Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

Analysis of Electrocatalytic Performance of Nanostructured MoS2 in Hydrogen Evolution Reaction

Author(s): K. Nayana and A. P. Sunitha*

Volume 19, Issue 4, 2023

Published on: 26 September, 2022

Page: [575 - 588] Pages: 14

DOI: 10.2174/1573413718666220825163052

Price: $65

Abstract

Recently, renewable and non-conventional energy production methods have been getting widespread attention. Fast research progress in establishing green energy indicates the relevance of carbon-free power production. Chemical energy stored in hydrogen molecules is considered green energy to substitute conventional energy sources. It is possible to produce hydrogen without carbon emission by water electrolysis. The action of appropriate catalysts can increase the rate of water electrolysis. Among various non-harmful and cost-effective catalysts, MoS2 nanostructures emerge as electrocatalysts in water electrolysis. This paper reviews the electrocatalytic properties of nanostructures of MoS2 by analyzing different characterization techniques used in water electrolysis, such as linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy and chronopotentiometry. This article explores the relationship between electrocatalytic characteristics and the reaction mechanism. How the reaction kinetics of electrocatalyst varies with respect to the structural changes of MoS2 nanostructures, pH of surrounding medium and longevity of catalyst are analysed here. It is found that the 1T phase of MoS2 has faster catalytic activity than the 2H phase. Similarly, among the various shapes and sizes of MoS2 nanostructures, quantum dot or monolayer structures of MoS2 and doped version of MoS2 have better catalytic activity. Acidic electrolyte shows better kinetics for releasing hydrogen than other pH conditions. Longevity, catalytic behaviour over a wide pH range, cost-effective synthesis methods and non-toxicity of MoS2 catalysts suggest its future scope as a better catalyst for commercial purposes. Electrocatalytic activity, stability, future scope and challenges of various MoS2 nanostructures are reviewed here.

Keywords: MoS2, linear sweep voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy, chronopotentiometry, longevity.

Graphical Abstract

[1]
Abad, A.V.; Dodds, P.E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy, 2020, 138, 111300.
[http://dx.doi.org/10.1016/j.enpol.2020.111300]
[2]
Dincer, I. Green methods for hydrogen production. Int. J. Hydrogen Energy, 2012, 37(2), 1954-1971.
[http://dx.doi.org/10.1016/j.ijhydene.2011.03.173]
[3]
Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy, 2015, 40(34), 11094-11111.
[http://dx.doi.org/10.1016/j.ijhydene.2014.12.035]
[4]
Dincer, I.; Acar, C. Smart energy solutions with hydrogen options. Int. J. Hydrogen Energy, 2018, 43(18), 8579-8599.
[http://dx.doi.org/10.1016/j.ijhydene.2018.03.120]
[5]
Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z-S.; Wang, H.; Shen, J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources, 2007, 165(2), 739-756.
[http://dx.doi.org/10.1016/j.jpowsour.2006.12.012]
[6]
Benck, J.D.; Hellstern, T.R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T.F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal., 2014, 4(11), 3957-3971.
[http://dx.doi.org/10.1021/cs500923c]
[7]
Liu, W.; Xia, T.; Ye, Y.; Wang, H.; Fang, Z.; Du, Z.; Hou, X. Self-supported Ni3N nanoarray as an efficient nonnoble-metal catalyst for alkaline hydrogen evolution reaction. Int. J. Hydrogen Energy, 2021, 46(53), 27037-27043.
[http://dx.doi.org/10.1016/j.ijhydene.2021.05.188]
[8]
Acar, C.; Dincer, I. Hydrogen Production; Comprehensive Energy Systems, 2018, pp. 3-9.
[9]
Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S.T.; Zhou, W.; Vajtai, R.; Ajayan, P.M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett., 2016, 16(2), 1097-1103.
[http://dx.doi.org/10.1021/acs.nanolett.5b04331] [PMID: 26761422]
[10]
Howarth, R.W.; Jacobson, M.Z. How green is blue hydrogen? Energy Sci. Eng., 2021, 9(10), 1676-1687.
[http://dx.doi.org/10.1002/ese3.956]
[11]
Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy, 2020, 45(7), 3847-3869.
[http://dx.doi.org/10.1016/j.ijhydene.2019.12.059]
[12]
Alghassab, M.A. Non-Linear control of chaotic forced oscillators: Renewable energy application.
[13]
Crabtree, G.W.; Dresselhaus, M.S.; Buchanan, M.V. The hydrogen economy. Phys. Today, 2004, 57(12), 39-44.
[http://dx.doi.org/10.1063/1.1878333]
[14]
Ross, D.K. Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum, 2006, 80(10), 1084-1089.
[http://dx.doi.org/10.1016/j.vacuum.2006.03.030]
[15]
Dispenza, G.; Sergi, F.; Napoli, G.; Antonucci, V.; Andaloro, L. Evaluation of hydrogen production cost in different real case studies. J. Energy Storage, 2019, 24, 100757.
[http://dx.doi.org/10.1016/j.est.2019.100757]
[16]
Jacobson, M.Z.; Colella, W.G.; Golden, D.M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science, 2005, 308(5730), 1901-1905.
[http://dx.doi.org/10.1126/science.1109157] [PMID: 15976300]
[17]
Vishnyakov, V.M. Proton exchange membrane fuel cells. Vacuum, 2006, 80(10), 1053-1065.
[http://dx.doi.org/10.1016/j.vacuum.2006.03.029]
[18]
Causes, impacts and solutions to global warming; Dincer, I.; Colpan, C.O.; Kadioglu, F., Eds.; Springer Science & Business Media, 2013.
[http://dx.doi.org/10.1007/978-1-4614-7588-0]
[19]
Xiao, W.; Liu, P.; Zhang, J.; Song, W.; Feng, Y.P.; Gao, D.; Ding, J. Dual‐functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv. Energy Mater., 2017, 7(7), 1602086.
[http://dx.doi.org/10.1002/aenm.201602086]
[20]
Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev., 2015, 44(15), 5148-5180.
[http://dx.doi.org/10.1039/C4CS00448E] [PMID: 25886650]
[21]
Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-noble metal- based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater., 2017, 29(14), 1605838.
[http://dx.doi.org/10.1002/adma.201605838] [PMID: 28234409]
[22]
Lasia, A. Hydrogen evolution reaction. Handbook of fuel cells., 2010.
[http://dx.doi.org/10.1002/9780470974001.f204033]
[23]
Yan, Y.; Ge, X.; Liu, Z.; Wang, J.Y.; Lee, J.M.; Wang, X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale, 2013, 5(17), 7768-7771.
[http://dx.doi.org/10.1039/c3nr02994h] [PMID: 23884193]
[24]
Zhang, J.; Wang, T.; Liu, P. Engineering water dissociation sites in MoS 2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci., 2016, 9(9), 2789-2793.
[http://dx.doi.org/10.1039/C6EE01786J]
[25]
Tang, Y.J.; Gao, M.R.; Liu, C.H.; Li, S.L.; Jiang, H.L.; Lan, Y.Q.; Han, M.; Yu, S.H. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. Engl., 2015, 54(44), 12928-12932.
[http://dx.doi.org/10.1002/anie.201505691] [PMID: 26435162]
[26]
Hu, J.; Zhang, C.; Zhang, Y.; Yang, B.; Qi, Q.; Sun, M.; Zi, F.; Leung, M.K.H.; Huang, B. Interface modulation of MoS2/metal oxide heterostructures for efficient hydrogen evolution electrocatalysis. Small, 2020, 16(28), e2002212.
[http://dx.doi.org/10.1002/smll.202002212] [PMID: 32510832]
[27]
Liu, J.; Wang, Z.; Li, J.; Cao, L.; Lu, Z.; Zhu, D. Structure engineering of MoS2 via simultaneous oxygen and phosphorus incorporation for improved hydrogen evolution. Small, 2020, 16(4), e1905738.
[http://dx.doi.org/10.1002/smll.201905738] [PMID: 31894640]
[28]
Ren, X.; Pang, L.; Zhang, Y.; Ren, X.; Fan, H.; Liu, S.F. One-step hydrothermal synthesis of monolayer MoS 2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(20), 10693-10697.
[http://dx.doi.org/10.1039/C5TA02198G]
[29]
Gong, M.; Wang, D.Y.; Chen, C.C.; Hwang, B.J.; Dai, H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res., 2016, 9(1), 28-46.
[http://dx.doi.org/10.1007/s12274-015-0965-x]
[30]
Xiao, P.; Chen, W.; Wang, X. A review of phosphideé based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater., 2015, 5(24), 1500985.
[http://dx.doi.org/10.1002/aenm.201500985]
[31]
Ge, Z.; Fu, B.; Zhao, J.; Li, X.; Ma, B.; Chen, Y. A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J. Mater. Sci., 2020, 55(29), 1-24.
[http://dx.doi.org/10.1007/s10853-020-05010-w]
[32]
Theerthagiri, J.; Lee, S.J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci., 2020, 24(1), 100805.
[http://dx.doi.org/10.1016/j.cossms.2020.100805]
[33]
Hua, W.; Sun, H.H.; Xu, F.; Wang, J.G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met., 2020, 39(4), 335-351.
[http://dx.doi.org/10.1007/s12598-020-01384-7]
[34]
Saha, A.; Paul, A.; Srivastava, D.N.; Panda, A.B. Exfoliated colloidal MoS2 nanosheet with predominantly 1T phase for electrocatalytic hydrogen production. Int. J. Hydrogen Energy, 2020, 45(37), 18645-18656.
[http://dx.doi.org/10.1016/j.ijhydene.2019.07.099]
[35]
Ali, A.; Shen, P.K. Nonprecious metal’s grapheneé supported electrocatalysts for hydrogen evolution reaction: fundamentals to applications. Carbon Energy, 2020, 2(1), 99-121.
[http://dx.doi.org/10.1002/cey2.26]
[36]
Koutavarapu, R.; Reddy, C.V.; Babu, B.; Reddy, K.R.; Cho, M.; Shim, J. Carbon cloth/transition metals-based hybrids with controllable architectures for electrocatalytic hydrogen evolution-A review. Int. J. Hydrogen Energy, 2020, 45(13), 7716-7740.
[http://dx.doi.org/10.1016/j.ijhydene.2019.05.163]
[37]
Zhou, W.; Jia, J.; Lu, J.; Yang, L.; Hou, D.; Li, G.; Chen, S. Recent developments of carbon- based electrocatalysts for hydrogen evolution reaction. Nano Energy, 2016, 28, 29-43.
[http://dx.doi.org/10.1016/j.nanoen.2016.08.027]
[38]
Gao, Q.; Zhang, W.; Shi, Z.; Yang, L.; Tang, Y. Structural design and electronic modulation of transitioné metalé carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater., 2019, 31(2), e1802880.
[http://dx.doi.org/10.1002/adma.201802880] [PMID: 30133010]
[39]
McKone, J.R.; Marinescu, S.C.; Brunschwig, B.S.; Winkler, J.R.; Gray, H.B. Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. (Camb.), 2014, 5(3), 865-878.
[http://dx.doi.org/10.1039/C3SC51711J]
[40]
Batool, M.; Nazar, M.F.; Awan, A.; Tahir, M.B.; Rahdar, A.; Shalan, A.E.; Lanceros-Méndez, S.; Zafar, M.N. Bismuth-based heterojunction nanocomposites for photocatalysis and heavy metal detection applications. Nano-Structures & Nano-Objects., 2021, 27, 100762.
[http://dx.doi.org/10.1016/j.nanoso.2021.100762]
[41]
Li, X.; Lv, X.; Li, N.; Wu, J.; Zheng, Y.Z.; Tao, X. One-step hydrothermal synthesis of high-percentage 1T-phase MoS2 quantum dots for remarkably enhanced visible-light-driven photocatalytic H2 evolution. Appl. Catal. B, 2019, 243, 76-85.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.033]
[42]
Ouerfelli, J.; Srivastava, S.K.; Bernède, J.C.; Belgacem, S. Effect of microwaves on synthesis of MoS2 and WS2. Vacuum, 2008, 83(2), 308-312.
[http://dx.doi.org/10.1016/j.vacuum.2008.06.005]
[43]
Liu, N.; Wang, X.; Xu, W.; Hu, H.; Liang, J.; Qiu, J. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel, 2014, 119, 163-169.
[http://dx.doi.org/10.1016/j.fuel.2013.11.045]
[44]
Gao, M.R.; Chan, M.K.; Sun, Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun., 2015, 6(1), 7493.
[http://dx.doi.org/10.1038/ncomms8493] [PMID: 26138031]
[45]
Hu, T.; Bian, K.; Tai, G.; Zeng, T.; Wang, X.; Huang, X.; Xiong, K.; Zhu, K. Oxidation-sulfidation approach for vertically growing MoS2 nanofilms catalysts on molybdenum foils as efficient HER catalysts. J. Phys. Chem. C, 2016, 120(45), 25843-25850.
[http://dx.doi.org/10.1021/acs.jpcc.6b08120]
[46]
Attanayake, N.H.; Thenuwara, A.C.; Patra, A.; Aulin, Y.V.; Tran, T.M.; Chakraborty, H.; Borguet, E.; Klein, M.L.; Perdew, J.P.; Strongin, D.R. Effect of intercalated metals on the electrocatalytic activity of 1T- MoS2 for the hydrogen evolution reaction. ACS Energy Lett., 2017, 3(1), 7-13.
[http://dx.doi.org/10.1021/acsenergylett.7b00865]
[47]
Papageorgopoulos, C.A.; Jaegermann, W. Li intercalation across and along the van der Waals surfaces of MoS2 (0001). Surf. Sci., 1995, 338(1-3), 83-93.
[http://dx.doi.org/10.1016/0039-6028(95)00544-7]
[48]
Seo, B.; Jung, G.Y.; Sa, Y.J.; Jeong, H.Y.; Cheon, J.Y.; Lee, J.H.; Kim, H.Y.; Kim, J.C.; Shin, H.S.; Kwak, S.K.; Joo, S.H. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano, 2015, 9(4), 3728-3739.
[http://dx.doi.org/10.1021/acsnano.5b00786] [PMID: 25794552]
[49]
Li, X.; Lv, X.; Sun, X.; Yang, C.; Zheng, Y.Z.; Yang, L.; Li, S.; Tao, X.; Tao, X. Edge-oriented, high-percentage 1T′-phase MoS2 nanosheets stabilize Ti3C2 MXene for efficient electrocatalytic hydrogen evolution. Appl. Catal. B, 2021, 284, 119708.
[http://dx.doi.org/10.1016/j.apcatb.2020.119708]
[50]
Ekspong, J.; Sandström, R.; Rajukumar, L.P.; Terrones, M.; Wågberg, T.; Gracia-Espino, E. Stable Sulfur-Intercalated 1T′ MoS2 on graphitic nanoribbons as hydrogen evolution electrocatalyst. Adv. Funct. Mater., 2018, 28(46), 1802744.
[http://dx.doi.org/10.1002/adfm.201802744]
[51]
Dong, L.; Guo, S.; Wang, Y.; Zhang, Q.; Gu, L.; Pan, C.; Zhang, J. Activating MoS2 basal planes for hydrogen evolution through direct CVD morphology control. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(48), 27603-27611.
[http://dx.doi.org/10.1039/C9TA08738A]
[52]
Li, G.; Chen, Z.; Li, Y.; Zhang, D.; Yang, W.; Liu, Y.; Cao, L. Engineering substrate interaction to improve hydrogen evolution catalysis of monolayer MoS2 films beyond Pt. ACS Nano, 2020, 14(2), 1707-1714.
[http://dx.doi.org/10.1021/acsnano.9b07324] [PMID: 31944096]
[53]
Dai, H.; Yang, H.; Liang, Z. Electrochemical evaluation of MoS2-Cu-RGO as a catalyst for hydrogen evolution in microbial electrolysis cell. Int. J. Electrochem. Sci., 2021, 16(4)
[54]
Benson, E.E.; Zhang, H.; Schuman, S.A.; Nanayakkara, S.U.; Bronstein, N.D.; Ferrere, S.; Blackburn, J.L.; Miller, E.M. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization. J. Am. Chem. Soc., 2018, 140(1), 441-450.
[http://dx.doi.org/10.1021/jacs.7b11242] [PMID: 29281274]
[55]
Wang, T.; Gao, D.; Zhuo, J.; Zhu, Z.; Papakonstantinou, P.; Li, Y.; Li, M. Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles. Chemistry, 2013, 19(36), 11939-11948.
[http://dx.doi.org/10.1002/chem.201301406] [PMID: 23873743]
[56]
Sun, Z.; Yang, M.; Wang, Y.; Hu, Y.H. Novel binder-free three-dimensional MoS2-based electrode for efficient and stable electrocatalytic hydrogen evolution. ACS Appl. Energy Mater., 2019, 2(2), 1102-1110.
[http://dx.doi.org/10.1021/acsaem.8b01670]
[57]
Maijenburg, A.W.; Regis, M.; Hattori, A.N.; Tanaka, H.; Choi, K-S.; ten Elshof, J.E. MoS2 nanocube structures as catalysts for electrochemical H2 evolution from acidic aqueous solutions. ACS Appl. Mater. Interfaces, 2014, 6(3), 2003-2010.
[http://dx.doi.org/10.1021/am405075f] [PMID: 24444817]
[58]
Liu, Q.; Fang, Q.; Chu, W.; Wan, Y.; Li, X.; Xu, W.; Habib, M.; Tao, S.; Zhou, Y.; Liu, D.; Xiang, T.; Khalil, A.; Wu, X.; Chhowalla, M.; Ajayan, P.M.; Song, L. Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater., 2017, 29(11), 4738-4744.
[http://dx.doi.org/10.1021/acs.chemmater.7b00446]
[59]
Peng, J.; Yu, X.; Meng, Y.; Tan, H.; Song, P.; Liu, Z.; Yan, Q. Oxygen doped MoS2 quantum dots for efficient electrocatalytic hydrogen generation. J. Chem. Phys., 2020, 152(13), 134704.
[http://dx.doi.org/10.1063/1.5142204] [PMID: 32268743]
[60]
Zhang, X.; Liang, Y. Nickel hydr (oxy) oxide nanoparticles on metallic MoS2 nanosheets: A synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci. (Weinh.), 2017, 5(2), 1700644.
[http://dx.doi.org/10.1002/advs.201700644] [PMID: 29619313]
[61]
Ejigu, A.; Kinloch, I.A.; Prestat, E.; Dryfe, R.A. A simple electrochemical route to metallic phase trilayer MoS2: Evaluation as electrocatalysts and supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(22), 11316-11330.
[http://dx.doi.org/10.1039/C7TA02577G]
[62]
Sun, K.; Liu, Y.; Pan, Y.; Zhu, H.; Zhao, J.; Zeng, L.; Liu, Z.; Liu, C. Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Res., 2018, 11(8), 4368-4379.
[http://dx.doi.org/10.1007/s12274-018-2026-8]
[63]
Jayabal, S.; Saranya, G.; Liu, Y.; Geng, D.; Meng, X. Unravelling the synergy effects of defect-rich 1T-MoS2/carbon nanotubes for the hydrogen evolution reaction by experimental and calculational studies. Sustain. Energy Fuels, 2019, 3(8), 2100-2110.
[http://dx.doi.org/10.1039/C9SE00244H]
[64]
Ou, G.; Fan, P.; Ke, X.; Xu, Y.; Huang, K.; Wei, H.; Yu, W.; Zhang, H.; Zhong, M.; Wu, H.; Li, Y. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res., 2018, 11(2), 751-761.
[http://dx.doi.org/10.1007/s12274-017-1684-2]
[65]
Zhang, J.; Wang, Y.; Cui, J.; Wu, J.; Li, Y.; Zhu, T.; Kang, H.; Yang, J.; Sun, J.; Qin, Y.; Zhang, Y.; Ajayan, P.M.; Wu, Y. Water-soluble defect-rich MoS2 ultrathin nanosheets for enhanced hydrogen evolution. J. Phys. Chem. Lett., 2019, 10(12), 3282-3289.
[http://dx.doi.org/10.1021/acs.jpclett.9b01121] [PMID: 31142117]
[66]
Arul, N.S.; Nithya, V.D. Molybdenum disulfide quantum dots: Synthesis and applications. RSC Advances, 2016, 6(70), 65670-65682.
[http://dx.doi.org/10.1039/C6RA09060E]
[67]
Chen, Z.; Cummins, D.; Reinecke, B.N.; Clark, E.; Sunkara, M.K.; Jaramillo, T.F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett., 2011, 11(10), 4168-4175.
[http://dx.doi.org/10.1021/nl2020476] [PMID: 21894935]
[68]
Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X.W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater., 2013, 25(40), 5807-5813.
[http://dx.doi.org/10.1002/adma.201302685] [PMID: 23943511]
[69]
Zhou, Q.; Luo, X.; Li, Y.; Nan, Y.; Deng, H.; Ou, E.; Xu, W. A feasible and environmentally friendly method to simultaneously synthesize MoS2 quantum dots and pore-rich monolayer MoS2 for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2020, 45(1), 433-442.
[http://dx.doi.org/10.1016/j.ijhydene.2019.10.167]
[70]
Guo, B.; Yu, K.; Li, H.; Song, H.; Zhang, Y.; Lei, X.; Fu, H.; Tan, Y.; Zhu, Z. Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces, 2016, 8(8), 5517-5525.
[http://dx.doi.org/10.1021/acsami.5b10252] [PMID: 26840506]
[71]
Ahmad, I.; Shah, S.M.; Zafar, M.N.; Ullah, S.; Ul-Hamid, A.; Ashiq, M.N.; Jabeen, U.; Shafa, M.; Rahdar, A. Fabrication of highly resistive La-Zn co-substituted spinel strontium nanoferrites for high frequency devices applications. Mater. Chem. Phys., 2021, 259, 124031.
[http://dx.doi.org/10.1016/j.matchemphys.2020.124031]
[72]
Tadi, K.K.; Palve, A.M.; Pal, S.; Sudeep, P.M.; Narayanan, T.N. Single step, bulk synthesis of engineered MoS2 quantum dots for multifunctional electrocatalysis. Nanotechnology, 2016, 27(27), 275402.
[http://dx.doi.org/10.1088/0957-4484/27/27/275402] [PMID: 27231837]
[73]
Chacko, L.; Rastogi, P.K.; Aneesh, P.M. Phase Engineering from 2H to 1T-MoS2 for efficient ammonia PL sensor and electrocatalyst for hydrogen evolution reaction. J. Electrochem. Soc., 2019, 166(8), H263-H271.
[http://dx.doi.org/10.1149/2.0071908jes]
[74]
Sharma, R.; Sahoo, K.R.; Rastogi, P.K.; Biroju, R.K.; Theis, W.; Narayanan, T.N. On the synthesis of morphology-controlled transition metal dichalcogenides via chemical vapor deposition for electrochemical hydrogen generation. Physica status solidi (RRL)–. Rapid Res Lets., 2019, 13(12), 1900257.
[75]
Wu, L.; Xu, X.; Zhao, Y.; Zhang, K.; Sun, Y.; Wang, T.; Wang, Y.; Zhong, W.; Du, Y. Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution. Appl. Surf. Sci., 2017, 425, 470-477.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.223]
[76]
Chen, Y.; Sun, H.; Peng, W. 2D transition metal dichalcogenides and graphene-based ternary composites for photocatalytic hydrogen evolution and pollutants degradation. Nanomaterials (Basel), 2017, 7(3), 62.
[http://dx.doi.org/10.3390/nano7030062] [PMID: 28336898]
[77]
Hu, J.; Zhang, C.; Yang, P.; Xiao, J.; Deng, T.; Liu, Z.; Huang, B.; Leung, M.K.H.; Yang, S. Kinetic-oriented construction of MoS2 synergistic interface to boost ph- universal hydrogen evolution. Adv. Funct. Mater., 2020, 30(6), 1908520.
[http://dx.doi.org/10.1002/adfm.201908520]
[78]
Najeeb, J.; Farwa, U.; Ishaque, F.; Munir, H.; Rahdar, A.; Nazar, M.F.; Zafar, M.N. Surfactant stabilized gold nanomaterials for environmental sensing applications - A review. Environ. Res., 2022, 208, 112644.
[http://dx.doi.org/10.1016/j.envres.2021.112644] [PMID: 34979127]
[79]
Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc., 2013, 135(47), 17881-17888.
[http://dx.doi.org/10.1021/ja408329q] [PMID: 24191645]
[80]
Xu, W.; Li, S.; Zhou, S.; Lee, J.K.; Wang, S.; Sarwat, S.G.; Wang, X.; Bhaskaran, H.; Pasta, M.; Warner, J.H. Large dendritic monolayer MoS2 grown by atmospheric pressure chemical vapor deposition for electrocatalysis. ACS Appl. Mater. Interfaces, 2018, 10(5), 4630-4639.
[http://dx.doi.org/10.1021/acsami.7b14861] [PMID: 29360347]
[81]
Majhi, K.C.; Yadav, M. Transition metal chalcogenides based nanocomposites as efficient electrocatalyst for hydrogen evolution reaction over the entire pH range. Int. J. Hydrogen Energy, 2020, 45(46), 24219-24231.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.230]
[82]
Mohanty, B.; Mitra, A.; Jena, B.; Jena, B.K. MoS2 quantum dots as efficient electrocatalyst for hydrogen evolution reaction over a wide pH range. Energy Fuels, 2020, 34(8), 10268-10275.
[http://dx.doi.org/10.1021/acs.energyfuels.0c01283]
[83]
Li, G.; Zhang, D.; Yu, Y.; Huang, S.; Yang, W.; Cao, L. Activating MoS2 for pH-universal hydrogen evolution catalysis. J. Am. Chem. Soc., 2017, 139(45), 16194-16200.
[http://dx.doi.org/10.1021/jacs.7b07450] [PMID: 29068681]
[84]
Sunitha, A.P.; Praveen, P.; Jayaraj, M.K.; Saji, K.J. Upconversion and downconversion photoluminescence and optical limiting in colloidal MoS2 nanostructures prepared by ultrasonication. Opt. Mater., 2018, 85, 61-70.
[http://dx.doi.org/10.1016/j.optmat.2018.08.038]
[85]
Yin, W.; Liu, X.; Zhang, X.; Gao, X.; Colvin, V.L.; Zhang, Y.; Yu, W.W. Synthesis of tungsten disulfide and molybdenum disulfide quantum dots and their applications. Chem. Mater., 2020, 32(11), 4409-4424.
[http://dx.doi.org/10.1021/acs.chemmater.0c01441]
[86]
Chacko, L.; Rastogi, P.K.; Narayanan, T.N.; Jayaraj, M.K.; Aneesh, P.M. Enhanced optical, magnetic and hydrogen evolution reaction properties of Mo1-x Ni x S2 nanoflakes. RSC Advances, 2019, 9(24), 13465-13475.
[http://dx.doi.org/10.1039/C9RA01869G] [PMID: 35519593]
[87]
Pandey, A.; Mukherjee, A.; Chakrabarty, S.; Chanda, D.; Basu, S. Interface engineering of an RGO/MoS2/Pd 2D heterostructure for electrocatalytic overall water splitting in alkaline medium. ACS Appl. Mater. Interfaces, 2019, 11(45), 42094-42103.
[http://dx.doi.org/10.1021/acsami.9b13358] [PMID: 31621291]
[88]
Zhuang, P.; Sun, Y.; Dong, P.; Smith, W.; Sun, Z.; Ge, Y.; Pei, Y.; Cao, Z.; Ajayan, P.M.; Shen, J.; Ye, M. Revisiting the role of active sites for hydrogen evolution reaction through precise defect adjusting. Adv. Funct. Mater., 2019, 29(33), 1901290.
[http://dx.doi.org/10.1002/adfm.201901290]
[89]
Joyner, J.; Oliveira, E.F.; Yamaguchi, H.; Kato, K.; Vinod, S.; Galvao, D.S.; Salpekar, D.; Roy, S.; Martinez, U.; Tiwary, C.S.; Ozden, S.; Ajayan, P.M. Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts. ACS Appl. Mater. Interfaces, 2020, 12(11), 12629-12638.
[http://dx.doi.org/10.1021/acsami.9b17713] [PMID: 32045208]
[90]
Debata, S.; Banerjee, S.; Sharma, P.K. Marigold shaped N- rGO-MoS2-Ni (OH)2 nanocomposite as a bifunctional electrocatalyst for the promotion of overall water splitting in alkaline medium. Electrochim. Acta, 2019, 303, 257-267.
[http://dx.doi.org/10.1016/j.electacta.2019.02.048]
[91]
Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep., 2015, 5(1), 13801.
[http://dx.doi.org/10.1038/srep13801] [PMID: 26348156]
[92]
Yao, Y.; Ao, K.; Lv, P.; Wei, Q. MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction. Nanomaterials (Basel), 2019, 9(6), 844.
[http://dx.doi.org/10.3390/nano9060844] [PMID: 31159477]
[93]
Yao, Y.; Ao, K.; Lv, P.; Wei, Q. MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction. Nanomaterials (Basel), 2019, 9(6), 844.
[http://dx.doi.org/10.3390/nano9060844] [PMID: 31159477]
[94]
Dinda, D.; Ahmed, M.E.; Mandal, S.; Mondal, B.; Saha, S.K. Amorphous molybdenum sulfide quantum dots: An efficient hydrogen evolution electrocatalyst in neutral medium. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(40), 15486-15493.
[http://dx.doi.org/10.1039/C6TA06101J]
[95]
Liu, Q.; Xue, Z.; Jia, B.; Liu, Q.; Liu, K.; Lin, Y.; Liu, M.; Li, Y.; Li, G. Hierarchical nanorods of MoS2/MoP heterojunction for efficient electrocatalytic hydrogen evolution reaction. Small, 2020, 16(32), e2002482.
[http://dx.doi.org/10.1002/smll.202002482] [PMID: 32627945]
[96]
Kamila, S.; Mohanty, B.; Samantara, A.K.; Guha, P.; Ghosh, A.; Jena, B.; Satyam, P.V.; Mishra, B.K.; Jena, B.K. Highly active 2D layered MoS 2-rGO hybrids for energy conversion and storage applications. Sci. Rep., 2017, 7(1), 8378.
[http://dx.doi.org/10.1038/s41598-017-08677-5] [PMID: 28827746]
[97]
Wang, H.; Pilon, L. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim. Acta, 2012, 64, 130-139.
[http://dx.doi.org/10.1016/j.electacta.2011.12.118]
[98]
Wang, H.; Thiele, A.; Pilon, L. Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: A generalized modified poisson-nernst- planck model. J. Phys. Chem. C, 2013, 117(36), 18286-18297.
[http://dx.doi.org/10.1021/jp402181e]
[99]
Wang, H.; Pilon, L. Accurate simulations of electric double layer capacitance of ultramicroelectrodes. J. Phys. Chem. C, 2011, 115(33), 16711-16719.
[http://dx.doi.org/10.1021/jp204498e]
[100]
Bard, AJ; Faulkner, LR Fundamentals and applications. Electrochemical methods, 2001, 2(482), 580-632.
[101]
Girard, H.L.; Wang, H.; d’Entremont, A.; Pilon, L. Physical interpretation of cyclic voltammetry for hybrid pseudocapacitors. J. Phys. Chem. C, 2015, 119(21), 11349-11361.
[http://dx.doi.org/10.1021/acs.jpcc.5b00641]
[102]
Krishnamoorthy, K.; Veerasubramani, G.K.; Radhakrishnan, S.; Kim, S.J. Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Materials. Res. Bull. (Int. Comm. Northwest Atl. Fish.), 2014, 50, 499-502.
[103]
Saseendran, S.B.; Asha, A.S.; Jayaraj, M.K. Hydrothermal synthesis of MoS2 for supercapacitive application. AIP Conference Proceedings, 2020, 2244, 070034.
[104]
Mei, B.A.; Li, B.; Lin, J.; Pilon, L. Multidimensional cyclic voltammetry simulations of pseudocapacitive electrodes with a conducting nanorod scaffold. J. Electrochem. Soc., 2017, 164(13), A3237-A3252.
[http://dx.doi.org/10.1149/2.1241713jes]
[105]
Ramachandran, R.; Saranya, M.; Kollu, P.; Raghupathy, B.P.; Jeong, S.K.; Grace, A.N. Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes. Electrochim. Acta, 2015, 178, 647-657.
[http://dx.doi.org/10.1016/j.electacta.2015.08.010]
[106]
Lee, Y.H.; Chang, K.H.; Hu, C.C. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J. Power Sources, 2013, 227, 300-308.
[http://dx.doi.org/10.1016/j.jpowsour.2012.11.026]
[107]
Krishnamoorthy, K.; Pazhamalai, P.; Veerasubramani, G.K.; Kim, S.J.; Kim, S.J. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors. J. Power Sources, 2016, 321, 112-119.
[http://dx.doi.org/10.1016/j.jpowsour.2016.04.116]
[108]
Huang, Z.H.; Liu, T.Y.; Song, Y.; Li, Y.; Liu, X.X. Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale, 2017, 9(35), 13119-13127.
[http://dx.doi.org/10.1039/C7NR04234E] [PMID: 28849857]
[109]
Yang, M.; Jeong, J.M.; Huh, Y.S.; Choi, B.G. High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites. Compos. Sci. Technol., 2015, 121, 123-128.
[http://dx.doi.org/10.1016/j.compscitech.2015.11.004]
[110]
Soon, J.M.; Loh, K.P. Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochemical and Solid State Letters, 2007, 10(11), A250.
[111]
Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. (Camb.), 2011, 2(7), 1262-1267.
[http://dx.doi.org/10.1039/C1SC00117E]
[112]
Gopalakrishnan, D.; Damien, D.; Li, B.; Gullappalli, H.; Pillai, V.K.; Ajayan, P.M.; Shaijumon, M.M. Electrochemical synthesis of luminescent MoS2 quantum dots. Chem. Commun. (Camb.), 2015, 51(29), 6293-6296.
[http://dx.doi.org/10.1039/C4CC09826A] [PMID: 25659599]
[113]
Chang, B.Y.; Park, S.M. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2010, 3(1), 207-229.
[http://dx.doi.org/10.1146/annurev.anchem.012809.102211] [PMID: 20636040]
[114]
Chang, B.Y.; Park, S.M. Integrated description of electrode/electrolyte interfaces based on equivalent circuits and its verification using impedance measurements. Anal. Chem., 2006, 78(4), 1052-1060.
[http://dx.doi.org/10.1021/ac051641l] [PMID: 16478095]
[115]
Wang, M.; Ding, R.; Cui, X.; Qin, L.; Wang, J.; Wu, G.; Wang, L.; Lv, B. CoP porous hexagonal nanoplates in situ grown on RGO as active and durable electrocatalyst for hydrogen evolution. Electrochim. Acta, 2018, 284, 534-541.
[http://dx.doi.org/10.1016/j.electacta.2018.07.193]
[116]
Park, S.; Yoo, J. With impedance data, a complete description of an electrochemical system is possible. Anal. Chem., 2003, 75(21), 455-461.
[http://dx.doi.org/10.1021/ac0313973]
[117]
Paulraj, G.; Venkatesh, P.S.; Dharmaraj, P.; Gopalakrishnan, S.; Jeganathan, K.; Jeganathan, K. Stable and highly efficient MoS2/Si NWs hybrid heterostructure for photoelectrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy, 2020, 45(3), 1793-1801.
[http://dx.doi.org/10.1016/j.ijhydene.2019.11.051]
[118]
Mahdavian, M.M.; Attar, M.M. Another approach in analysis of paint coatings with EIS measurement: Phase angle at high frequencies. Corros. Sci., 2006, 48(12), 4152-4157.
[http://dx.doi.org/10.1016/j.corsci.2006.03.012]
[119]
Qi, J.L.; Wang, X.; Lin, J.H.; Zhang, F.; Feng, J.C.; Fei, W.D. Vertically oriented few-layer graphene-nanocup hybrid structured electrodes for high-performance supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(23), 12396-12403.
[http://dx.doi.org/10.1039/C5TA01330E]
[120]
He, Z.; Mansfeld, F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci., 2009, 2(2), 215-219.
[http://dx.doi.org/10.1039/B814914C]
[121]
Qiao, L.; Liao, M.; Wu, J.; Jiang, Q.; Zhang, Y.; Li, Y. Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy, 2018, 43(49), 22235-22242.
[http://dx.doi.org/10.1016/j.ijhydene.2018.10.090]
[122]
Hong, S.; Rhee, C.K.; Sohn, Y. Photoelectrochemical hydrogen evolution and CO2 reduction over MoS2/Si and MoSe2/Si nanostructures by combined photoelectrochemical deposition and rapid-thermal annealing process. Catalysts, 2019, 9(6), 494.
[http://dx.doi.org/10.3390/catal9060494]
[123]
Awan, A.; Baig, A.; Zubair, M.; Rahdar, A.; Nazar, M.F.; Farooqi, A.S.; Shalan, A.E.; Lanceros-Méndez, S.; Zafar, M.N. Green synthesis of molybdenum-based nanoparticles and their applications in energy conversion and storage: A review. Int. J. Hydrogen Energy, 2021.
[http://dx.doi.org/10.1016/j.ijhydene.2021.10.076]
[124]
Chacko, L.; Jayaraj, M.K.; Aneesh, P.M. Excitation- wavelength dependent upconverting surfactant free MoS2 nanoflakes grown by hydrothermal method. J. Lumin., 2017, 192, 6-10.
[http://dx.doi.org/10.1016/j.jlumin.2017.06.025]
[125]
Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 2011, 133(19), 7296-7299.
[http://dx.doi.org/10.1021/ja201269b] [PMID: 21510646]
[126]
Chhetri, M; Gupta, U; Yadgarov, L; Rosentsveig, R; Tenne, R; Rao, CN Effects of p-and n-type doping in inorganic fullerene MoS2 on the hydrogen evolution reaction.,

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy