Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

General Research Article

Validation of a Method to Measure the T2 Value from the Color Mapping by Hue Value

Author(s): Takehito Hananouchi* and Makishi Nakayama

Volume 19, Issue 8, 2023

Published on: 26 September, 2022

Article ID: e070922208592 Pages: 7

DOI: 10.2174/1573405618666220907110157

open_access

Abstract

Background: Color mapping using quantitative MRI (Magnetic Resonance Imaging) is now being reported in various medical fields to be useful in showing tissue conditions and morphological perspectives. Specifically, T2 mapping, as one of the color mapping has been used to describe cartilage conditions in orthopedics. However, for orthopedic physicians in outpatient clinics, the color mapping shows only the colors on the mapping to patients without explaining their numerical values.

Methods: Our study proposed an approach to measure T2 values based on the hue value converted from Red, Green, Blue information on the processed color map to address this issue. We evaluated the validity of our method with 25 subjects.

Results: Our proposed method showed a good and high correlation coefficient (r = 0.9924, p < 0.0001), and the difference in the T2 values using dedicated software on the console of the MRI scanner and our method was small (its absolute value was approximately 1.5, p = 0.008).

Conclusion: Therefore, we consider the proposed method is an alternative approach to show the T2 value when the color mapping is available.

Keywords: T2 mapping, color mapping, Medical Imaging, RGB (Red, Green, Blue), HSV (Hue, Saturation, Value)

Graphical Abstract

[1]
Seraphim A, Knott KD, Augusto J, Bhuva AN, Manisty C, Moon JC. Quantitative cardiac MRI. J Magn Reson Imaging 2020; 51(3): 693-711.
[http://dx.doi.org/10.1002/jmri.26789] [PMID: 31111616]
[2]
Curtis WA, Fraum TJ, An H, Chen Y, Shetty AS, Fowler KJ. Quantitative MRI of diffuse liver disease: Current applications and future directions. Radiology 2019; 290(1): 23-30.
[http://dx.doi.org/10.1148/radiol.2018172765] [PMID: 30511906]
[3]
Zöllner FG, Konstandin S, Lommen J, et al. Quantitative sodium MRI of kidney. NMR Biomed 2016; 29(2): 197-205.
[http://dx.doi.org/10.1002/nbm.3274] [PMID: 25728879]
[4]
Zhao L, Dai W, Soman S, et al. Using anatomic magnetic resonance image information to enhance visualization and interpretation of functional images: A comparison of methods applied to clinical arterial spin labeling images. IEEE Trans Med Imaging 2017; 36(2): 487-96.
[http://dx.doi.org/10.1109/TMI.2016.2615567] [PMID: 27723582]
[5]
Nishii T, Tanaka H, Sugano N, Sakai T, Hananouchi T, Yoshikawa H. Evaluation of cartilage matrix disorders by T2 relaxation time in patients with hip dysplasia. Osteoarthritis Cartilage 2008; 16(2): 227-33.
[http://dx.doi.org/10.1016/j.joca.2007.06.003] [PMID: 17644363]
[6]
Domayer SE, Kutscha LF, Welsch G, et al. T2 mapping in the knee after microfracture at 3.0T: correlation of global T2 values and clinical outcome – Preliminary results. Osteoarthritis Cartilage 2008; 16(8): 903-8.
[http://dx.doi.org/10.1016/j.joca.2007.11.014] [PMID: 18203632]
[7]
Brinkhof S, Nizak R, Sim S, et al. In vivo biochemical assessment of cartilage with gagCEST MRI: Correlation with cartilage properties. NMR Biomed 2021; 34(3): e4463.
[http://dx.doi.org/10.1002/nbm.4463] [PMID: 33352622]
[8]
Dautry R, Bousson VJ, Manelfe J, et al. Correlation of MRI T2 mapping sequence with knee pain location in young patients with normal standard MRI. J Belg Soc Radiol 2014; 97(1): 11-6.
[http://dx.doi.org/10.5334/jbr-btr.364] [PMID: 24765764]
[9]
Messroghli DR, Rudolph A, Abdel AH, et al. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging. BMC Med Imaging 2010; 10(1): 16.
[http://dx.doi.org/10.1186/1471-2342-10-16] [PMID: 20673350]
[10]
Sato Y. Mottainai: A Japanese sense of anima mundi. J Anal Psychol 2017; 62(1): 147-54.
[http://dx.doi.org/10.1111/1468-5922.12282] [PMID: 28093756]
[11]
Jogi SP, Thaha R, Rajan S, et al. Device for assessing knee joint dynamics during magnetic resonance imaging. J Magn Reson Imaging 2022; 55(3): 895-907.
[http://dx.doi.org/10.1002/jmri.27877] [PMID: 34369633]
[12]
Thaha R, Jogi SP, Rajan S, et al. Modified radial-search algorithm for segmentation of tibiofemoral cartilage in MR images of patients with subchondral lesion. Int J CARS 2020; 15(3): 403-13.
[http://dx.doi.org/10.1007/s11548-020-02116-z] [PMID: 31927688]
[13]
Yang H, Guo X, Schwartz LH, Zhao B. A web-based response-assessment system for development and validation of imaging biomarkers in oncology. Tomography 2019; 5(1): 220-5.
[http://dx.doi.org/10.18383/j.tom.2019.00006] [PMID: 30854460]
[14]
Lee SH, Lee YH, Song HT, Suh JS. Quantitative T<sub>2</sub> mapping of knee cartilage: Comparison between the synthetic MR imaging and the CPMG sequence. Magn Reson Med Sci 2018; 17(4): 344-9.
[http://dx.doi.org/10.2463/mrms.tn.2017-0121] [PMID: 29386458]
[15]
Huhta JC. Future directions in noninvasive Doppler evaluation of the fetal circulation. Cardiol Clin 1989; 7(2): 239-53.
[http://dx.doi.org/10.1016/S0733-8651(18)30433-8] [PMID: 2659173]
[16]
Kandath D, Nanda NC, Miller DD, et al. Assessment of aortic regurgitation by noninvasive techniques. Curr Probl Cardiol 1990; 15(2): 42-58.
[http://dx.doi.org/10.1016/0146-2806(90)90026-M] [PMID: 2178873]
[17]
Scoutt LM, Zawin ML, Taylor KJ. Doppler US. Part II. Clinical applications. Radiology 1990; 174(2): 309-19.
[http://dx.doi.org/10.1148/radiology.174.2.2404310] [PMID: 2404310]
[18]
Marwick TH, Shan K, Go RT, MacIntyre WJ, Lauer MS. Use of positron emission tomography for prediction of perioperative and late cardiac events before vascular surgery. Am Heart J 1995; 130(6): 1196-202.
[http://dx.doi.org/10.1016/0002-8703(95)90142-6] [PMID: 7484769]
[19]
Rao SR, Richardson SG, Simonetti J, Katz S, Caldeira M, Pandian NG. Problems and pitfalls in the performance and interpretation of color Doppler flow imaging: observations based on the influences of technical and physiological factors on the color Doppler examination of mitral regurgitation. Echocardiography 1990; 7(6): 747-62.
[http://dx.doi.org/10.1111/j.1540-8175.1990.tb00427.x] [PMID: 10149217]
[20]
Watrin A, Ruaud JPB, Olivier PTA, et al. T2 mapping of rat patellar cartilage. Radiology 2001; 219(2): 395-402.
[http://dx.doi.org/10.1148/radiology.219.2.r01ma32395] [PMID: 11323463]
[21]
Reddick WE, Ogg RJ, Steen RG, Taylor JS. Statistical error mapping for reliable quantitative T1 imaging. J Magn Reson Imaging 1996; 6(1): 244-9.
[http://dx.doi.org/10.1002/jmri.1880060143] [PMID: 8851436]
[22]
Regatte RR, Akella SVS, Wheaton AJ, Borthakur A, Kneeland JB, Reddy R. T1?-relaxation mapping of human femoral-tibial cartilage in vivo. J Magn Reson Imaging 2003; 18(3): 336-41.
[http://dx.doi.org/10.1002/jmri.10358] [PMID: 12938129]
[23]
Qian Y, Williams AA, Chu CR, Boada FE. Multicomponent T2 * mapping of knee cartilage: Technical feasibility ex vivo. Magn Reson Med 2010; 64(5): 1426-31.
[http://dx.doi.org/10.1002/mrm.22450] [PMID: 20865752]
[24]
Hananouchi T, Chen Y, Jerban S, et al. A Useful combination of quantitative ultrashort echo time MR imaging and a probing device for biomechanical evaluation of articular cartilage. Biosensors 2021; 11(2): 52.
[http://dx.doi.org/10.3390/bios11020052] [PMID: 33671280]
[25]
Kuriki I, Sun P, Ueno K, Tanaka K, Cheng K. Hue selectivity in human visual cortex revealed by functional magnetic resonance imaging. Cereb Cortex 2015; 25(12): 4869-84.
[http://dx.doi.org/10.1093/cercor/bhv198] [PMID: 26423093]
[26]
Nasr S, Tootell RBH. Columnar organization of mid-spectral and end-spectral hue preferences in human visual cortex. Neuroimage 2018; 181: 748-59.
[http://dx.doi.org/10.1016/j.neuroimage.2018.07.053] [PMID: 30053514]
[27]
Pridmore RW. Cone photoreceptor sensitivities and unique hue chromatic responses: Correlation and causation imply the physiological basis of unique hues. PLoS One 2013; 8(10): e77134.
[http://dx.doi.org/10.1371/journal.pone.0077134] [PMID: 24204755]

© 2025 Bentham Science Publishers | Privacy Policy