Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Discovery of Active Ingredients in Traditional Chinese Medicine Based on the Analysis of Odor and Flavor of Compounds

Author(s): Dan Wang, Feng Lu, Li Ai*, Chun-Jie Wu*, Ziqi Liu, Mengmeng Zhang and Ciping Zhong

Volume 28, Issue 34, 2022

Published on: 15 September, 2022

Page: [2771 - 2784] Pages: 14

DOI: 10.2174/1381612828666220526124239

Price: $65

Abstract

Background: The odor and flavor produced by a complex mixture of chemical components with different amounts and thresholds constitute a unique property for food and Traditional Chinese Medicine (TCM). These compounds usually belong to mono- and sesquiterpenes, esters, lipids, and others.

Objective: This review aimed to demonstrate the extraction method and reliable technology for identifying the compounds responsible for their odor and flavor.

Methods: Existing techniques have been summarized for the analysis of taste and odor components and their characteristics, such as electronic nose (enose, EN) and electronic tongue (etongue, ET), which can separate high-quality food from low-quality and natural from artificial food in terms of unique odor and flavor.

Results: Gas chromatography-olfactometry mass spectrometry (GC-O-MS), a technique derived from Gas chromatography mass spectrometry (GC-MS), coupled with human sense by Olfactory Detector Ports has been successfully applied for screening of the odor-producing components for the food or Chinese medicine.

Conclusion: This current review provides some guidelines for quality evaluation of food or Chinese medicine.

Keywords: Traditional Chinese Medicines (TCM), odor, flavor, active ingredients, Bionic technology, Gas chromatography-olfactometry mass spectrometry (GC-O-MS).

Next »
[1]
Liu CX, Cen SL, Xiao XH. A new concept on quality marker of Chinese materia medica: Quality control for Chinese medicinal products. J Food Sci 2016; 47(09): 1443-57.
[2]
An-Qi J, Xiu-Lian C, Ming-Fu LI, et al. Application of traditional Chinese medicine (TCM) traceability system based on TCM quality characteristics and HACCP system. Zhongguo Zhongyao Zazhi 2020; 45(21): 5304-8.
[PMID: 33350249]
[3]
Leong F, Hua X, Wang M, et al. Quality standard of traditional Chinese medicines: Comparison between European pharmacopoeia and Chinese pharmacopoeia and recent advances. Chin Med 2020; 15(1): 76.
[http://dx.doi.org/10.1186/s13020-020-00357-3] [PMID: 32742301]
[4]
Ren JL, Zhang AH, Kong L, et al. Analytical strategies for the discovery and validation of quality-markers of traditional Chinese medicine. Phytomedicine 2020; 67: 153165.
[http://dx.doi.org/10.1016/j.phymed.2019.153165] [PMID: 31954259]
[5]
Commission Chinese Pharmacopoeia. Pharmacopoeia of the People’s Republic of China Part 1. Beijing, China: People's Medical Publishing House 2020.
[6]
Liu RS, Jin GH, Xiao DR, Li HM, Bai FW, Tang YJ. Screening of the key volatile organic compounds of Tuber melanosporum fermentation by aroma sensory evaluation combination with principle component analysis. Sci Rep 2015; 5(1): 17954.
[http://dx.doi.org/10.1038/srep17954] [PMID: 26655663]
[7]
Xu SJ, Yang L, Xie PS. Current status and prospects of research on smell identification of traditional chinese medicine. Zhongyao Xinyao Yu Linchuang Yaoli 2011; 22(02): 228-31.
[8]
Ye T, Jin C, Zhou J, et al. Can odors of TCM be captured by electronic nose? The novel quality control method for musk by electronic nose coupled with chemometrics. J Pharm Biomed Anal 2011; 55(5): 1239-44.
[http://dx.doi.org/10.1016/j.jpba.2011.03.018] [PMID: 21497037]
[9]
Huang XQ, Zhong K, Han K. Traits and microscopic characteristics of Dendrobium nobile from different habitats. Chin Tradit Herbal Drugs 2020; 51(08): 2255-31.
[10]
Ma YX, Ji JJ, Chayanis S. Pharmacognostical study of Chinese medicine Prinsepiae Nux. Chin Tradit Herbal Drugs 2020; 51(03): 763-8.
[11]
Pei Y. Research progress in odor identification of traditional Chinese medicine. CJGMCM 2020; 35(7): 1114-6.
[12]
Zhai HQ, Wang YP, Huang LQ, Jin SY, Wang YY. Preliminary analysis on morphological characteristics of traditional Chinese medicines in hot property. Zhongguo Zhongyao Zazhi 2013; 38(8): 1255-7.
[PMID: 23944046]
[13]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[14]
Zhang C, Liao Y, Liu L, et al. A network pharmacology approach to investigate the active compounds and mechanisms of musk for ischemic stroke. Evid Based Complement Alternat Med 2020; 2020: 4063180.
[http://dx.doi.org/10.1155/2020/4063180] [PMID: 32714405]
[15]
Tan C, Xie D, Liu Y, et al. Identification of different bile species and fermentation times of bile arisaema based on an intelligent electronic nose and least squares support vector machine. Anal Chem 2018; 90(5): 3460-6.
[http://dx.doi.org/10.1021/acs.analchem.7b05189] [PMID: 29397686]
[16]
Shen J, Niijima A, Tanida M, Horii Y, Maeda K, Nagai K. Olfactory stimulation with scent of lavender oil affects autonomic nerves, lipolysis and appetite in rats. Neurosci Lett 2005; 383(1-2): 188-93.
[http://dx.doi.org/10.1016/j.neulet.2005.04.010] [PMID: 15878236]
[17]
Zhou L, Ohata M, Arihara K. Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves. Food Funct 2016; 7(6): 2574-81.
[http://dx.doi.org/10.1039/C5FO01546D] [PMID: 27087046]
[18]
Tanida M, Niijima A, Shen J, Nakamura T, Nagai K. Olfactory stimulation with scent of lavender oil affects autonomic neurotransmission and blood pressure in rats. Neurosci Lett 2006; 398(1-2): 155-60.
[http://dx.doi.org/10.1016/j.neulet.2005.12.076] [PMID: 16442729]
[19]
Nagai K, Niijima A, Horii Y, Shen J, Tanida M. Olfactory stimulatory with grapefruit and lavender oils change autonomic nerve activity and physiological function. Auton Neurosci 2014; 185: 29-35.
[http://dx.doi.org/10.1016/j.autneu.2014.06.005] [PMID: 25002406]
[20]
Oka T, Hayashida S, Kaneda Y, et al. Green odor attenuates a cold pressor test-induced cardiovascular response in healthy adults. Biopsychosoc Med 2008; 2(1): 2.
[http://dx.doi.org/10.1186/1751-0759-2-2] [PMID: 18197969]
[21]
Yokoyama I, Ohata M, Komiya Y, Nagasao J, Arihara K. Inhalation of odors containing DMHF generated by the Maillard reaction affects physiological parameters in rats. Sci Rep 2020; 10(1): 13931.
[http://dx.doi.org/10.1038/s41598-020-70843-z] [PMID: 32811855]
[22]
Zhou HY, Luo DH. GholamHosseini H, Li Z, He J. Identification of Chinese herbal medicines with electronic nose technology: Applications and challenges. Sensors 2017; 17(5): 1073.
[http://dx.doi.org/10.3390/s17051073]
[23]
Gong JT, Wang JY, Li L, et al. Identification of Curcuma herbs using XGBoost algorithm in electronic nose odor fingerprint. Zhongguo Zhongyao Zazhi 2019; 44(24): 5375-81.
[PMID: 32237383]
[24]
Wasilewski T, Migoń D, Gębicki J, Kamysz W. Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis. Anal Chim Acta 2019; 1077: 14-29.
[http://dx.doi.org/10.1016/j.aca.2019.05.024] [PMID: 31307702]
[25]
Paup VD, Barnett SM, Diako C, Ross CF. Detection of spicy compounds using the electronic tongue. J Food Sci 2019; 84(9): 2619-27.
[http://dx.doi.org/10.1111/1750-3841.14709] [PMID: 31408209]
[26]
Sheibani E, Duncan SE, Kuhn DD, Dietrich AM, O’Keefe SF. SDE and SPME analysis of flavor compounds in Jin Xuan Oolong tea. J Food Sci 2016; 81(2): C348-58.
[http://dx.doi.org/10.1111/1750-3841.13203] [PMID: 26756123]
[27]
Ma L, Gao W, Chen F, Meng Q. HS-SPME and SDE combined with GC-MS and GC-O for characterization of flavor compounds in Zhizhonghe Wujiapi medicinal liquor. Food Res Int 2020; 137: 109590.
[http://dx.doi.org/10.1016/j.foodres.2020.109590] [PMID: 33233196]
[28]
Wang J, Gambetta JM, Jeffery DW. Comprehensive study of volatile compounds in two Australian rosé wines: Aroma extract dilution analysis (AEDA) of extracts prepared using solvent-assisted flavor evaporation (SAFE) or headspace solid-phase extraction (HS-SPE). J Agric Food Chem 2016; 64(19): 3838-48.
[http://dx.doi.org/10.1021/acs.jafc.6b01030] [PMID: 27141971]
[29]
Chiang N, Ho CT, Jr JPM. Identification of key aroma compounds in raw and roasted lily bulbs (Bai He). Flavour Fragrance J 2018; 33(4): 1-9.
[http://dx.doi.org/10.1002/ffj.3446]
[30]
Richter TM, Eyres GT, Silcock P, Bremer PJ. Comparison of four extraction methods for analysis of volatile hop-derived aroma compounds in beer. J Sep Sci 2017; 40(22): 4366-76.
[http://dx.doi.org/10.1002/jssc.201700676] [PMID: 28887851]
[31]
Hu D, Guo J, Li T, et al. Comparison and identification of the aroma-active compounds in the root of Angelica dahurica. Molecules 2019; 24(23): E4352.
[http://dx.doi.org/10.3390/molecules24234352] [PMID: 31795226]
[32]
Chen XS, Li K, Li ZY. Analysis of the volatile components of Astragali Radix from different habitats by SPME-GC-MS combine with multivariate statistical analysis. Acta Pharm Sin B 2020; 055(005): 979-86.
[33]
Wang K, Yang R, Sun N, Dong Y, Cheng S, Lin S. The formation pattern of off-flavor compounds induced by water migration during the storage of sea cucumber peptide powders (SCPPs). Food Chem 2019; 274: 100-9.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.123] [PMID: 30372913]
[34]
Miao CL, Sun BT, Luo LP. Analysis of chemical constituents of Chinese eaglewood wood by gas chromatography-mass spectrometry coupled with dynamic headspace sampling. Shipin Kexue 2009; (8): 215-7.
[35]
Zhang M, Xu S, Gao Z. Study of purge-trap coupled with gas chromatography-mass spectrometryolfactory for the odour in wine-fried decoction of Lumbricus. China Medical Herald 2012; 9(35): 129-31.
[36]
Rai A, Mohanty B, Bhargava R. Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chem 2016; 192: 647-59.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.070] [PMID: 26304395]
[37]
da Silva RPFF, Rocha-Santos TAP, Duarte AC. Supercritical fluid extraction of bioactive compounds. Trends Analyt Chem 2016; 76: 40-51.
[http://dx.doi.org/10.1016/j.trac.2015.11.013]
[38]
Giacometti J, Bursać Kovačević D, Putnik P, et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res Int 2018; 113: 245-62.
[http://dx.doi.org/10.1016/j.foodres.2018.06.036] [PMID: 30195519]
[39]
Sonmezdag AS, Kelebek H, Selli S. Characterization of aroma-active compounds, phenolics, and antioxidant properties in fresh and fermented capers (Capparis spinosa) by GC-MS-olfactometry and LC-DAD-ESI-MS/MS. J Food Sci 2019; 84(9): 2449-57.
[http://dx.doi.org/10.1111/1750-3841.14777] [PMID: 31476250]
[40]
Zhang S, Xu L, Liu YX, Fu HY, Xiao ZB, She YB. Characterization of aroma-active components and antioxidant activity analysis of E-jiao (Colla Corii Asini) from different geographical origins. Nat Prod Bioprospect 2018; 8(2): 71-82.
[http://dx.doi.org/10.1007/s13659-017-0149-3] [PMID: 29488079]
[41]
Kang L, Alim A, Song H. Identification and characterization of flavor precursor peptide from beef enzymatic hydrolysate by Maillard reaction. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104: 176-81.
[http://dx.doi.org/10.1016/j.jchromb.2018.10.025] [PMID: 30502563]
[42]
Mu LX, Lu Z, Liao ST. Effect of ultrafiltration on the flavor of silkworm pupae protein hydrolysates. Shipin Kexue 2013; 034(023): 108-12.
[43]
Kong Y, Zhang LL, Zhao J, Zhang YY, Sun BG, Chen HT. Isolation and identification of the umami peptides from shiitake mushroom by consecutive chromatography and LC-Q-TOF-MS. Food Res Int 2019; 121: 463-70.
[http://dx.doi.org/10.1016/j.foodres.2018.11.060] [PMID: 31108770]
[44]
Zhao ML. Study on extraction, purification, and the primary efficacy activity of the polysaccharide isolated from Ganoderma sinense. Hebei North University 2013.
[45]
Pérez-Navarro J, Izquierdo-Cañas PM, Mena-Morales A, et al. First chemical and sensory characterization of Moribel and Tinto Fragoso wines using HPLC-DAD-ESI-MS/MS, GC-MS, and Napping® techniques: Comparison with Tempranillo. J Sci Food Agric 2019; 99(5): 2108-23.
[http://dx.doi.org/10.1002/jsfa.9403] [PMID: 30298616]
[46]
Yang C, Guo F, Zang C, Li C, Cao H, Zhang B. The effect of ginger juice processing on the chemical profiles of Rhizoma coptidis. Molecules 2018; 23(2): E380.
[http://dx.doi.org/10.3390/molecules23020380] [PMID: 29439421]
[47]
Sun G, Zhang HX, Ma YP, Li MX, Du ZZ. New sweet-tasting C21 pregnane glycosides from the roots of Myriopteron extensum. J Agric Food Chem 2018; 66(29): 7735-9.
[http://dx.doi.org/10.1021/acs.jafc.8b02348] [PMID: 29965760]
[48]
Barkatullah Ibrar M, Muhammad N, Khan A, et al. Pharmacognostic and phytochemical studies of Zanthoxylum arma-tum DC. Pak J Pharm Sci 2017; 30(2): 429-38.
[PMID: 28649067]
[49]
Sun Y, Zhang M, Bhandari B, Yang P. Intelligent detection of flavor changes in ginger during microwave vacuum drying based on LF-NMR. Food Res Int 2019; 119: 417-25.
[http://dx.doi.org/10.1016/j.foodres.2019.02.019] [PMID: 30884672]
[50]
Khorasanchi Z, Shafiee M, Kermanshahi F, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine 2018; 43: 21-7.
[http://dx.doi.org/10.1016/j.phymed.2018.03.041] [PMID: 29747750]
[51]
Wagner J, Granvogl M, Schieberle P. Characterization of the key aroma compounds in raw licorice (Glycyrrhiza glabra L.) by means of molecular sensory science. J Agric Food Chem 2016; 64(44): 8388-96.
[http://dx.doi.org/10.1021/acs.jafc.6b03676] [PMID: 27728970]
[52]
Kashima Y, Nakaya S, Miyazawa M. Volatile composition and sensory properties of Indian herbal medicine-Pavonia odorata-used in Ayurveda. J Oleo Sci 2014; 63(2): 149-58.
[http://dx.doi.org/10.5650/jos.ess13125] [PMID: 24441709]
[53]
Li L, Yang SL, Xu M. Odor and taste discrimination of Chinese hawthorn based on electronic nose and electronic tongue. chinese J Exper Trad Med Formulae 2015; 21(5): 99-102.
[54]
Wang H, Sun H. Potential use of electronic tongue coupled with chemometrics analysis for early detection of the spoilage of Zygosaccharomyces rouxii in apple juice. Food Chem 2019; 290: 152-8.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.120] [PMID: 31000031]
[55]
de Morais TCB, Rodrigues DR, de Carvalho Polari Souto UT, Lemos SG. A simple voltammetric electronic tongue for the analysis of coffee adulterations. Food Chem 2019; 273: 31-8.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.136] [PMID: 30292371]
[56]
Nakanishi A, Fukushima Y, Miyazawa N, Yoshikawa K, Maeda T, Kurobayashi Y. Quantitation of rotundone in grapefruit (Citrus paradisi) peel and juice by stable isotope dilution assay. J Agric Food Chem 2017; 65(24): 5026-33.
[http://dx.doi.org/10.1021/acs.jafc.7b01319] [PMID: 28560869]
[57]
Huang P, Kong W, Wang S, Wang R, Lu J, Yang M. Multiclass mycotoxins in lotus seeds analysed by an isotope-labelled internal standard-based UPLC-MS/MS. J Pharm Pharmacol 2018; 70(10): 1378-88.
[http://dx.doi.org/10.1111/jphp.12974] [PMID: 30079513]
[58]
Du X, Song M, Baldwin E, Rouseff R. Identification of sulphur volatiles and GC-olfactometry aroma profiling in two fresh tomato cultivars. Food Chem 2015; 171: 306-14.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.013] [PMID: 25308674]
[59]
Smith TJ, Campbell RE, Jo Y, Drake MA. Flavor and stability of milk proteins. J Dairy Sci 2016; 99(6): 4325-46.
[http://dx.doi.org/10.3168/jds.2016-10847] [PMID: 27060829]
[60]
Lindy J. Supercritical Fluid Extraction: Technology, Applications and Limitations. In: Materials Science and Technologies. Nova Science Publishers, Inc. New York 2014.
[61]
Pandey A, Tripathi S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem 2014; 2: 115-9.
[62]
Cao G, Xu Z, Wu X, Li Q, Chen X. Capture and identification of the volatile components in crude and processed herbal medicines through on-line purge and trap technique coupled with GC × GC-TOF MS. Nat Prod Res 2014; 28(19): 1607-12.
[http://dx.doi.org/10.1080/14786419.2014.929129] [PMID: 24960332]
[63]
Cao G, Li Q, Zhang J, Cai H, Cai B. A purge and trap technique to capture volatile compounds combined with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry to investigate the effect of sulfur-fumigation on Radix angelicae Dahuricae. Biomed Chromatogr 2014; 28(9): 1167-72.
[http://dx.doi.org/10.1002/bmc.3146] [PMID: 24619878]
[64]
Song HL. Molecular sensory science. Beijing: Science Press 2014.
[65]
Zhang W, Jiang XG, Ma J, et al. Study on the thermal stability of ginseng protein by SDS-PAGE and gel filtration chromatography. Zhongguo Xiandai Zhongyao 2007; 9(4): 7-10.
[66]
Mayer HK, Fiechter G. Application of UHPLC for the determination of free amino acids in different cheese varieties. Anal Bioanal Chem 2013; 405(25): 8053-61.
[http://dx.doi.org/10.1007/s00216-013-6974-2] [PMID: 23615938]
[67]
Song H, Liu J. GC-O-MS technique and its applications in food flavor analysis. Food Res Int 2018; 114: 187-98.
[http://dx.doi.org/10.1016/j.foodres.2018.07.037] [PMID: 30361015]
[68]
Bai G, Zhang T, Hou Y, Ding G, Jiang M, Luo G. From quality markers to data mining and intelligence assessment: A smart quality-evaluation strategy for traditional Chinese medicine based on quality markers. Phytomedicine 2018; 44: 109-16.
[http://dx.doi.org/10.1016/j.phymed.2018.01.017] [PMID: 29426601]
[69]
Deshmukh S, Bandyopadhyay R, Bhattacharyya N, Pandey RA, Jana A. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring--An overview. Talanta 2015; 144: 329-40.
[http://dx.doi.org/10.1016/j.talanta.2015.06.050] [PMID: 26452830]
[70]
Wang XJ, Guo MY, Song HL, Meng Q. Characterization of key aroma compounds in traditional Chinese soy sauce through the molecular sensory science technique. Lebensm Wiss Technol 2020; 128: 128.
[http://dx.doi.org/10.1016/j.lwt.2020.109413]
[71]
Shi H, Zhang M, Adhikari B. Advances of electronic nose and its application in fresh foods: A review. Crit Rev Food Sci Nutr 2018; 58(16): 2700-10.
[http://dx.doi.org/10.1080/10408398.2017.1327419] [PMID: 28665685]
[72]
Li C, Xu F, Cao C, et al. Comparative analysis of two species of Asari Radix et Rhizoma by electronic nose, headspace GC-MS and chemometrics. J Pharm Biomed Anal 2013; 85: 231-8.
[http://dx.doi.org/10.1016/j.jpba.2013.07.034] [PMID: 23973758]
[73]
Lin H, Yan Y, Zhao T, et al. Rapid discrimination of Apiaceae plants by electronic nose coupled with multivariate statistical analyses. J Pharm Biomed Anal 2013; 84: 1-4.
[http://dx.doi.org/10.1016/j.jpba.2013.05.027] [PMID: 23777641]
[74]
Xu M, Yang SL, Zhang C, et al. Discrimination of coptidis rhizoma and its processed products by odor objectify. Zhongguo Zhongyao Zazhi 2015; 40(1): 89-93.
[PMID: 25993794]
[75]
Liu J, Wang W, Yang Y, et al. A rapid discrimination of authentic and unauthentic Radix Angelicae Sinensis growth regions by electronic nose coupled with multivariate statistical analyses. Sensors 2014; 14(11): 20134-48.
[http://dx.doi.org/10.3390/s141120134] [PMID: 25350503]
[76]
Son M, Lee JY, Ko HJ, Park TH. Bioelectronic nose: An emerging tool for odor standardization. Trends Biotechnol 2017; 35(4): 301-7.
[http://dx.doi.org/10.1016/j.tibtech.2016.12.007] [PMID: 28089199]
[77]
Podrażka M, Bączyńska E, Kundys M, Jeleń PS, Witkowska Nery E. Electronic tongue-A tool for all tastes? Biosensors 2017; 8(1): 3.
[http://dx.doi.org/10.3390/bios8010003] [PMID: 29301230]
[78]
Ciosek P, Wróblewski W. Sensor arrays for liquid sensing--electronic tongue systems. Analyst 2007; 132(10): 963-78.
[http://dx.doi.org/10.1039/b705107g] [PMID: 17893798]
[79]
Campanella L, Tomassetti M. The applications of sensors and biosensors in investigating drugs, foods, and nutraceuticals. Sensors 2019; 19(15): 3395.
[http://dx.doi.org/10.3390/s19153395] [PMID: 31382422]
[80]
Lin Z, Zhang Q, Liu R, et al. Evaluation of the bitterness of traditional Chinese medicines using an e-tongue coupled with a robust partial least squares regression method. Sensors 2016; 16(2): 151.
[http://dx.doi.org/10.3390/s16020151] [PMID: 26821026]
[81]
Li X, Gao X, Liu R, et al. Optimization and validation of the protocol used to analyze the taste of traditional Chinese medicines using an electronic tongue. Exp Ther Med 2016; 12(5): 2949-57.
[http://dx.doi.org/10.3892/etm.2016.3733] [PMID: 27882100]
[82]
Zhang X, Wu H, Yu X, et al. Determination of bitterness of Andrographis herba based on electronic tongue technology and discovery of the key compounds of bitter substances. Molecules 2018; 23(12): 3362.
[http://dx.doi.org/10.3390/molecules23123362] [PMID: 30572573]
[83]
Zhang H, Cui J, Tian G, et al. Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chem 2019; 289: 340-50.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.063] [PMID: 30955622]
[84]
Jiaming L, Lili C, Ya-nan L, Xujia H. Isolation and identification of umami-flavored peptides from Leccinum extremiorientale and their taste characteristic. J Food Proc Preservation 2021; 45(3): e15255.
[http://dx.doi.org/10.1111/jfpp.15255]
[85]
Scaglioni S, De Cosmi V, Ciappolino V, Parazzini F, Brambilla P, Agostoni C. Factors influencing children’s eating behaviours. Nutrients 2018; 10(6): 706.
[http://dx.doi.org/10.3390/nu10060706] [PMID: 29857549]
[86]
Rahman Z, Zidan AS, Berendt RT, Khan MA. Tannate complexes of antihistaminic drug: Sustained release and taste masking approaches. Int J Pharm 2012; 422(1-2): 91-100.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.033] [PMID: 22037447]
[87]
Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. A comparative study on two electronic tongues for pharmaceutical formulation development. J Pharm Biomed Anal 2011; 55(2): 272-81.
[http://dx.doi.org/10.1016/j.jpba.2011.02.002] [PMID: 21353433]
[88]
Łabańska M, Ciosek-Skibińska P, Wróblewski W. Critical evaluation of laboratory potentiometric electronic tongues for pharmaceutical analysis-an overview. Sensors 2019; 19(24): 5376.
[http://dx.doi.org/10.3390/s19245376] [PMID: 31817537]
[89]
Kirsanov D, Correa DS, Gaal G, et al. Electronic tongues for inedible media. Sensors 2019; 19(23): 5113.
[http://dx.doi.org/10.3390/s19235113] [PMID: 31766686]
[90]
Chen XH, Ou KG, Wang HY, et al. Investigation of flash GC electronic nose Heracles for the analysis of odor fingerprints in pepper oil. FS&T 2016; 41(12): 255-61.
[91]
Wilke O, Jann O, Brödner D. VOC- and SVOC-emissions from adhesives, floor coverings and complete floor structures. Indoor Air 2004; 14 (Suppl. 8): 98-107.
[http://dx.doi.org/10.1111/j.1600-0668.2004.00314.x] [PMID: 15663465]
[92]
Cipriano D, Capelli L. Evolution of electronic noses from research objects to engineered environmental odour monitoring systems: A review of standardization approaches. Biosensors 2019; 9(2): 75.
[http://dx.doi.org/10.3390/bios9020075] [PMID: 31159226]
[93]
Infante R, Rubio P, Contador L, Moreno V. Effect of drying process on lemon verbena (Lippia citrodora Kunth) aroma and infusion sensory quality. Int J Food Sci Technol 2010; 45(1): 75-80.
[http://dx.doi.org/10.1111/j.1365-2621.2009.02105.x]
[94]
Lu Y, Xie DS, Wu CJ. Rapid identification sulfur-fumigated ophiopogonis radix by gas phase electronic nose of heracles II. Zhong Yao Cai 2017; 40(005): 1070-3.
[95]
Wu WQ, Mao YN, Li H, Huang XX, Liu Y. Identification of honeysuckle powder quality by Heracles II ultra-fast gas phase electronic nose. Zhongguo Zhongyao Zazhi 2019; 44(23): 5129-33.
[PMID: 32237349]
[96]
Wang XY, Dong CM, Li M, et al. Study on rapid identification of achyranthes bidentata seeds basedon HERACLES II ultrafast gas phase electronic nose. Seed 2020; 40(4): 135-8.
[97]
Fan RY, Lu Y, Luo X, Huang QV. Qualitative analysis of processed Tianxiong odor based on Herailesultra-fasted gas chromatography electronic nose technology. Pharm Clin Chinese Mater Med 2018; 9(48): 11-4.
[98]
Luo X, Wei ZQ, Yu J, et al. Rapid identification between litsea cubeba and piper cubeba by gas phase electronic nose of heracles II. J Chengdu University (Natural Science Ed) 2018; 37(001): 34-7.
[99]
Wesoły M, Kluk A, Sznitowska M, Ciosek P, Wróblewski W. Influence of experimental conditions on electronic tongue results-case of valsartan minitablets dissolution. Sensors 2016; 16(9): 1353.
[http://dx.doi.org/10.3390/s16091353] [PMID: 27563904]
[100]
Xu D, Lin Y, Bauer R, et al. Organoleptic evaluation of amomi fructus and its further background verified via morphological measurement and gc coupled with E-Nose. Evid Based Complement Alternat Med 2018; 2018: 4689767.
[http://dx.doi.org/10.1155/2018/4689767] [PMID: 29692854]
[101]
Waltet G, Jiang CZ. How Watson saw the changes of DNA structure to biology after the discovery of double helix. World Science 2003; 3: 16-7.
[102]
Yu H, Qiu JF, Ma LJ. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional ediblemedicinal herb in China. Food Chem Toxicol 2017; 108(Pt B): 375-91.
[103]
Gao H, Yao XS. Strengthen the research on the medicinal and edible substances to advance the development of the comprehensive healthcare industry of TCMs. Chin J Nat Med 2019; 17(1): 1-2.
[http://dx.doi.org/10.1016/S1875-5364(19)30002-0] [PMID: 30704617]
[104]
Zhong LY, Cui MN, Yang M, Gong QF. Modern researches on effect of processing of Chinese herb medicine on Chinese medical properties. Zhongguo Zhongyao Zazhi 2019; 44(23): 5109-13.
[PMID: 32237345]
[105]
Li XJ, Ma W, Li HM, Zhang Q, Ma Z. Determination of residual fipronil and its metabolites in food samples: A review. Trends Food Sci Technol 2020; 97: 185-95.
[http://dx.doi.org/10.1016/j.tifs.2020.01.018]
[106]
Huang XH, Zheng X, Chen ZH, et al. Fresh and grilled eel volatile fingerprinting by e-Nose, GC-O, GC-MS and GC × GC-QTOF combined with purge and trap and solvent-assisted flavor evaporation. Food Res Int 2019; 115: 32-43.
[http://dx.doi.org/10.1016/j.foodres.2018.07.056] [PMID: 30599949]
[107]
Nie J, Xiao L, Zheng L, et al. An integration of UPLC-DAD/ESI-Q-TOF MS, GC-MS, and PCA analysis for quality evaluation and identification of cultivars of Chrysanthemi flos (Juhua). Phytomedicine 2019; 59: 152803.
[http://dx.doi.org/10.1016/j.phymed.2018.12.026] [PMID: 31005811]
[108]
Huang B, Hu X, Wang J, Li P, Chen J. Study on chemical constituents of herbal formula Er Miao Wan and GC-MS based metabolomics approach to evaluate its therapeutic effects on hyperuricemic rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119: 101-8.
[http://dx.doi.org/10.1016/j.jchromb.2019.04.032] [PMID: 31030102]
[109]
Zhu J, Wang L, Xiao Z, Niu Y. Characterization of the key aroma compounds in mulberry fruits by application of gas chromatographyolfactometry (GC-O), odor activity value (OAV), gas chromatography-mass spectrometry (GC-MS) and flame photometric detection (FPD). Food Chem 2018; 245: 775-85.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.112] [PMID: 29287440]
[110]
Delahunty CM, Eyres G, Dufour JP. Gas chromatography-olfactometry. J Sep Sci 2006; 29(14): 2107-25.
[http://dx.doi.org/10.1002/jssc.200500509] [PMID: 17069240]
[111]
Brattoli M, Cisternino E, Dambruoso PR, et al. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 2013; 13(12): 16759-800.
[http://dx.doi.org/10.3390/s131216759] [PMID: 24316571]
[112]
Niu Y, Wang P, Xiao Z, Zhu J, Sun X, Wang R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC-MS, GC-O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem 2019; 275: 143-53.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.102] [PMID: 30724180]
[113]
Yang P, Song H, Wang L, Jing H. Characterization of key aroma-active compounds in black garlic by sensory-directed flavor analysis. J Agric Food Chem 2019; 67(28): 7926-34.
[http://dx.doi.org/10.1021/acs.jafc.9b03269] [PMID: 31250635]
[114]
Denk P, Buettner A. Identification and quantification of glue-like off-odors in elastic therapeutic tapes. Anal Bioanal Chem 2018; 410(14): 3395-404.
[http://dx.doi.org/10.1007/s00216-018-1046-2] [PMID: 29623385]
[115]
Ghadiriasli R, Wagenstaller M, Buettner A. Identification of odorous compounds in oak wood using odor extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/] olfactometry. Anal Bioanal Chem 2018; 410(25): 6595-607.
[http://dx.doi.org/10.1007/s00216-018-1264-7] [PMID: 30062512]
[116]
Du X, Rouseff R. Aroma active volatiles in four southern highbush blueberry cultivars determined by gas chromatographyolfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). J Agric Food Chem 2014; 62(20): 4537-43.
[http://dx.doi.org/10.1021/jf500315t] [PMID: 24758568]
[117]
Al-Dalali S, Zheng FP, Sun BG, Zhou C, Li M, Chen F. Effects of different brewing processes on the volatile flavor profiles of Chinese vinegar determined by HS-SPME-AEDA with GC-MS and GC-O. Lebensm Wiss Technol 2020; 133: 109969.
[http://dx.doi.org/10.1016/j.lwt.2020.109969]
[118]
Lv YC, Song HL, Li X, Wu L, Guo ST. Influence of blanching and grinding process with hot water on beany and non-beany flavor in soymilk. J Food Sci 2011; 76(1): S20-5.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01947.x] [PMID: 21535711]
[119]
Cannon RJ, Ho CT. Volatile sulfur compounds in tropical fruits. J Food Drug Anal 2018; 26(2): 445-68.
[http://dx.doi.org/10.1016/j.jfda.2018.01.014] [PMID: 29567214]
[120]
Yu M, Li T, Raza A, et al. Sensory-guided identification of bitter compounds in Hangbaizhi (Angelica Dahurica). Food Res Int 2020; 129: 108880.
[http://dx.doi.org/10.1016/j.foodres.2019.108880] [PMID: 32036877]
[121]
Takazumi K, Takoi K, Koie K, Tuchiya Y. Quantitation method for polyfunctional thiols in hops (Humulus lupulus L.) and beer using specific extraction of thiols and gas chromatography-tandem mass spectrometry. Anal Chem 2017; 89(21): 11598-604.
[http://dx.doi.org/10.1021/acs.analchem.7b02996] [PMID: 28972741]
[122]
Li H, Qin D, Wu Z, et al. Characterization of key aroma compounds in Chinese Guojing sesame-flavor Baijiu by means of molecular sensory science. Food Chem 2019; 284: 100-7.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.102] [PMID: 30744833]
[123]
Deng AH, Liu FY, Xie P. GC-MS Analysis of aromatic active components in saffron (Crocus sativus). Mol Plant Breed 2019.
[124]
Su K, Zhang X, Liu SQ, et al. Identification of key odorants in honeysuckle by headspace-solid phase microextraction and solvent-assisted flavour evaporation with gas chromatography-mass spectrometry and gas chromatograph-olfactometry in combination with chemometrics. PLoS One 2020; 15(8): e0237881.
[http://dx.doi.org/10.1371/journal.pone.0237881] [PMID: 32817641]
[125]
Iwasa M, Nakaya S, Maki Y, Marumoto S, Usami A, Miyazawa M. Identification of aroma-active compounds in essential oil from uncaria hook by gas chromatography- mass spectrometry and gas chromatography-olfactometry. J Oleo Sci 2015; 64(8): 825-33.
[http://dx.doi.org/10.5650/jos.ess15048] [PMID: 26179003]
[126]
Wagner J, Schieberle P, Granvogl M. Characterization of the key aroma compounds in heat-processed licorice (Succus liquiritiae) by means of molecular sensory science. J Agric Food Chem 2017; 65(1): 132-8.
[http://dx.doi.org/10.1021/acs.jafc.6b04499] [PMID: 27992218]
[127]
Dawid C, Henze A, Frank O, et al. Structural and sensory characterization of key pungent and tingling compounds from black pepper (Piper nigrum L.). J Agric Food Chem 2012; 60(11): 2884-95.
[http://dx.doi.org/10.1021/jf300036a] [PMID: 22352449]
[128]
Chai CC, Cao Y, Mao M, et al. Evaluation of taste changes of Scutellariae Radix before and after wine-frying based on electronic ongue technology and its application in identification of Scutellariae radix pieces. Zhongguo Zhongyao Zazhi 2020; 45(11): 2552-9.
[PMID: 32627488]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy