 793-800.
[http://dx.doi.org/10.2147/COPD.S150047] [PMID: 29551895]
[66]
Chen, C-Z.; Hsu, C-H.; Li, C-Y.; Hsiue, T-R. Insulin use increases risk of asthma but metformin use reduces the risk in patients with diabetes in a Taiwanese population cohort. J. Asthma, 2017, 54(10), 1019-1025.
[http://dx.doi.org/10.1080/02770903.2017.1283698] [PMID: 28135899]
[67]
Calixto, M.C.; Lintomen, L.; André, D.M.; Leiria, L.O.; Ferreira, D.; Lellis-Santos, C.; Anhê, G.F.; Bordin, S.; Landgraf, R.G.; Antunes, E. Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice. PLoS One, 2013, 8(10), e76786.
[http://dx.doi.org/10.1371/journal.pone.0076786] [PMID: 24204674]
[68]
Park, C.S.; Bang, B-R.; Kwon, H-S.; Moon, K-A.; Kim, T-B.; Lee, K-Y.; Moon, H-B.; Cho, Y.S. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase. Biochem. Pharmacol., 2012, 84(12), 1660-1670.
[http://dx.doi.org/10.1016/j.bcp.2012.09.025] [PMID: 23041647]
[69]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Buhadilly, A.K. Rosuvastatin improves vaspin serum levels in obese patients with acute coronary syndrome. Diseases, 2018, 6(1), 9.
[http://dx.doi.org/10.3390/diseases6010009] [PMID: 29337850]
[70]
Ratnovsky, A.; Mellema, M.; An, S.S.; Fredberg, J.J.; Shore, S.A. Airway smooth muscle proliferation and mechanics: Effects of AMP kinase agonists. Mol. Cell. Biomech., 2007, 4(3), 143-157.
[PMID: 18320901]
[71]
Shore, S.A.; Williams, E.S.; Zhu, M. No effect of metformin on the innate airway hyperresponsiveness and increased responses to ozone observed in obese mice. J. Appl. Physiol., 2008, 105(4), 1127-1133.
[http://dx.doi.org/10.1152/japplphysiol.00117.2008] [PMID: 18703763]
[72]
Alkuraishy, H.M.; Hamada, M.T.; Al-Samerraie, A.Y. Effects of metformin on omentin levels in a newly diagnosed type II diabetes mellitus: Randomized, placebo controlled study. Mustansiriya Med J, 2016, 15, 49-55.
[73]
Diaz-Morales, N.; Rovira-Llopis, S.; Bañuls, C.; Lopez-Domenech, S.; Escribano-Lopez, I.; Veses, S.; Jover, A.; Rocha, M.; Hernandez-Mijares, A.; Victor, V.M. Does metformin protect diabetic patients from oxidative stress and leukocyte-endothelium interactions? Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA 2017.
[http://dx.doi.org/10.1089/ars.2017.7122]
[74]
Garnett, J.P.; Baker, E.H.; Naik, S.; Lindsay, J.A.; Knight, G.M.; Gill, S.; Tregoning, J.S.; Baines, D.L. Metformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose. Thorax, 2013, 68(9), 835-845.
[http://dx.doi.org/10.1136/thoraxjnl-2012-203178] [PMID: 23709760]
[75]
Mohanty, P.; Hamouda, W.; Garg, R.; Aljada, A.; Ghanim, H.; Dandona, P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J. Clin. Endocrinol. Metab., 2000, 85(8), 2970-2973.
[http://dx.doi.org/10.1210/jcem.85.8.6854] [PMID: 10946914]
[76]
Cardwell, C.R.; Shields, M.D.; Carson, D.J.; Patterson, C.C. A meta-analysis of the association between childhood type 1 diabetes and atopic disease. Diabetes Care, 2003, 26(9), 2568-2574.
[http://dx.doi.org/10.2337/diacare.26.9.2568] [PMID: 12941720]
[77]
Douek, I.F.; Leech, N.J.; Gillmor, H.A.; Bingley, P.J.; Gale, E.A. Children with type-1 diabetes and their unaffected siblings have fewer symptoms of asthma. Lancet, 1999, 353(9167), 1850.
[http://dx.doi.org/10.1016/S0140-6736(99)00988-5] [PMID: 10359413]
[78]
Ahmadizar, F.; Souverein, P.C.; Arets, H.G.; de Boer, A.; Maitland-van der Zee, A.H. Asthma related medication use and exacerbations in children and adolescents with type 1 diabetes. Pediatr. Pulmonol., 2016, 51(11), 1113-1121.
[http://dx.doi.org/10.1002/ppul.23428] [PMID: 27132537]
[79]
George, C.; Ducatman, A.M.; Conway, B.N. Increased risk of respiratory diseases in adults with Type 1 and Type 2 diabetes. Diabetes Res. Clin. Pract., 2018, 142, 46-55.
[http://dx.doi.org/10.1016/j.diabres.2018.05.029] [PMID: 29802957]
[80]
Hsiao, Y-T.; Cheng, W-C.; Liao, W-C.; Lin, C-L.; Shen, T-C.; Chen, W-C.; Chen, C-H.; Kao, C-H. Type 1 diabetes and increased risk of subsequent asthma: A nationwide population-based cohort study. Medicine (Baltimore), 2015, 94(36), e1466.
[http://dx.doi.org/10.1097/MD.0000000000001466] [PMID: 26356702]
[81]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Al-Windy, S.A. Evaluation the effect of glyburide and/or metformin on testosterone levels in men patients with type 2 diabetes mellitus. Age (Dordr.), 2016, 40, 60.
[82]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Maiahy, T.J. Concept and connotation of oxidative stress in preeclampsia. J. Lab. Physicians, 2018, 10(3), 276-282.
[http://dx.doi.org/10.4103/JLP.JLP_26_18] [PMID: 30078962]
[83]
Ho, T-W.; Huang, C-T.; Tsai, Y-J.; Lien, A.S-Y.; Lai, F.; Yu, C-J. Metformin use mitigates the adverse prognostic effect of diabetes mellitus in chronic obstructive pulmonary disease. Respir. Res., 2019, 20(1), 69.
[http://dx.doi.org/10.1186/s12931-019-1035-9] [PMID: 30953517]
[84]
Gorricho, J.; Garjón, J.; Alonso, A.; Celaya, M.C.; Saiz, L.C.; Erviti, J.; López, A. Use of oral antidiabetic agents and risk of community-acquired pneumonia: A nested case-control study. Br. J. Clin. Pharmacol., 2017, 83(9), 2034-2044.
[http://dx.doi.org/10.1111/bcp.13288] [PMID: 28294379]
[85]
Zhang, W.; Xu, Y-Z.; Liu, B.; Wu, R.; Yang, Y-Y.; Xiao, X-Q.; Zhang, X. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. ScientificWorldJournal, 2014, 2014, 603409.
[http://dx.doi.org/10.1155/2014/603409]
[86]
Romaní-Pérez, M.; Outeiriño-Iglesias, V.; Moya, C.M.; Santisteban, P.; González-Matías, L.C.; Vigo, E.; Mallo, F. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology, 2015, 156(10), 3559-3569.
[http://dx.doi.org/10.1210/en.2014-1685] [PMID: 26196539]
[87]
Badawi, A.; Ryoo, S.G. Prevalence of diabetes in the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus: A systematic review and meta-analysis. J. Public Health Res., 2016, 5(3), 733.
[http://dx.doi.org/10.4081/jphr.2016.733] [PMID: 28083520]
[88]
Razavi, Z.; Maher, S.; Fredmal, J. Comparison of subcutaneous insulin aspart and intravenous regular insulin for the treatment of mild and moderate diabetic ketoacidosis in pediatric patients. Endocrine, 2018, 61(2), 267-274.
[http://dx.doi.org/10.1007/s12020-018-1635-z] [PMID: 29797212]
[89]
Tran, K.K.; Kibert, J.L., II; Telford, E.D.; Franck, A.J. Intravenous insulin infusion protocol compared with subcutaneous insulin for the management of hyperglycemia in critically ill adults. Ann. Pharmacother., 2019, 53(9), 894-898.
[http://dx.doi.org/10.1177/1060028019841363] [PMID: 30924349]
[90]
Bhurayanontachai, R.; Rattanaprapat, T.; Kongkamol, C. Comparison of glycemic control between continuous regular insulin infusion and single-dose subcutaneous insulin glargine injection in medical critically ill patients. Indian J. Crit. Care Med., 2018, 22(3), 174-179.
[http://dx.doi.org/10.4103/ijccm.IJCCM_273_17] [PMID: 29657375]
[91]
Lee, S.W.; Im, R.; Magbual, R. Current perspectives on the use of continuous subcutaneous insulin infusion in the acute care setting and overview of therapy. Crit. Care Nurs. Q., 2004, 27(2), 172-184.
[http://dx.doi.org/10.1097/00002727-200404000-00009] [PMID: 15137359]
[92]
Leelarathna, L.; English, S.W.; Thabit, H.; Caldwell, K.; Allen, J.M.; Kumareswaran, K.; Wilinska, M.E.; Nodale, M.; Mangat, J.; Evans, M.L.; Burnstein, R.; Hovorka, R. Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: A randomized controlled trial. Crit. Care, 2013, 17(4), R159.
[http://dx.doi.org/10.1186/cc12838] [PMID: 23883613]
[93]
Basu, A.; Slama, M.Q.; Nicholson, W.T.; Langman, L.; Peyser, T.; Carter, R.; Basu, R. Continuous glucose monitor interference with commonly prescribed medications: A pilot study. J. Diabetes Sci. Technol., 2017, 11(5), 936-941.
[http://dx.doi.org/10.1177/1932296817697329] [PMID: 28332406]
[94]
Schuster, K.M.; Barre, K.; Inzucchi, S.E.; Udelsman, R.; Davis, K.A. Continuous glucose monitoring in the surgical intensive care unit: Concordance with capillary glucose. J. Trauma Acute Care Surg., 2014, 76(3), 798-803.
[http://dx.doi.org/10.1097/TA.0000000000000127] [PMID: 24553551]
[95]
Batais, M.A.; Khan, A.R.; Bin Abdulhak, A.A. The use of statins and risk of community-acquired pneumonia. Curr. Infect. Dis. Rep., 2017, 19(8), 26.
[http://dx.doi.org/10.1007/s11908-017-0581-x] [PMID: 28639080]
[96]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Hussien, N.R.; Al-Naimi, M.S.; Rasheed, H.A. Statins an oft-prescribed drug is implicated in peripheral neuropathy: The time to know more. J. Pak. Med. Assoc., 2019, 69(8), S108-S112.
[PMID: 31603889]
[97]
Zheng, L.; Hunter, K.; Gaughan, J.; Poddar, S. Preadmission use of calcium channel blockers and outcomes after hospitalization with pneumonia: A retrospective propensity-matched cohort study. Am. J. Ther., 2017, 24(1), e30-e38.
[http://dx.doi.org/10.1097/MJT.0000000000000312] [PMID: 26280292]
[98]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4), e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[99]
Scheen, A.J. Metformin and COVID-19: From cellular mechanisms to reduced mortality. Diabetes Metab., 2020, 46(6), 423-426.
[http://dx.doi.org/10.1016/j.diabet.2020.07.006] [PMID: 32750451]
[100]
Penlioglou, T.; Papachristou, S.; Papanas, N. COVID-19 and diabetes mellitus: May old anti-diabetic agents become the new philosopher’s stone? Diabetes Ther., 2020, 11(6), 1195-1197.
[http://dx.doi.org/10.1007/s13300-020-00830-0] [PMID: 32382358]
[101]
El-Arabey, A.A.; Abdalla, M. Metformin and COVID-19: A novel deal of an old drug. J. Med. Virol., 2020, 92(11), 2293-2294.
[http://dx.doi.org/10.1002/jmv.25958] [PMID: 32347974]
[102]
Menendez, J.A. Metformin and SARS-CoV-2: Mechanistic lessons on air pollution to weather the cytokine/thrombotic storm in COVID-19. Aging, 2020, 12(10), 8760-8765.
[http://dx.doi.org/10.18632/aging.103347] [PMID: 32463794]
[103]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Alexiou, A.; Batiha, G.E. Impact of sitagliptin in Non-Diabetic COVID-19 patients. Curr. Mol. Pharmacol., 2022, 15, 683-692.
[PMID: 34477540]
[104]
Hariyanto, T.I.; Kurniawan, A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: A systematic review, meta-analysis, and meta-regression. J. Diabetes Metab. Disord., 2021, 20(1), 543-550.
[http://dx.doi.org/10.1007/s40200-021-00777-4] [PMID: 33816358]
[105]
Du, H.; Wang, D.W.; Chen, C. The potential effects of DPP-4 inhibitors on cardiovascular system in COVID-19 patients. J. Cell. Mol. Med., 2020, 24(18), 10274-10278.
[http://dx.doi.org/10.1111/jcmm.15674] [PMID: 32713161]
[106]
Hollander, J.E.; Carr, B.G. Virtually perfect? Telemedicine for COVID-19. N. Engl. J. Med., 2020, 382(18), 1679-1681.
[http://dx.doi.org/10.1056/NEJMp2003539] [PMID: 32160451]
[107]
Rogers, L.C.; Lavery, L.A.; Joseph, W.S.; Armstrong, D.G. All feet On Deck-The Role of podiatry during the COVID-19 pandemic: Preventing hospitalizations in an overburdened healthcare system, reducing amputation and death in people with diabetes. J. Am. Podiatr. Med. Assoc., 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy