Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

RNA Aptamer-functionalized Polymeric Nanoparticles in Targeted Delivery and Cancer Therapy: An up-to-date Review

Author(s): Karina Marangoni* and Regina Menezes

Volume 28, Issue 34, 2022

Published on: 16 September, 2022

Page: [2785 - 2794] Pages: 10

DOI: 10.2174/1381612828666220903120755

Price: $65

Abstract

Cancer nanotechnology takes advantage of nanoparticles to diagnose and treat cancer. The use of natural and synthetic polymers for drug delivery has become increasingly popular. Polymeric nanoparticles (PNPs) can be loaded with chemotherapeutics, small chemicals, and/or biological therapeutics. Major problems in delivering such therapeutics to the desired targets are associated with the lack of specificity and the low capacity of PNPs to cross cell membranes, which seems to be even more difficult to overcome in multidrugresistant cancer cells with rigid lipid bilayers. Despite the progress of these nanocarrier delivery systems (NDSs), active targeting approaches to complement the enhanced permeability and retention (EPR) effect are necessary to improve their therapeutic efficiency and reduce systemic toxicity. For this, a targeting moiety is required to deliver the nanocarrier systems to a specific location. A strategy to overcome these limitations and raise the uptake of PNPs is the conjugation with RNA aptamers (RNApt) with specificity for cancer cells. The site-directed delivery of drugs is made by the functionalization of these specific ligands on the NDSs surface, thereby creating specificity for features of cancer cell membranes or an overexpressed target/receptor exposed to those cells. Despite the advances in the field, NDSs development and functionalization are still in their early stages and numerous challenges are expected to impact the technology. Thus, RNApt supplies a promising reply to the common problem related to drug delivery by NDSs. This review summarizes the current knowledge on the use of RNApt to generate functionalized PNPs for cancer therapy, discussing the most relevant studies in the area.

Keywords: Polymeric nanoparticles, nanosystem, cancer therapy, drug delivery, RNA aptamers, SELEX.

[1]
Ahmed MS, Bin Salam A, Yates C, et al. Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer. Int J Nanomedicine 2017; 12: 6973-84.
[http://dx.doi.org/10.2147/IJN.S139011] [PMID: 29033565]
[2]
Li J, Hu Y, Yang J, et al. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 2015; 38: 10-21.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.065] [PMID: 25457979]
[3]
Zhang J, Wang L, You X, Xian T, Wu J, Pang J. Nanoparticle therapy for prostate cancer: Overview and perspectives. Curr Top Med Chem 2019; 19(1): 57-73.
[http://dx.doi.org/10.2174/1568026619666190125145836] [PMID: 30686255]
[4]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[5]
Wang K, Na L, Duan M. The pathogenesis mechanism, structure properties, potential drugs, and therapeutic nanoparticles against the small oligomers of amyloid-β. Curr Top Med Chem 2021; 21(2): 151-67.
[http://dx.doi.org/10.2174/1568026620666200916123000] [PMID: 32938351]
[6]
Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015; 11(7): 1603-11.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[7]
Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of organic nanomaterials and biomaterials: The bottom-up approach for functional nanostructures formation and advanced applications. Materials 2020; 13(5): 1048.
[http://dx.doi.org/10.3390/ma13051048] [PMID: 32110877]
[8]
Parra-Nieto J, del Cid MAG, Cárcer IA, Baeza A. Inorganic porous nanoparticles for drug delivery in antitumoral therapy. Biotechnol J 2021; 16(2): 2000150.
[http://dx.doi.org/10.1002/biot.202000150] [PMID: 32476279]
[9]
Wu J. The Enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J Pers Med 2021; 11(8): 771.
[http://dx.doi.org/10.3390/jpm11080771] [PMID: 34442415]
[10]
Kerimoglu O, Alarcin E. Poly(lactic-co-glycolic acid) based drug delivery devices for tissue engineering and regenerative medicine. ANKEM Dergisi 2012; 26(2): 86-98.
[http://dx.doi.org/10.5222/ankem.2012.086]
[11]
Hamid Akash MS, Rehman K, Chen S. Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym Rev 2015; 55(3): 371-406.
[http://dx.doi.org/10.1080/15583724.2014.995806]
[12]
Fang Y, Lin S, Yang F, Situ J, Lin S, Luo Y. Aptamer-conjugated multifunctional polymeric nanoparticles as cancer-targeted, MRI-ultrasensitive drug delivery systems for treatment of castration-resistant prostate cancer. BioMed Res Int 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/9186583] [PMID: 32420382]
[13]
Liu H, Slamovich EB, Webster TJ. Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine 2006; 1(4): 541-5.
[http://dx.doi.org/10.2147/nano.2006.1.4.541] [PMID: 17722285]
[14]
Marin E, Briceño MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine 2013; 8: 3071-90.
[PMID: 23990720]
[15]
Tabatabaei Mirakabad FS, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 2014; 15(2): 517-35.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[16]
Jarosch F, Buchner K, Klussmann S. In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res 2006; 34(12): e86.
[http://dx.doi.org/10.1093/nar/gkl463] [PMID: 16855281]
[17]
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346(6287): 818-22.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[18]
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv 2015; 33(6): 1141-61.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.008] [PMID: 25708387]
[19]
Marangoni K, Neves AF, Rocha RM, et al. Prostate-specific RNA aptamer: Promising nucleic acid antibody-like cancer detection. Sci Rep 2015; 5(1): 12090.
[http://dx.doi.org/10.1038/srep12090] [PMID: 26174796]
[20]
Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 2015; 71: 230-42.
[http://dx.doi.org/10.1016/j.bios.2015.04.041] [PMID: 25912679]
[21]
Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl 2012; 6(11-12): 563-73.
[http://dx.doi.org/10.1002/prca.201200042] [PMID: 23090891]
[22]
Zhou G, Wilson G, Hebbard L, et al. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7(12): 13446-63.
[http://dx.doi.org/10.18632/oncotarget.7178] [PMID: 26863567]
[23]
Asadzadeh H, Moosavi A, Alexandrakis G, Mofrad MRK. Atomic scale interactions between RNA and DNA aptamers with the TNF-α protein. BioMed Res Int 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/9926128] [PMID: 34327241]
[24]
Li J, Xu M, Huang H, et al. Aptamer-quantum dots conjugates-based ultrasensitive competitive electrochemical cytosensor for the detection of tumor cell. Talanta 2011; 85(4): 2113-20.
[http://dx.doi.org/10.1016/j.talanta.2011.07.055] [PMID: 21872066]
[25]
Ng EWM, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006; 5(2): 123-32.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[26]
Hoellenriegel J, Zboralski D, Maasch C, et al. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood 2014; 123(7): 1032-9.
[http://dx.doi.org/10.1182/blood-2013-03-493924] [PMID: 24277076]
[27]
Vater A, Sahlmann J, Kröger N, et al. Hematopoietic stem and progenitor cell mobilization in mice and humans by a first-in-class mirror-image oligonucleotide inhibitor of CXCL12. Clin Pharmacol Ther 2013; 94(1): 150-7.
[http://dx.doi.org/10.1038/clpt.2013.58] [PMID: 23588307]
[28]
Liu SC, Alomran R, Chernikova SB, et al. Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats. Neuro-oncol 2014; 16(1): 21-8.
[http://dx.doi.org/10.1093/neuonc/not149] [PMID: 24335554]
[29]
Zboralski D, Hoehlig K, Eulberg D, Frömming A, Vater A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res 2017; 5(11): 950-6.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0303] [PMID: 28963140]
[30]
Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 2002; 62(14): 4029-33.
[PMID: 12124337]
[31]
Kolishetti N, Dhar S, Valencia PM, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci USA 2010; 107(42): 17939-44.
[http://dx.doi.org/10.1073/pnas.1011368107] [PMID: 20921363]
[32]
Wu X, Ding B, Gao J, et al. Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int J Nanomedicine 2011; 6: 1747-56.
[PMID: 21980237]
[33]
Taghdisi SM, Danesh NM, Sarreshtehdar Emrani A, et al. Targeted delivery of Epirubicin to cancer cells by PEGylated A10 aptamer. J Drug Target 2013; 21(8): 739-44.
[http://dx.doi.org/10.3109/1061186X.2013.812095] [PMID: 23815443]
[34]
Yan J, Wang Y, Zhang X, Liu S, Tian C, Wang H. Targeted nanomedicine for prostate cancer therapy: Docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv 2016; 23(5): 1757-62.
[http://dx.doi.org/10.3109/10717544.2015.1069423] [PMID: 26203689]
[35]
Wu M, Zhao H, Guo L, et al. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer. Drug Deliv 2018; 25(1): 226-40.
[http://dx.doi.org/10.1080/10717544.2017.1422300] [PMID: 29313393]
[36]
Wu M, Wang Y, Wang Y, et al. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultra-sound imaging and therapy of prostate cancer. Int J Nanomedicine 2017; 12: 5313-30.
[http://dx.doi.org/10.2147/IJN.S136032] [PMID: 28794625]
[37]
Chen Y, Deng Y, Zhu C, Xiang C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother 2020; 127: 110181.
[http://dx.doi.org/10.1016/j.biopha.2020.110181] [PMID: 32416561]
[38]
Dassie JP, Hernandez LI, Thomas GS, et al. Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen. Mol Ther 2014; 22(11): 1910-22.
[http://dx.doi.org/10.1038/mt.2014.117] [PMID: 24954476]
[39]
Pastor F, Kolonias D, McNamara JO II, Gilboa E. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther 2011; 19(10): 1878-86.
[http://dx.doi.org/10.1038/mt.2011.145] [PMID: 21829171]
[40]
Kaur J, Tikoo K. Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation. Oncogene 2015; 34(41): 5216-28.
[http://dx.doi.org/10.1038/onc.2014.447] [PMID: 25639877]
[41]
Cerchia L, Esposito CL, Camorani S, et al. Targeting Axl with an high-affinity inhibitory aptamer. Mol Ther 2012; 20(12): 2291-303.
[http://dx.doi.org/10.1038/mt.2012.163] [PMID: 22910292]
[42]
Ajona D, Ortiz-Espinosa S, Moreno H, et al. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov 2017; 7(7): 694-703.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1184] [PMID: 28288993]
[43]
Mi J, Zhang X, Rabbani ZN, et al. RNA aptamer-targeted inhibition of NF-κ B suppresses non-small cell lung cancer resistance to doxo-rubicin. Mol Ther 2008; 16(1): 66-73.
[http://dx.doi.org/10.1038/sj.mt.6300320] [PMID: 17912235]
[44]
Li N, Nguyen HH, Byrom M, Ellington AD. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One 2011; 6(6): e20299.
[http://dx.doi.org/10.1371/journal.pone.0020299] [PMID: 21687663]
[45]
Ni M, Xiong M, Zhang X, et al. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. Int J Nanomedicine 2015; 10: 2537-54.
[PMID: 25848270]
[46]
Yu Z, Chen F, Qi X, et al. Epidermal growth factor receptor aptamer-conjugated polymer-lipid hybrid nanoparticles enhance salinomycin delivery to osteosarcoma and cancer stem cells. Exp Ther Med 2018; 15(2): 1247-56.
[PMID: 29399118]
[47]
Buerger C, Nagel-Wolfrum K, Kunz C, et al. Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J Biol Chem 2003; 278(39): 37610-21.
[http://dx.doi.org/10.1074/jbc.M301629200] [PMID: 12842895]
[48]
Zheng J, Zhao S, Yu X, Huang S, Liu HY. Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics 2017; 7(5): 1373-88.
[http://dx.doi.org/10.7150/thno.17826] [PMID: 28435472]
[49]
Mi Z, Guo H, Russell MB, Liu Y, Sullenger BA, Kuo PC. RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Mol Ther 2009; 17(1): 153-61.
[http://dx.doi.org/10.1038/mt.2008.235] [PMID: 18985031]
[50]
Talbot LJ, Mi Z, Bhattacharya SD, Kim V, Guo H, Kuo PC. Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of in vivo efficacy in reversing growth of human breast cancer cells. Surgery 2011; 150(2): 224-30.
[http://dx.doi.org/10.1016/j.surg.2011.05.015] [PMID: 21801960]
[51]
Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P. Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression. Cancer Res 2012; 72(6): 1373-83.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2772] [PMID: 22282665]
[52]
Li L, Xiang D, Shigdar S, et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomedicine 2014; 9: 1083-96.
[PMID: 24591829]
[53]
Alibolandi M, Ramezani M, Sadeghi F, Abnous K, Hadizadeh F. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm 2015; 479(1): 241-51.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.035] [PMID: 25529433]
[54]
Lee YJ, Han SR, Kim NY, Lee SH, Jeong JS, Lee SW. An RNA aptamer that binds carcinoembryonic antigen inhibits hepatic metastasis of colon cancer cells in mice. Gastroenterology 2012; 143(1): 155-165.e8.
[http://dx.doi.org/10.1053/j.gastro.2012.03.039] [PMID: 22465431]
[55]
Berezhnoy A, Stewart CA, Mcnamara JO II, et al. Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther 2012; 20(6): 1242-50.
[http://dx.doi.org/10.1038/mt.2012.18] [PMID: 22434135]
[56]
Hervas-Stubbs S, Soldevilla MM, Villanueva H, Mancheño U, Bendandi M, Pastor F. Identification of TIM3 2′-fluoro oligonucleotide aptamer by HT-SELEX for cancer immunotherapy. Oncotarget 2016; 7(4): 4522-30.
[http://dx.doi.org/10.18632/oncotarget.6608] [PMID: 26683225]
[57]
McNamara JO II, Kolonias D, Pastor F, et al. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 2008; 118(1): 376-86.
[http://dx.doi.org/10.1172/JCI33365] [PMID: 18060045]
[58]
Dollins CM, Nair S, Boczkowski D, et al. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol 2008; 15(7): 675-82.
[http://dx.doi.org/10.1016/j.chembiol.2008.05.016] [PMID: 18635004]
[59]
Pratico ED, Sullenger BA, Nair SK. Identification and characterization of an agonistic aptamer against the T cell costimulatory receptor, OX40. Nucleic Acid Ther 2013; 23(1): 35-43.
[http://dx.doi.org/10.1089/nat.2012.0388] [PMID: 23113766]
[60]
Bai C, Gao S, Hu S, et al. Self-assembled multivalent aptamer nanoparticles with potential CAR-like characteristics could activate T cells and inhibit melanoma growth. Mol Ther Oncolytics 2020; 17: 9-20.
[http://dx.doi.org/10.1016/j.omto.2020.03.002] [PMID: 32280743]
[61]
Soldevilla MM, Villanueva H, Bendandi M, Inoges S, López-Díaz de Cerio A, Pastor F. 2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials 2015; 67: 274-85.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.020] [PMID: 26231918]
[62]
Grabow WW, Jaeger L. RNA self-assembly and RNA nanotechnology. Acc Chem Res 2014; 47(6): 1871-80.
[http://dx.doi.org/10.1021/ar500076k] [PMID: 24856178]
[63]
Jasinski D, Haque F, Binzel DW, Guo P. Advancement of the emerging field of RNA nanotechnology. ACS Nano 2017; 11(2): 1142-64.
[http://dx.doi.org/10.1021/acsnano.6b05737] [PMID: 28045501]
[64]
Bouchard PR, Hutabarat RM, Thompson KM. Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 2010; 50(1): 237-57.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105547] [PMID: 20055704]
[65]
Shen H, Huang X, Min J, et al. Nanoparticle delivery systems for DNA/RNA and their potential applications in nanomedicine. Curr Top Med Chem 2019; 19(27): 2507-23.
[http://dx.doi.org/10.2174/1568026619666191024170212] [PMID: 31775591]
[66]
Chushak Y, Stone MO. In silico selection of RNA aptamers. Nucleic Acids Res 2009; 37(12): e87.
[http://dx.doi.org/10.1093/nar/gkp408] [PMID: 19465396]
[67]
Ahirwar R, Nahar S, Aggarwal S, Ramachandran S, Maiti S, Nahar P. In silico selection of an aptamer to estrogen receptor alpha using computational docking employing estrogen response elements as aptamer-alike molecules. Sci Rep 2016; 6(1): 21285.
[http://dx.doi.org/10.1038/srep21285] [PMID: 26899418]
[68]
Li H, Lee T, Dziubla T, et al. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015; 10(5): 631-55.
[http://dx.doi.org/10.1016/j.nantod.2015.09.003] [PMID: 26770259]
[69]
Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison study of computational prediction tools for drug-target binding affinities. Front Chem 2019; 7: 782.
[http://dx.doi.org/10.3389/fchem.2019.00782] [PMID: 31824921]
[70]
Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci 2015; 5(6): 405-24.
[http://dx.doi.org/10.1002/wcms.1225] [PMID: 27110292]
[71]
Eulberg D, Buchner K, Maasch C, Klussmann S. Development of an automated in vitro selection protocol to obtain RNA-based aptamers: Identification of a biostable substance P antagonist. Nucleic Acids Res 2005; 33(4): e45.
[http://dx.doi.org/10.1093/nar/gni044] [PMID: 15745995]
[72]
Knight CG, Platt M, Rowe W, et al. Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape. Nucleic Acids Res 2009; 37(1): e6.
[http://dx.doi.org/10.1093/nar/gkn899] [PMID: 19029139]
[73]
de Almeida CEB, Alves LN, Rocha HF, Cabral-Neto JB, Missailidis S. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer. Int J Pharm 2017; 525(2): 334-42.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.086] [PMID: 28373101]
[74]
Dougherty C, Cai W, Hong H. Applications of aptamers in targeted imaging: State of the art. Curr Top Med Chem 2015; 15(12): 1138-52.
[http://dx.doi.org/10.2174/1568026615666150413153400] [PMID: 25866268]
[75]
Odeh F, Nsairat H, Alshaer W, et al. Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules 2019; 25(1): 3.
[http://dx.doi.org/10.3390/molecules25010003] [PMID: 31861277]
[76]
Elskens JP, Elskens JM, Madder A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: Current status and future prospects. Int J Mol Sci 2020; 21(12): 4522.
[http://dx.doi.org/10.3390/ijms21124522] [PMID: 32630547]
[77]
Vater A, Klussmann S. Turning mirror-image oligonucleotides into drugs: The evolution of Spiegelmer® therapeutics. Drug Discov Today 2015; 20(1): 147-55.
[http://dx.doi.org/10.1016/j.drudis.2014.09.004] [PMID: 25236655]
[78]
Braselmann E, Rathbun C, Richards EM, Palmer AE. Illuminating RNA biology: Tools for imaging RNA in live mammalian cells. Cell Chem Biol 2020; 27(8): 891-903.
[http://dx.doi.org/10.1016/j.chembiol.2020.06.010] [PMID: 32640188]
[79]
Bouhedda F, Autour A, Ryckelynck M. Light-up RNA aptamers and their cognate fluorogens: From their development to their applications. Int J Mol Sci 2017; 19(1): 44.
[http://dx.doi.org/10.3390/ijms19010044] [PMID: 29295531]
[80]
Truong L, Ferré-D’Amaré AR. From fluorescent proteins to fluorogenic RNAs: Tools for imaging cellular macromolecules. Protein Sci 2019; 28(8): 1374-86.
[http://dx.doi.org/10.1002/pro.3632] [PMID: 31017335]
[81]
Thodima V, Pirooznia M, Deng Y, Riboapt DB. A comprehensive database of ribozymes and aptamers. BMC Bioinformatics 2006; 7(S2): S6.
[http://dx.doi.org/10.1186/1471-2105-7-S2-S6] [PMID: 17118149]
[82]
Farokhzad OC, Jon S, Khademhosseini A, Tran TNT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates. Cancer Res 2004; 64(21): 7668-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2550] [PMID: 15520166]
[83]
Shigdar S, Qiao L, Zhou SF, et al. RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett 2013; 330(1): 84-95.
[http://dx.doi.org/10.1016/j.canlet.2012.11.032] [PMID: 23196060]
[84]
Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006; 103(16): 6315-20.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[85]
Gao J, Liu J, Xie F, Lu Y, Yin C, Shen X. Co-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by PLGA/TPGS nanoparticles. Int J Nanomedicine 2019; 14: 9199-216.
[http://dx.doi.org/10.2147/IJN.S230376] [PMID: 32063706]
[86]
Chen F, Zeng Y, Qi X, et al. Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipid-polymer nanoparticles to both osteosarcoma cells and cancer stem cells. Nanomedicine 2018; 14(7): 2115-27.
[http://dx.doi.org/10.1016/j.nano.2018.05.015] [PMID: 29898423]
[87]
Tan Y, Li Y, Qu YX, et al. Aptamer-peptide conjugates as targeted chemosensitizers for breast cancer treatment. ACS Appl Mater Interfaces 2021; 13(8): 9436-44.
[http://dx.doi.org/10.1021/acsami.0c18282] [PMID: 33306339]
[88]
He XY, Ren XH, Peng Y, et al. Aptamer/peptide-functionalized genome-editing system for effective immune restoration through reversal of PD-L1-mediated cancer immunosuppression. Adv Mater 2020; 32(17): 2000208.
[http://dx.doi.org/10.1002/adma.202000208] [PMID: 32147886]
[89]
Jianghong L, Tingting M, Yingping Z, et al. Aptamer and peptide-modified lipid-based drug delivery systems in application of combined sequential therapy of hepatocellular carcinoma. ACS Biomater Sci Eng 2021; 7(6): 2558-68.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00357] [PMID: 34047187]
[90]
Heo K, Min SW, Sung HJ, et al. An aptamer-antibody complex (oligobody) as a novel delivery platform for targeted cancer therapies. J Control Release 2016; 229: 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.006] [PMID: 26956592]
[91]
Charbgoo F, Alibolandi M, Taghdisi SM, Abnous K, Soltani F, Ramezani M. MUC1 aptamer-targeted DNA micelles for dual tumor therapy using doxorubicin and KLA peptide. Nanomedicine 2018; 14(3): 685-97.
[http://dx.doi.org/10.1016/j.nano.2017.12.010] [PMID: 29317345]
[92]
Rajabnejad SH, Mokhtarzadeh A, Abnous K, Taghdisi SM, Ramezani M, Razavi BM. Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug Dev Ind Pharm 2018; 44(6): 982-7.
[http://dx.doi.org/10.1080/03639045.2018.1427760] [PMID: 29325460]
[93]
Romanelli A, Affinito A, Avitabile C, et al. An anti-PDGFRβ aptamer for selective delivery of small therapeutic peptide to cardiac cells. PLoS One 2018; 13(3): e0193392.
[http://dx.doi.org/10.1371/journal.pone.0193392] [PMID: 29513717]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy