Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Cytokine Storm and Neuropathological Alterations in Patients with Neurological Manifestations of COVID-19

Author(s): Christos Tsagkaris*, Muhammad Bilal, Irem Aktar, Youssef Aboufandi, Ahmet Tas, Abdullahi Tunde Aborode, Tarun Kumar Suvvari, Shoaib Ahmad, Anastasiia Shkodina, Rachana Phadke, Marwa S. Emhamed, Atif Amin Baig, Athanasios Alexiou, Ghulam Md. Ashraf and Mohammad Amjad Kamal

Volume 19, Issue 9, 2022

Published on: 12 October, 2022

Page: [641 - 657] Pages: 17

DOI: 10.2174/1567205019666220908084559

Price: $65

Abstract

The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), a respiratory pathogen with neuroinvasive potential. Neurological COVID-19 manifestations include loss of smell and taste, headache, dizziness, stroke, and potentially fatal encephalitis. Several studies found elevated proinflammatory cytokines, such as TNF-α, IFN-γ, IL-6 IL-8, IL- 10 IL-16, IL-17A, and IL-18 in severely and critically ill COVID-19 patients may persist even after apparent recovery from infection. Biomarker studies on CSF and plasma and serum from COVID-19 patients have also shown a high level of IL-6, intrathecal IgG, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and tau protein. Emerging evidence on the matter has established the concept of COVID-19-associated neuroinflammation, in the context of COVID-19-associated cytokine storm. While the short-term implications of this condition are extensively documented, its longterm implications are yet to be understood. The association of the aforementioned cytokines with the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, may increase COVID-19 patients' risk of developing neurodegenerative diseases. Analysis of proinflammatory cytokines and CSF biomarkers in patients with COVID-19 can contribute to the early detection of the disease's exacerbation, monitoring the neurological implications of the disease and devising risk scales, and identifying treatment targets.

Keywords: Cytokine storm, SARS-Coronavirus-2 infection, Neuropathological, Neuroinflammation, Neutrophil extracellular traps, ARDS

[1]
Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol 2020; 11: 1708.
[http://dx.doi.org/10.3389/fimmu.2020.01708] [PMID: 32754163]
[2]
Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med 2021; 384(8): 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[3]
Boiko DI, Skrypnikov AM, Shkodina AD, Hasan MM, Ashraf GM, Rahman MH. Circadian rhythm disorder and anxiety as mental health complications in post-COVID-19. Environ Sci Pollut Res Int 2022; 29(19): 28062-9.
[http://dx.doi.org/10.1007/s11356-021-18384-4] [PMID: 34988815]
[4]
Paul G, Mahajan RK, Mahajan R, Gautam P, Paul B. Systemic manifestations of COVID-19. J Anaesthesiol Clin Pharmacol 2020; 36(4): 435-42.
[http://dx.doi.org/10.4103/joacp.JOACP_359_20] [PMID: 33840920]
[5]
Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr 2020; 14(3): 247-50.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013] [PMID: 32247212]
[6]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[7]
Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020; 201(10): 1299-300.
[http://dx.doi.org/10.1164/rccm.202003-0817LE] [PMID: 32228035]
[8]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with Coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[9]
Sonja A, Rasmussen MS. Vaccine development against coronavirus (2003 to present): An overview, recent advances, current scenario, opportunities and challenges. Ann Oncol 2020; 2020: 19-21.
[10]
Parsons T, Banks S, Bae C, Gelber J, Alahmadi H, Tichauer M. COVID-19-associated acute disseminated encephalomyelitis (ADEM). J Neurol 2020; 267(10): 2799-802.
[http://dx.doi.org/10.1007/s00415-020-09951-9] [PMID: 32474657]
[11]
Jarrahi A, Ahluwalia M, Khodadadi H, et al. Neurological consequences of COVID-19: What have we learned and where do we go from here? J Neuroinflammation 2020; 17(1): 286.
[http://dx.doi.org/10.1186/s12974-020-01957-4] [PMID: 32998763]
[12]
Zhuang YP, Zhong HJ. Impact of COVID-19 on the clinical status of patients with Wilson disease. World J Gastroenterol 2021; 27(26): 4248-51.
[http://dx.doi.org/10.3748/wjg.v27.i26.4248] [PMID: 34326624]
[13]
Zhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virol J 2013; 10(1): 172.
[http://dx.doi.org/10.1186/1743-422X-10-172] [PMID: 23724961]
[14]
Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129(2): 154-69.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03225.x] [PMID: 20561356]
[15]
Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 2020; 78(4): 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[16]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (80-) 2020; 367: 1444-8.
[http://dx.doi.org/10.1126/science.abb2762]
[17]
Dijkman R, Jebbink MF, Koekkoek SM, et al. Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism. J Virol 2013; 87(11): 6081-90.
[http://dx.doi.org/10.1128/JVI.03368-12] [PMID: 23427150]
[18]
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[19]
Chen R, Wang K, Yu J, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. BioRxiv 2020; 11: 573095.
[http://dx.doi.org/10.1101/2020.04.07.030650]
[20]
Espinoza JA, Bohmwald K, Céspedes PF, et al. Impaired learning resulting from Respiratory Syncytial Virus infection. Proc Natl Acad Sci USA 2013; 110(22): 9112-7.
[http://dx.doi.org/10.1073/pnas.1217508110] [PMID: 23650398]
[21]
Tsutsumi H, Kojima T, Hirakawa S, et al. Respiratory syncytial virus infection and the tight junctions of nasal epithelial cells. Adv Otorhinolaryngol 2011; 72: 153-6.
[http://dx.doi.org/10.1159/000324777]
[22]
Jakhmola S, Indari O, Chatterjee S, Jha HC. SARS-CoV-2, an underestimated pathogen of the nervous system. SN Compr Clin Med 2020; 2(11): 2137-46.
[http://dx.doi.org/10.1007/s42399-020-00522-7] [PMID: 33015550]
[23]
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 614-28.
[http://dx.doi.org/10.1016/j.addr.2011.11.002] [PMID: 22119441]
[24]
Mori I, Nishiyama Y, Yokochi T, Kimura Y. Olfactory transmission of neurotropic viruses. J Neurovirol 2005; 11(2): 129-37.
[http://dx.doi.org/10.1080/13550280590922793] [PMID: 16036791]
[25]
Esposito G, Pesce M, Seguella L, Sanseverino W, Lu J, Sarnelli G. Can the enteric nervous system be an alternative entrance door in SARS-CoV-2 neuroinvasion? Brain Behav Immun 2020; 87: 93-4.
[http://dx.doi.org/10.1016/j.bbi.2020.04.060] [PMID: 32335192]
[26]
Allsopp K, Read J, Corcoran R, Kinderman P. Heterogeneity in psychiatric diagnostic classification. Psychiatry Res 2019; 279: 15-22.
[http://dx.doi.org/10.1016/j.psychres.2019.07.005] [PMID: 31279246]
[27]
Novi G, Mikulska M, Briano F, et al. COVID-19 in a MS patient treated with ocrelizumab: Does immunosuppression have a protective role? Mult Scler Relat Disord 2020; 42: 102120.
[http://dx.doi.org/10.1016/j.msard.2020.102120] [PMID: 32315980]
[28]
Klein RS, Garber C, Funk KE, et al. Neuroinflammation during RNA viral infections. Annu Rev Immunol 2019; 37(1): 73-95.
[http://dx.doi.org/10.1146/annurev-immunol-042718-041417] [PMID: 31026414]
[29]
Tjalkens RB, Popichak KA, Kirkley KA. Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Adv Neurobiol 2017; 18: 159-81.
[http://dx.doi.org/10.1007/978-3-319-60189-2_8]
[30]
Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 2021; 218(3): e20202135.
[http://dx.doi.org/10.1084/jem.20202135] [PMID: 33433624]
[31]
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382(23): 2268-70.
[http://dx.doi.org/10.1056/NEJMc2008597] [PMID: 32294339]
[32]
Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, et al. Neurologic manifestations in hospitalized patients with COVID-19. Neurology 2020; 95(8): e1060-70.
[http://dx.doi.org/10.1212/WNL.0000000000009937] [PMID: 32482845]
[33]
Divani AA, Andalib S, Di Napoli M, et al. Coronavirus disease 2019 and stroke: Clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis 2020; 29(8): 104941.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941] [PMID: 32689643]
[34]
Saheb Sharif-Askari N, Saheb Sharif-Askari F, Alabed M, et al. Airways expression of SARS-CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Mol Ther Methods Clin Dev 2020; 18: 1-6.
[http://dx.doi.org/10.1016/j.omtm.2020.05.013] [PMID: 32537478]
[35]
Chen R, Wang K, Yu J, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol 2021; 11: 573095.
[http://dx.doi.org/10.3389/fneur.2020.573095] [PMID: 33551947]
[36]
Feng Y, Hans C, McIlwain E, Varner KJ, Lazartigues E. Angiotensin-converting enzyme 2 over-expression in the central nervous system reduces angiotensin-II-mediated cardiac hypertrophy. PLoS One 2012; 7(11): e48910.
[http://dx.doi.org/10.1371/journal.pone.0048910] [PMID: 23155428]
[37]
Xu J, Lazartigues E. Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 virus. Cell Mol Neurobiol 2022; 42(1): 305-9.
[http://dx.doi.org/10.1007/s10571-020-00915-1] [PMID: 32623546]
[38]
Chen M, Shen W, Rowan NR, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: Implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J 2020; 56(3): 2001948.
[http://dx.doi.org/10.1183/13993003.01948-2020] [PMID: 32817004]
[39]
Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 2021; 24(2): 168-75.
[http://dx.doi.org/10.1038/s41593-020-00758-5] [PMID: 33257876]
[40]
Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis 2020; 146: 105131.
[http://dx.doi.org/10.1016/j.nbd.2020.105131] [PMID: 33053430]
[41]
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome Coronavirus‐2 (SARS‐CoV‐2). J Med Virol 2020; 92(7): 699-702.
[http://dx.doi.org/10.1002/jmv.25915] [PMID: 32314810]
[42]
Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 2020; 9(5): 1267.
[http://dx.doi.org/10.3390/cells9051267] [PMID: 32443810]
[43]
Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of immune response during SARS-CoV-2 infection: Lessons from the past. Front Immunol 2020; 11: 1949.
[http://dx.doi.org/10.3389/fimmu.2020.01949] [PMID: 32849654]
[44]
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4): 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[45]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; What we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[46]
Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007; 45(2): 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[47]
Najjar S, Najjar A, Chong DJ, et al. Central nervous system complications associated with SARS-CoV-2 infection: Integrative concepts of pathophysiology and case reports. J Neuroinflammation 2020; 17(1): 231.
[http://dx.doi.org/10.1186/s12974-020-01896-0] [PMID: 32758257]
[48]
Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 2021; 163: 105297.
[http://dx.doi.org/10.1016/j.phrs.2020.105297] [PMID: 33181319]
[49]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[50]
Fisicaro F, Di Napoli M, Liberto A, et al. Neurological sequelae in patients with COVID-19: A histopathological perspective. Int J Environ Res Public Health 2021; 18(4): 1415.
[http://dx.doi.org/10.3390/ijerph18041415] [PMID: 33546463]
[51]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[52]
Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: Properties and future directions. J Neurochem 2008; 107(6): 1482-94.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05723.x] [PMID: 19014390]
[53]
Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2007; 292(1): R373-81.
[http://dx.doi.org/10.1152/ajpregu.00292.2006] [PMID: 16946085]
[54]
Xiao L, Haack KKV, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol 2013; 304(11): C1073-9.
[http://dx.doi.org/10.1152/ajpcell.00364.2012] [PMID: 23535237]
[55]
Zhang J, Hao Y, Ou W, et al. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: A cohort study. J Transl Med 2020; 18(1): 406.
[http://dx.doi.org/10.1186/s12967-020-02571-x] [PMID: 33121497]
[56]
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020; 11: 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[57]
Nagant C, Ponthieux F, Smet J, et al. A score combining early detection of cytokines accurately predicts COVID-19 severity and intensive care unit transfer. Int J Infect Dis 2020; 101: 342-5.
[http://dx.doi.org/10.1016/j.ijid.2020.10.003] [PMID: 33039609]
[58]
Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen 2020; 40(1): 37.
[http://dx.doi.org/10.1186/s41232-020-00146-3] [PMID: 33014208]
[59]
Savchenko L, Mykytiuk M, Cinato M, Tronchere H, Kunduzova O, Kaidashev I. IL-26 in the induced sputum is associated with the level of systemic inflammation, lung functions and body weight in COPD patients. Int J Chron Obstruct Pulmon Dis 2018; 13: 2569-75.
[http://dx.doi.org/10.2147/COPD.S164833] [PMID: 30197513]
[60]
Caterino M, Gelzo M, Sol S, et al. Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Sci Rep 2021; 11(1): 2941.
[http://dx.doi.org/10.1038/s41598-021-82426-7] [PMID: 33536486]
[61]
Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2012; 2(5): a006148-8.
[http://dx.doi.org/10.1101/cshperspect.a006148] [PMID: 22553492]
[62]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34(1): 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[63]
Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2005; 25(36): 8240-9.
[http://dx.doi.org/10.1523/JNEUROSCI.1808-05.2005] [PMID: 16148231]
[64]
Galimberti D, Venturelli E, Fenoglio C, et al. Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer’s disease and frontotemporal lobar degeneration. J Neurol 2008; 255(4): 539-44.
[http://dx.doi.org/10.1007/s00415-008-0737-6] [PMID: 18204920]
[65]
Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10): 136.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.03.49] [PMID: 26207229]
[66]
Cojocaru IM, Cojocaru M, Miu G, Sapira V. Study of interleukin-6 production in Alzheimer’s disease. Rom J Intern Med 2011; 49(1): 55-8.
[PMID: 22026253]
[67]
Mrak RE, Griffin WST. Interleukin-1 and the immunogenetics of Alzheimer’s disease. J Neuropathol Exp Neurol 2000; 59(6): 471-6.
[http://dx.doi.org/10.1093/jnen/59.6.471] [PMID: 10850859]
[68]
Bialuk I, Taranta A, Winnicka MM. IL-6 deficiency alters spatial memory in 4- and 24-month-old mice. Neurobiol Learn Mem 2018; 155: 21-9.
[http://dx.doi.org/10.1016/j.nlm.2018.06.006] [PMID: 29908286]
[69]
Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK. Sustained expression of interleukin-1β in mouse hippocampus impairs spatial memory. Neuroscience 2009; 164(4): 1484-95.
[http://dx.doi.org/10.1016/j.neuroscience.2009.08.073] [PMID: 19744544]
[70]
Prieto GA, Smith ED, Tong L, Nguyen M, Cotman CW. Inhibition of LTP-induced translation by IL-1β reduces the level of newly synthesized proteins in hippocampal dendrites. ACS Chem Neurosci 2019; 10(3): 1197-203.
[http://dx.doi.org/10.1021/acschemneuro.8b00511] [PMID: 30695637]
[71]
Bianchetti A, Rozzini R, Guerini F, et al. Clinical presentation of COVID-19 in dementia patients. J Nutr Health Aging 2020; 24(6): 560-2.
[http://dx.doi.org/10.1007/s12603-020-1389-1] [PMID: 32510106]
[72]
Shkodina AD, Tarianyk KA, Boiko DI, et al. Cognitive and affective disturbances in patients with Parkinson’s disease: Perspectives for classifying of motor/neuropsychiatric subtypes. Neurosci Lett 2022; 781: 136675.
[http://dx.doi.org/10.1016/j.neulet.2022.136675] [PMID: 35533819]
[73]
Crouse JJ, Phillips JR, Jahanshahi M, Moustafa AA. Postural instability and falls in Parkinson’s disease. Rev Neurosci 2016; 27(5): 549-55.
[http://dx.doi.org/10.1515/revneuro-2016-0002] [PMID: 26966928]
[74]
Tarianyk K, Shkodina A, Lytvynenko N. Circadian rhythm disorders and non-motor symptoms in different motor subtypes of Parkinson’s disease. Georgian Med News 2021; 320: 100-6.
[PMID: 34897053]
[75]
Murphy O, Noel J, Farrell M, Lynch T. Support for the spreading hypothesis: pathologically proven alpha-synuclein peripheral neuropathy 20 years before development of Parkinsonism (P3.057). Neurology 2018; 90(15 Supplement): P3.057.
[76]
Volpicelli-Daley LA, Gamble KL, Schultheiss CE, Riddle DM, West AB, Lee VMY. Formation of α-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes. Mol Biol Cell 2014; 25(25): 4010-23.
[http://dx.doi.org/10.1091/mbc.e14-02-0741] [PMID: 25298402]
[77]
Hall S, Janelidze S, Surova Y, Widner H, Zetterberg H, Hansson O. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci Rep 2018; 8(1): 13276.
[http://dx.doi.org/10.1038/s41598-018-31517-z] [PMID: 30185816]
[78]
Nagatsu T, Sawada M. Inflammatory process in Parkinson’s disease: Role for cytokines. Curr Pharm Des 2005; 11(8): 999-1016.
[http://dx.doi.org/10.2174/1381612053381620] [PMID: 15777250]
[79]
Scalzo P, Kümmer A, Cardoso F, Teixeira AL. Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 2010; 468(1): 56-8.
[http://dx.doi.org/10.1016/j.neulet.2009.10.062] [PMID: 19857551]
[80]
Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1β in the substantia nigra. Neurobiol Dis 2006; 24(1): 183-93.
[http://dx.doi.org/10.1016/j.nbd.2006.06.013] [PMID: 16901708]
[81]
Faber I, Brandão PRP, Menegatti F, Carvalho Bispo DD, Maluf FB, Cardoso F. Coronavirus disease 2019 and Parkinsonism: A non‐post‐encephalitic case. Mov Disord 2020; 35(10): 1721-2.
[http://dx.doi.org/10.1002/mds.28277] [PMID: 32815213]
[82]
Cohen ME, Eichel R, Steiner-Birmanns B, et al. A case of probable Parkinson’s disease after SARS-CoV-2 infection. Lancet Neurol 2020; 19(10): 804-5.
[http://dx.doi.org/10.1016/S1474-4422(20)30305-7] [PMID: 32949534]
[83]
Méndez-Guerrero A, Laespada-García MI, Gómez-Grande A, et al. Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology 2020; 95(15): e2109-18.
[http://dx.doi.org/10.1212/WNL.0000000000010282] [PMID: 32641525]
[84]
Brundin P, Nath A, Beckham JD. Is COVID-19 a perfect storm for Parkinson’s disease? Trends Neurosci 2020; 43(12): 931-3.
[http://dx.doi.org/10.1016/j.tins.2020.10.009] [PMID: 33158605]
[85]
Sulzer D, Antonini A, Leta V, et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside. NPJ Parkinsons Dis 2020; 6(1): 18.
[http://dx.doi.org/10.1038/s41531-020-00123-0] [PMID: 32885037]
[86]
Mukandala G, Tynan R, Lanigan S, O’Connor J. The effects of hypoxia and inflammation on synaptic signaling in the CNS. Brain Sci 2016; 6(1): 6.
[http://dx.doi.org/10.3390/brainsci6010006] [PMID: 26901230]
[87]
Zander R. The oxygen status of arterial human blood. Scand J Clin Lab Invest 1990; 50(Sup 203): 187-96.
[http://dx.doi.org/10.3109/00365519009087509] [PMID: 2089613]
[88]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[89]
Baig AM. Updates on what ACS reported: Emerging evidences of COVID-19 with nervous system involvement. ACS Chem Neurosci 2020; 11(9): 1204-5.
[http://dx.doi.org/10.1021/acschemneuro.0c00181] [PMID: 32343122]
[90]
Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: Potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med 2020; 14(5): 533-41.
[http://dx.doi.org/10.1007/s11684-020-0786-5] [PMID: 32367431]
[91]
Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke. Transl Stroke Res 2020; 11(3): 322-5.
[http://dx.doi.org/10.1007/s12975-020-00818-9] [PMID: 32378030]
[92]
Daou BJ, Koduri S, Palmateer G, et al. Neurological implications of COVID-19 and lessons learned from prior epidemics and pandemics. Neurosurgery 2020; 87(2): E234-8.
[http://dx.doi.org/10.1093/neuros/nyaa186] [PMID: 32361745]
[93]
Auyeung T, Lee J, Lai W, et al. The use of corticosteroid as treatment in SARS was associated with adverse outcomes: A retrospective cohort study. J Infect 2005; 51(2): 98-102.
[http://dx.doi.org/10.1016/j.jinf.2004.09.008] [PMID: 16038758]
[94]
Belvis R. Headaches during COVID‐19: My clinical case and review of the literature. Headache 2020; 60(7): 1422-6.
[http://dx.doi.org/10.1111/head.13841] [PMID: 32413158]
[95]
Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of coronavirus disease (COVID-19): Encephalopathy. Cureus 2020; 12(3): e7352.
[http://dx.doi.org/10.7759/cureus.7352] [PMID: 32328364]
[96]
Nara A, Nagai H, Yamaguchi R, Yoshida K, Iwase H, Mizuguchi M. An unusual autopsy case of cytokine storm-derived influenza-associated encephalopathy without typical histopathological findings: Autopsy case report. Am J Forensic Med Pathol 2015; 36(1): 3-5.
[http://dx.doi.org/10.1097/PAF.0000000000000129] [PMID: 25376710]
[97]
Hasegawa S, Matsushige T, Inoue H, Shirabe K, Fukano R, Ichiyama T. Serum and cerebrospinal fluid cytokine profile of patients with 2009 pandemic H1N1 influenza virus-associated encephalopathy. Cytokine 2011; 54(2): 167-72.
[http://dx.doi.org/10.1016/j.cyto.2011.01.006] [PMID: 21371904]
[98]
Ichiyama T, Endo S, Kaneko M, Isumi H, Matsubara T, Furukawa S. Serum cytokine concentrations of influenza-associated acute necrotizing encephalopathy. Pediatr Int 2003; 45(6): 734-6.
[http://dx.doi.org/10.1111/j.1442-200X.2003.01822.x] [PMID: 14651552]
[99]
Kimura E, Okamoto S, Uchida Y, et al. A reversible lesion of the corpus callosum splenium with adult influenza-associated encephalitis/encephalopathy: A case report. J Med Case Reports 2008; 2(1): 220.
[http://dx.doi.org/10.1186/1752-1947-2-220] [PMID: 18588700]
[100]
Moghimi M, Ghodrati S, Abbaspourrad Z, et al. Case report of 78 -year-old man with meningitis, Pulmonary Thromboembolism; SARS-Coronavirus-2 infection. Acta Med Iran 2021; 59(12): 747-50.
[http://dx.doi.org/10.21203/rs.3.rs-33179/v1]
[101]
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020; 94: 55-8.
[http://dx.doi.org/10.1016/j.ijid.2020.03.062] [PMID: 32251791]
[102]
Nagafuchi M, Nagafuchi Y, Sato R, et al. Adult meningism and viral meningitis, 1997-2004: Clinical data and cerebrospinal fluid cytokines. Intern Med 2006; 45(21): 1209-12.
[http://dx.doi.org/10.2169/internalmedicine.45.1769] [PMID: 17139119]
[103]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[104]
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620-9.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[105]
Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol 2020; 146(1): 119-127.e4.
[http://dx.doi.org/10.1016/j.jaci.2020.04.027] [PMID: 32360286]
[106]
Chen X, Zhao B, Qu Y, et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019. Clin Infect Dis 2020; 71(8): 1937-42.
[http://dx.doi.org/10.1093/cid/ciaa449] [PMID: 32301997]
[107]
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46(5): 846-8.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[108]
Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta 2020; 506: 145-8.
[http://dx.doi.org/10.1016/j.cca.2020.03.022] [PMID: 32178975]
[109]
Bai T, Tu S, Wei Y, et al. Clinical and laboratory factors predicting the prognosis of patients with COVID-19: An analysis of 127 patients in Wuhan, China. SSRN Electron J 2020; 2020; 3546118.
[http://dx.doi.org/10.2139/ssrn.3546118]
[110]
Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun 2020; 87: 59-73.
[http://dx.doi.org/10.1016/j.bbi.2020.04.046] [PMID: 32334062]
[111]
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 2020; 11(7): 995-8.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[112]
Huang YH, Jiang D, Huang JT. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav Immun 2020; 87: 149.
[http://dx.doi.org/10.1016/j.bbi.2020.05.012] [PMID: 32387508]
[113]
Zhai X, Sun J, Yan Z, et al. Comparison of severe acute respiratory syndrome coronavirus 2 spike protein binding to ACE2 receptors from human, pets, farm animals, and putative intermediate hosts. J Virol 2020; 94(15): e00831-20.
[http://dx.doi.org/10.1128/JVI.00831-20] [PMID: 32404529]
[114]
Hosking MP, Lane TE. The pathogenesis of murine coronavirus infection of the central nervous system. Crit Rev Immunol 2010; 30(2): 119-30.
[http://dx.doi.org/10.1615/CritRevImmunol.v30.i2.20] [PMID: 20370625]
[115]
Jasti M, Nalleballe K, Dandu V, Onteddu S. A review of pathophysiology and neuropsychiatric manifestations of COVID-19. J Neurol 2021; 268(6): 2007-12.
[http://dx.doi.org/10.1007/s00415-020-09950-w] [PMID: 32494854]
[116]
Poillon G, Obadia M, Perrin M, Savatovsky J, Lecler A. Cerebral venous thrombosis associated with COVID-19 infection: Causality or coincidence? J Neuroradiol 2021; 48(2): 121-4.
[http://dx.doi.org/10.1016/j.neurad.2020.05.003] [PMID: 32437707]
[117]
Fierce Biotech. GSK, after pushing past midphase fail, ends development of otilimab in COVID-19. 2021. Available from: https://www.fiercebiotech.com/biotech/gsk-after-pushing-past-midphase-fail-ends-development-otilimab-covid-19
[118]
DeKosky ST, Kochanek PM, Valadka AB, et al. Blood biomarkers for detection of brain injury in COVID-19 patients. J Neurotrauma 2021; 38(1): 1-43.
[http://dx.doi.org/10.1089/neu.2020.7332] [PMID: 33115334]
[119]
Glushakova O, Glushakov A, Miller E, Valadka A, Hayes R. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ 2016; 2(1): 28-47.
[http://dx.doi.org/10.4103/2394-8108.178546] [PMID: 30276272]
[120]
Virhammar J, Nääs A, Fällmar D, et al. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID‐19 and associated with neurological symptoms and disease severity. Eur J Neurol 2021; 2021: 14703.
[http://dx.doi.org/10.1111/ene.14703]
[121]
Edén A, Kanberg N, Gostner J, et al. CSF biomarkers in patients with COVID-19 and neurological symptoms. Neurology 2020; 2020: 0000000000010977.
[http://dx.doi.org/10.1212/WNL.0000000000010977] [PMID: 33004602]
[122]
Goldberg MF, Goldberg MF, Cerejo R, Tayal AH. Cerebrovascular disease in COVID-19. AJNR Am J Neuroradiol 2020; 41(7): 1170-2.
[http://dx.doi.org/10.3174/ajnr.A6588] [PMID: 32409316]
[123]
Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med 2010; 38(2): S26-34.
[http://dx.doi.org/10.1097/CCM.0b013e3181c98d21] [PMID: 20083910]
[124]
Iba T, Levy JH, Connors JM, Warkentin TE, Thachil J, Levi M. The unique characteristics of COVID-19 coagulopathy. Crit Care 2020; 24(1): 360.
[http://dx.doi.org/10.1186/s13054-020-03077-0] [PMID: 32552865]
[125]
Franchini M, Marano G, Cruciani M, et al. COVID-19-associated coagulopathy. Diagnosis (Berl) 2020; 7(4): 357-63.
[http://dx.doi.org/10.1515/dx-2020-0078] [PMID: 32683333]
[126]
Miesbach W, Makris M. COVID-19: Coagulopathy, risk of thrombosis, and the rationale for anticoagulation. Clin Appl Thromb Hemost 2020; 26: 1076029620938149.
[http://dx.doi.org/10.1177/1076029620938149] [PMID: 32677459]
[127]
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094-9.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[128]
Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med 2020; 46(6): 1089-98.
[http://dx.doi.org/10.1007/s00134-020-06062-x] [PMID: 32367170]
[129]
Liu Y, Du X, Chen J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect 2020; 81(1): e6-e12.
[http://dx.doi.org/10.1016/j.jinf.2020.04.002] [PMID: 32283162]
[130]
Vaibhav K, Braun M, Alverson K, et al. Neutrophil extracellular traps exacerbate neurological deficits after traumatic brain injury. Sci Adv 2020; 6(22): eaax8847.
[http://dx.doi.org/10.1126/sciadv.aax8847] [PMID: 32523980]
[131]
Earhart AP, Holliday ZM, Hofmann HV, Schrum AG. Consideration of dornase alfa for the treatment of severe COVID-19 acute respiratory distress syndrome. New Microbes New Infect 2020; 35: 100689.
[http://dx.doi.org/10.1016/j.nmni.2020.100689] [PMID: 32355564]
[132]
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001; 413(6857): 732-8.
[http://dx.doi.org/10.1038/35099560] [PMID: 11607032]
[133]
Ngoi SM, Tovey MG, Vella AT. Targeting poly(I:C) to the TLR3-independent pathway boosts effector CD8 T cell differentiation through IFN-α/β. J Immunol 2008; 181(11): 7670-80.
[http://dx.doi.org/10.4049/jimmunol.181.11.7670] [PMID: 19017955]
[134]
Zhao J, Wohlford-Lenane C, Zhao J, et al. Intranasal treatment with poly(I•C) protects aged mice from lethal respiratory virus infections. J Virol 2012; 86(21): 11416-24.
[http://dx.doi.org/10.1128/JVI.01410-12] [PMID: 22915814]
[135]
Kaidashev I, Shlykova O, Izmailova O, et al. Host gene variability and SARS-CoV-2 infection: A review article. Heliyon 2021; 7(8): e07863.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07863] [PMID: 34458641]
[136]
Paidi RK, Jana M, Mishra RK, Dutta D, Raha S, Pahan K. ACE-2-interacting Domain of SARS-CoV-2 (AIDS) peptide suppresses inflammation to reduce fever and protect lungs and heart in mice: Implications for COVID-19 therapy. J Neuroimmune Pharmacol 2021; 16(1): 59-70.
[http://dx.doi.org/10.1007/s11481-020-09979-8] [PMID: 33426604]
[137]
Khatoon F, Prasad K, Kumar V. Neurological manifestations of COVID-19: Available evidences and a new paradigm. J Neurovirol 2020; 26(5): 619-30.
[http://dx.doi.org/10.1007/s13365-020-00895-4] [PMID: 32839951]
[138]
Tancheva L, Petralia MC, Miteva S, et al. Emerging neurological and psychobiological aspects of COVID-19 infection. Brain Sci 2020; 10(11): 852.
[http://dx.doi.org/10.3390/brainsci10110852] [PMID: 33198412]
[139]
Whitelaw S, Mamas MA, Topol E, Van Spall HGC. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit Health 2020; 2(8): e435-40.
[http://dx.doi.org/10.1016/S2589-7500(20)30142-4] [PMID: 32835201]
[140]
Zhang L, Guo H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv Biomarker Sci Technol 2020; 2: 1-23.
[http://dx.doi.org/10.1016/j.abst.2020.08.001] [PMID: 33511330]
[141]
Bernstein S. The need for neurological disposable tech amid the COVID-19 pandemic Med-Tech Innovation. 2020. Available from: https://www.med-technews.com/medtech-insights/covid-19-medtech-insights/the-need-for-neurological-disposable-tech-amid-the-covid-19-/
[142]
Kaplan E. Industry Voices-Ensuring long-term brain health in the time of COVID-19. Fierce Healthcare 2020. Available from: https://www.fiercehealthcare.com/tech/industry-voices-ensuring-long-term-brain-health-time-covid-19 (Accessed on: February 3, 2021).
[143]
Mahammedi A, Saba L, Vagal A, et al. Imaging of neurologic disease in hospitalized patients with COVID-19: An Italian multicenter retrospective observational study. Radiology 2020; 297(2): E270-3.
[http://dx.doi.org/10.1148/radiol.2020201933] [PMID: 32437313]
[144]
Davatzikos C. Machine learning in neuroimaging: Progress and challenges. Neuroimage 2019; 197: 652-6.
[http://dx.doi.org/10.1016/j.neuroimage.2018.10.003] [PMID: 30296563]
[145]
Crunfli F, Carregari VC, Veras FP, et al. SARS-CoV-2 infects brain astrocytes of COVID-19 patients and impairs neuronal viability. MedRxiv 2020; 2020; 104944/v1.
[http://dx.doi.org/10.21203/rs.3.rs-104944/v1]
[146]
Sivapalasingam S, Lederer DJ, Bhore R, et al. Efficacy and safety of sarilumab in hospitalized patients with coronavirus disease 2019: A randomized clinical trial. Clin Infect Dis 2022; 75(1): e380-8.
[http://dx.doi.org/10.1093/cid/ciac153] [PMID: 35219277]
[147]
Hermine O, Mariette X, Porcher R, Resche-Rigon M, Tharaux PL, Ravaud P. Effect of interleukin-6 receptor antagonists in critically ill adult patients with COVID-19 pneumonia: Two randomised controlled trials of the CORIMUNO-19 Collaborative Group. Eur Respir J 2022; 60(2): 2102523.
[http://dx.doi.org/10.1183/13993003.02523-2021] [PMID: 35115337]
[148]
Frontera JA, Boutajangout A, Masurkar AV, et al. Comparison of serum neurodegenerative biomarkers among hospitalized COVID‐19 patients versus non‐COVID subjects with normal cognition, mild cognitive impairment, or Alzheimer’s dementia. Alzheimers Dement 2022; 18(5): 899-910.
[http://dx.doi.org/10.1002/alz.12556] [PMID: 35023610]
[149]
Aarli J. Role of cytokines in neurological disorders. Curr Med Chem 2003; 10(19): 1931-7.
[http://dx.doi.org/10.2174/0929867033456918] [PMID: 12871095]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy