Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Herbal and Ayurvedic Plants as Remedial Approach for Viral Diseases with Focus on COVID-19: A Narrative Review

Author(s): Yashvita Joshi, Hema Rani, Gurpreet Kaur, Manish Kumar, Rakesh K. Sindhu, Ajay Singh Kushwah* and Roopal Mittal

Volume 9, Issue 3, 2023

Published on: 30 September, 2022

Article ID: e220822207856 Pages: 21

DOI: 10.2174/2215083808666220822124541

Price: $65

Abstract

Background: Infectious diseases have posed a major threat to human survival for centuries and can devastate entire populations. Recently, the global outbreak of COVID-19 has increased exponentially, affecting more than 200 countries and millions of lives since the fall of 2019, largely due to the ineffectiveness of existing antiviral therapies. WHO announced it a public health emergency of international concern. A significant waiting period in antiviral therapy hindered by the rapid evolution of severe acute respiratory syndrome-coronavirus-2 aggravated the situation ensuing imposition of strict laws (e.g., communal dissociation, international travel restrictions, and maintenance of hygiene) that would help in inhibiting further outspread of COVID-19. Ayurveda system of medicine offers a holistic approach to the COVID-19 pandemic.

Objective: This review aims to highlight the potential of medicinal herbs and Ayurvedic drugs as the remedial approach for viral diseases, such as COVID- 19.

Methods: We reviewed the literature from journal publication websites and electronic databases, such as Bentham, Science Direct, Pub Med, Scopus, USFDA, etc.

Results: The drugs used in the traditional system of medicine have the potential to prevent and cure the infected patient. Ayurvedic therapies are known for regulating immunity and rejuvenation properties that behold much promise in the management of COVID-19 disease. Government of India, Ministry of AYUSH recommends some precautionary fitness measures and an increase in immunity with special reference to respiratory health.

Conclusion: While there is no medication for COVID-19 as of now, taking preventive measures and boosting body immunity is highly recommended. A number of medicinal plants that play an important role in revitalizing the immune system are easily accessible in home remedies.

Keywords: Antiviral herbs, Ayurveda, coronavirus, immunostimulant, healthcare, SARS-CoV-2

Graphical Abstract

[1]
Golechha M. Time to realise the true potential of Ayurveda against COVID-19. Brain Behav Immun 2020; 87: 130-1.
[http://dx.doi.org/10.1016/j.bbi.2020.05.003] [PMID: 32389701]
[2]
Chowdhury SD, Oommen AM. Epidemiology of COVID-19. J Dig Endosc 2020; 11(1): 03-7.
[http://dx.doi.org/10.1055/s-0040-1712187]
[3]
Desai AN, Aronoff DM. Masks and coronavirus disease 2019 (COVID-19). JAMA 2020; 323(20): 2103-3.
[http://dx.doi.org/10.1001/jama.2020.6437] [PMID: 32301960]
[4]
Keni R, Alexander A, Nayak PG, Mudgal J, Nandakumar K. COVID-19: Emergence, spread, possible treatments, and global burden. Front Public Health 2020; 8: 216.
[http://dx.doi.org/10.3389/fpubh.2020.00216] [PMID: 32574299]
[5]
Kimball A, Hatfield KM, Arons M, et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility-King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep 2020; 69(13): 377-81.
[http://dx.doi.org/10.15585/mmwr.mm6913e1] [PMID: 32240128]
[6]
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[7]
Wypych TP, Marsland BJ, Ubags NDJ. The impact of diet on immunity and respiratory diseases. Ann Am Thorac Soc 2017; 14 (Suppl. 5): S339-47.
[http://dx.doi.org/10.1513/AnnalsATS.201703-255AW] [PMID: 29161092]
[8]
Chen P, Mao L, Nassis GP, Harmer P, Ainsworth BE, Li F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J Sport Health Sci 2020; 9(2): 103-4.
[http://dx.doi.org/10.1016/j.jshs.2020.02.001] [PMID: 32099716]
[9]
Macht M. How emotions affect eating: A five-way model. Appetite 2008; 50(1): 1-11.
[http://dx.doi.org/10.1016/j.appet.2007.07.002] [PMID: 17707947]
[10]
Cooper EL, Hirabayashi K. Origin of innate immune responses: Revelation of food and medicinal applications. J Tradit Complement Med 2013; 3(4): 204-12.
[http://dx.doi.org/10.4103/2225-4110.119708] [PMID: 24716179]
[11]
Kumar D, Arya V, Kaur R, Bhat ZA, Gupta VK, Kumar V. A review of immunomodulators in the Indian traditional health care system. J Microbiol Immunol Infect 2012; 45(3): 165-84.
[http://dx.doi.org/10.1016/j.jmii.2011.09.030] [PMID: 22154993]
[12]
Ma YJ, Lee HH. Understanding consumption behaviours for fair trade non-food products: Focusing on self-transcendence and openness to change values. Int J Consum Stud 2012; 36(6): 622-34.
[http://dx.doi.org/10.1111/j.1470-6431.2011.01037.x]
[13]
Hislop TG, Bajdik CD, Balneaves LG, et al. Physical and emotional health effects and social consequences after participation in a low-fat, high-carbohydrate dietary trial for more than 5 years. J Clin Oncol 2006; 24(15): 2311-7.
[http://dx.doi.org/10.1200/JCO.2005.04.3042] [PMID: 16710029]
[14]
Hobbs M, Pearson N, Foster PJ, Biddle SJH. Sedentary behaviour and diet across the lifespan: An updated systematic review. Br J Sports Med 2015; 49(18): 1179-88.
[http://dx.doi.org/10.1136/bjsports-2014-093754] [PMID: 25351783]
[15]
Cobb TD. Reclaiming our Food: How the Grassroots Food Movement is Changing the Way We Eat. North Adams, USA: Storey Publishing 2011.
[16]
Naja F, Hamadeh R. Nutrition amid the COVID-19 pandemic: A multi-level framework for action. Eur J Clin Nutr 2020; 74(8): 1117-21.
[http://dx.doi.org/10.1038/s41430-020-0634-3] [PMID: 32313188]
[17]
Arsalan M, Mubin O, Alnajjar F, Alsinglawi B, Zaki N. Global and temporal COVID-19 risk evaluation. Front Public Health 2020; 8: 440.
[http://dx.doi.org/10.3389/fpubh.2020.00440] [PMID: 32850611]
[18]
Kishk RM, Nemr N, Aly HM, et al. Assessment of potential risk factors for coronavirus disease-19 (COVID-19) among health care workers. J Infect Public Health 2021; 14(10): 1313-9.
[http://dx.doi.org/10.1016/j.jiph.2021.07.004] [PMID: 34281792]
[19]
Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MUG, Khan K. Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel. J Travel Med 2020; 27(2): taaa008.
[http://dx.doi.org/10.1093/jtm/taaa008] [PMID: 31943059]
[20]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[21]
Yoo JH. The fight against the 2019-nCoV outbreak: An arduous march has just begun. J Korean Med Sci 2020; 35(4): e56.
[http://dx.doi.org/10.3346/jkms.2020.35.e56] [PMID: 31997618]
[22]
Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[23]
Whitworth J. COVID-19: A fast evolving pandemic. Trans R Soc Trop Med Hyg 2020; 114(4): 241-8.
[http://dx.doi.org/10.1093/trstmh/traa025] [PMID: 32198918]
[24]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382: 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316]
[25]
Abd El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - An update on the status. Infect Genet Evol 2020; 83: 104327.
[http://dx.doi.org/10.1016/j.meegid.2020.104327] [PMID: 32320825]
[26]
Fu L, Wang B, Yuan T, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect 2020; 80(6): 656-65.
[http://dx.doi.org/10.1016/j.jinf.2020.03.041] [PMID: 32283155]
[27]
Ganesh B, Rajakumar T, Malathi M, et al. Epidemiology and pathobiology of SARS-CoV-2 (COVID-19) in comparison with SARS, MERS: An updated overview of current knowledge and future perspectives. Clin Epidemiol Glob Health 2021; 10: 100694.
[http://dx.doi.org/10.1016/j.cegh.2020.100694] [PMID: 33462564]
[28]
Nicolete VC, Rodrigues PT, Fernandes ARJ, et al. Epidemiology of COVID-19 after emergence of SARS-CoV-2 Gamma variant, Brazilian amazon, 2020-2021. Emerg Infect Dis 2022; 28(3): 709-12.
[http://dx.doi.org/10.3201/eid2803.211993] [PMID: 34963505]
[29]
Smith DJ, Hakim AJ, Leung GM, et al. COVID-19 mortality and vaccine coverage - Hong Kong Special Administrative Region, China, January 6, 2022-March 21, 2022. MMWR Morb Mortal Wkly Rep 2022; 71(15): 545-8.
[http://dx.doi.org/10.15585/mmwr.mm7115e1] [PMID: 35421076]
[30]
Gudadappanavar AM, Benni J. An evidence-based systematic review on emerging therapeutic and preventive strategies to treat novel coronavirus (SARS-CoV-2) during an outbreak scenario. J Basic Clin Physiol Pharmacol 2020; 31(6): 20200113.
[http://dx.doi.org/10.1515/jbcpp-2020-0113] [PMID: 32924964]
[31]
Bian J, Li Z. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharm Sin B 2021; 11(1): 1-12.
[http://dx.doi.org/10.1016/j.apsb.2020.10.006] [PMID: 33072500]
[32]
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[33]
Tillu G, Chaturvedi S, Chopra A, Patwardhan B. Public health approach of Ayurveda and yoga for COVID-19 prophylaxis. J Altern Complement Med 2020; 26(5): 360-4.
[http://dx.doi.org/10.1089/acm.2020.0129] [PMID: 32310670]
[34]
Lian N, Xie H, Lin S, Huang J, Zhao J, Lin Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study. Clin Microbiol Infect 2020; 26(7): 917-21.
[http://dx.doi.org/10.1016/j.cmi.2020.04.026] [PMID: 32344167]
[35]
Hotchkiss RS, Opal SM. Activating immunity to fight a foe - A new path. N Engl J Med 2020; 382(13): 1270-2.
[http://dx.doi.org/10.1056/NEJMcibr1917242] [PMID: 32212525]
[36]
Wallace RK. The microbiome in health and disease from the perspective of modern medicine and Ayurveda. Medicina (Kaunas) 2020; 56(9): 462.
[http://dx.doi.org/10.3390/medicina56090462] [PMID: 32932766]
[37]
Maurya VK, Kumar S, Bhatt MLB, Saxena SK. Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. J Biomol Struct Dyn 2022; 40(4): 1719-35.
[http://dx.doi.org/10.1080/07391102.2020.1832577] [PMID: 33073699]
[38]
Bhatia V, Agarwal N, Biswas B. A multipronged strategy operationalized to combat the COVID-19 pandemic in India. Biomed Biotech Res J 2020; 4(5): 83-92.
[39]
Kumar Verma A, Kumar V, Singh S, et al. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomed Pharmacother 2021; 137: 111356.
[http://dx.doi.org/10.1016/j.biopha.2021.111356] [PMID: 33561649]
[40]
Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2022; 13(1): 100312.
[http://dx.doi.org/10.1016/j.jaim.2020.04.002] [PMID: 32382220]
[41]
Saxena SK, Kumar S, Maurya VK, Sharma R, Dandu HR, Bhatt MLB. Current insight into the novel coronavirus disease 2019 (COVID-19). In: Saxena S, Ed. Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics. Singapore: Springer 2020; pp. 1-8.
[http://dx.doi.org/10.1007/978-981-15-4814-7]
[42]
Sendhilkumar M, Manickam P. Reactions from traditional medical systems to COVID-19 outbreak: Time to tread cautiously. J Ayurveda Integr Med 2022; 13(1): 100315.
[http://dx.doi.org/10.1016/j.jaim.2020.04.004] [PMID: 32382221]
[43]
Rajkumar RP. Ayurveda and COVID-19: Where psychoneuroimmunology and the meaning response meet. Brain Behav Immun 2020; 87: 8-9.
[http://dx.doi.org/10.1016/j.bbi.2020.04.056] [PMID: 32334064]
[44]
Balasubramani SP, Venkatasubramanian P, Kukkupuni SK, Patwardhan B. Plant-based rasayana drugs from Ayurveda. Chin J Integr Med 2011; 17(2): 88-94.
[http://dx.doi.org/10.1007/s11655-011-0659-5] [PMID: 21390573]
[45]
Chandran S, Dinesh KS, Patgiri BJ, Dharmarajan P. Unique contributions of Keraleeya Ayurveda in pediatric health care. J Ayurveda Integr Med 2018; 9(2): 136-42.
[http://dx.doi.org/10.1016/j.jaim.2017.10.008] [PMID: 29471987]
[46]
Agarwal S, Singh V. Immunomodulators: A review of studies on Indian medicinal plants and synthetic peptides. Part-I: Medicinal plants. Proc Indian Natl Sci Acad B Biol Sci 1999; 65(3-4): 179-204.
[47]
Bhattacharya SK, Bhattacharya A, Chakrabarti A. Adaptogenic activity of Siotone, a polyherbal formulation of Ayurvedic rasayanas. Indian J Exp Biol 2000; 38(2): 119-28.
[PMID: 11218827]
[48]
Raj GA, Shailaja U, Rao PN, Ajayan S. Review on the concept of Immunomodulation in Ayurveda with special emphasis on Prakara yoga. Int J Pharm Sci Res 2014; 5(4): 1116.
[49]
Ang L, Lee HW, Choi JY, Zhang J, Lee MS. Herbal medicine and pattern identification for treating COVID-19: A rapid review of guidelines. Integr Med Res 2020; 9(2): 100407.
[http://dx.doi.org/10.1016/j.imr.2020.100407] [PMID: 32289016]
[50]
de Vries RD, Rockx B, Haagmans BL, Herfst S, Koopmans MPG, de Swart RL. Animal models of SARS-CoV-2 transmission. Curr Opin Virol 2021; 50: 8-16.
[http://dx.doi.org/10.1016/j.coviro.2021.06.007] [PMID: 34256352]
[51]
Cockrell AS, Peck KM, Yount BL, et al. Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection. J Virol 2014; 88(9): 5195-9.
[http://dx.doi.org/10.1128/JVI.03764-13] [PMID: 24574399]
[52]
Panda AK, Kar S, Rai AK, Rao BCS, Srikanth N. AYUSH- 64: A potential therapeutic agent in COVID-19. J Ayurveda Integr Med 2022; 13(2): 100538.
[http://dx.doi.org/10.1016/j.jaim.2021.100538] [PMID: 35002178]
[53]
Palit G, Singh S, Singh N, Kohli R, Bhargava K. An experimental evaluation of anti-asthmatic plant drugs from ancient Ayurvedic medicine. Aspects Aller Appl Immunol 1983; 16: 36-41.
[54]
Jamshidi N, Cohen MM. The clinical efficacy and safety of Tulsi in humans: A systematic review of the literature. Evid Based Complement Alternat Med 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/9217567] [PMID: 28400848]
[55]
Das S, Chandra N, Agarwal S. Ocimum sanctum (Tulsi) in the treatment of viral encephalitis. Antiseptic 1983; 1-5.
[56]
Mondal S, Varma S, Bamola VD, et al. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J Ethnopharmacol 2011; 136(3): 452-6.
[http://dx.doi.org/10.1016/j.jep.2011.05.012] [PMID: 21619917]
[57]
Duansak D, Somboonwong J, Patumraj S. Effects of Aloe vera on leukocyte adhesion and TNF-α and IL-6 levels in burn wounded rats. Clin Hemorheol Microcirc 2003; 29(3-4): 239-46.
[PMID: 14724347]
[58]
Zhang X, Wang H, Song Y, et al. Isolation, structure elucidation, antioxidative and immunomodulatory properties of two novel dihydrocoumarins from Aloe vera. Bioorg Med Chem Lett 2006; 16(4): 949-53.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.096] [PMID: 16297615]
[59]
Gautam M, Diwanay S, Gairola S, Shinde Y, Patki P, Patwardhan B. Immunoadjuvant potential of Asparagus racemosus aqueous extract in experimental system. J Ethnopharmacol 2004; 91(2-3): 251-5.
[http://dx.doi.org/10.1016/j.jep.2003.12.023] [PMID: 15120447]
[60]
Gautam M, Diwanay SS, Gairola S, Shinde YS, Jadhav SS, Patwardhan BK. Immune response modulation to DPT vaccine by aqueous extract of Withania somnifera in experimental system. Int Immunopharmacol 2004; 4(6): 841-9.
[http://dx.doi.org/10.1016/j.intimp.2004.03.005] [PMID: 15135324]
[61]
Gautam M, Saha S, Bani S, et al. Immunomodulatory activity of Asparagus racemosus on systemic Th1/Th2 immunity: Implications for immunoadjuvant potential. J Ethnopharmacol 2009; 121(2): 241-7.
[http://dx.doi.org/10.1016/j.jep.2008.10.028] [PMID: 19038322]
[62]
Sharma P, Chauhan PS, Dutt P, et al. A unique immuno-stimulant steroidal sapogenin acid from the roots of Asparagus racemosus. Steroids 2011; 76(4): 358-64.
[http://dx.doi.org/10.1016/j.steroids.2010.12.006] [PMID: 21172369]
[63]
Ostrowska J. Łuczaj W, Kasacka I, Różański A, Skrzydlewska E. Green tea protects against ethanol-induced lipid peroxidation in rat organs. Alcohol 2004; 32(1): 25-32.
[http://dx.doi.org/10.1016/j.alcohol.2003.11.001] [PMID: 15066700]
[64]
Doshi G, Une H, Shanbhag P. Rasayans and non-rasayans herbs: Future immunodrug - targets. Pharmacogn Rev 2013; 7(14): 92-6.
[http://dx.doi.org/10.4103/0973-7847.120506] [PMID: 24347916]
[65]
Chung JY, Park JO, Phyu H, Dong Z, Yang CS. Mechanisms of inhibition of the Ras‐MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (‐)‐epigallocatechin‐3‐gallate and theaflavin‐3,3′‐digallate. FASEB J 2001; 15(11): 2022-4.
[http://dx.doi.org/10.1096/fj.01-0031fje] [PMID: 11511526]
[66]
Sim LJ, Hampson RE, Deadwyler SA, Childers SR. Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci 1996; 16(24): 8057-66.
[http://dx.doi.org/10.1523/JNEUROSCI.16-24-08057.1996] [PMID: 8987831]
[67]
Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998; 83(2): 393-411.
[http://dx.doi.org/10.1016/S0306-4522(97)00436-3] [PMID: 9460749]
[68]
Mastinu A, Premoli M, Ferrari-Toninelli G, et al. Cannabinoids in health and disease: Pharmacological potential in metabolic syndrome and neuroinflammation. Horm Mol Biol Clin Investig 2018; 36(2)
[http://dx.doi.org/10.1515/hmbci-2018-0013] [PMID: 29601300]
[69]
Andre CM, Hausman JF, Guerriero G. Cannabis sativa: The plant of the thousand and one molecules. Front Plant Sci 2016; 7: 19.
[http://dx.doi.org/10.3389/fpls.2016.00019] [PMID: 26870049]
[70]
Ganju L, Karan D, Chanda S, Srivastava KK, Sawhney RC, Selvamurthy W. Immunomodulatory effects of agents of plant origin. Biomed Pharmacother 2003; 57(7): 296-300.
[http://dx.doi.org/10.1016/S0753-3322(03)00095-7] [PMID: 14499177]
[71]
Hong YK, Wu HT, Ma T, Liu WJ, He XJ. Effects of Glycyrrhiza glabra polysaccharides on immune and antioxidant activities in high-fat mice. Int J Biol Macromol 2009; 45(1): 61-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.04.001] [PMID: 19447260]
[72]
Kroes BH, Beukelman CJ, Van Den Berg AJJ, Wolbink GJ, Van Dijk H, Labadie RP. Inhibition of human complement by β ‐glycyrrhetinic acid. Immunology 1997; 90(1): 115-20.
[http://dx.doi.org/10.1046/j.1365-2567.1997.00131.x] [PMID: 9038721]
[73]
Ayeka PA, Bian Y, Githaiga PM, Zhao Y. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice. BMC Complement Altern Med 2017; 17(1): 536.
[http://dx.doi.org/10.1186/s12906-017-2030-7] [PMID: 29246138]
[74]
Upadhyay SN, Dhawan S, Garg S, Talwar GP. Immunomodulatory effects of neem (Azadirachta indica) oil. Int J Immunopharmacol 1992; 14(7): 1187-93.
[http://dx.doi.org/10.1016/0192-0561(92)90054-O] [PMID: 1452404]
[75]
Durrani F, Sultan A, Jan M, Chand N, Durrani Z. Immunomodulatory and growth promoting effects of Neem (Azadirachta indica) leaves infusion in broiler chicks. Sarhad J Agric 2008; 24(4): 655-9.
[76]
Mahima , Ingle AM, Verma AK, et al. Immunomodulators in day to day life: A review. Pak J Biol Sci 2013; 16(17): 826-43.
[http://dx.doi.org/10.3923/pjbs.2013.826.843] [PMID: 24498836]
[77]
Kaur G, Sarwar Alam M, Athar M. Nimbidin suppresses functions of macrophages and neutrophils: Relevance to its antiinflammatory mechanisms. Phytother Res 2004; 18(5): 419-24.
[http://dx.doi.org/10.1002/ptr.1474] [PMID: 15174005]
[78]
Rao CS, Raju C, Gopumadhavan S, Chauhan BL, Kulkarni RD, Mitra SK. Immunotherapeutic modification by an Ayurvedic formulation Septilin. Indian J Exp Biol 1994; 32(8): 553-8.
[PMID: 7959936]
[79]
Cecilia Carreras M, Riobó NA, Pargament GA, Bowris A, Poderoso JJ. Effects of respiratory burst inhibitors on nitric oxide production by human neutrophils. Free Radic Res 1997; 26(4): 325-34.
[http://dx.doi.org/10.3109/10715769709097812] [PMID: 9167937]
[80]
Saraphanchotiwitthaya A. Effects of Terminalia bellerica Roxb. methanolic extract on mouse immune response in vitro. Maejo Int J Sci Tech 2008; 2(2)
[81]
Zhi-Qing H, Toda M, Okubo S, Hara Y, Shimamura T. Mitogenic activity of (−)epigallocatechin gallate on B-cells and investigation of its structure-function relationship. Int J Immunopharmacol 1992; 14(8): 1399-407.
[http://dx.doi.org/10.1016/0192-0561(92)90011-9] [PMID: 1464471]
[82]
Kovačević N, Čolić M, Backović A, Došlov-Kokoruš Z. Immunomodulatory effects of the methanolic extract of Epimedium alpinum in vitro. Fitoterapia 2006; 77(7-8): 561-7.
[http://dx.doi.org/10.1016/j.fitote.2006.09.008] [PMID: 17070658]
[83]
Bhaumik S, Jyothi MD, Khar A. Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett 2000; 483(1): 78-82.
[http://dx.doi.org/10.1016/S0014-5793(00)02089-5] [PMID: 11033360]
[84]
Surh YJ, Chun KS, Cha HH, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res 2001; 480-481: 243-68.
[http://dx.doi.org/10.1016/S0027-5107(01)00183-X] [PMID: 11506818]
[85]
Kim GY, Kim KH, Lee SH, et al. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-κ B as potential targets. J Immunol 2005; 174(12): 8116-24.
[http://dx.doi.org/10.4049/jimmunol.174.12.8116] [PMID: 15944320]
[86]
Alagawany M, Ashour EA, Reda FM. Effect of dietary supplementation of garlic (Allium sativum) and turmeric (Curcuma longa) on growth performance, carcass traits, blood profile and oxidative status in growing rabbits. Ann Anim Sci 2016; 16(2): 489-505.
[http://dx.doi.org/10.1515/aoas-2015-0079]
[87]
Clement F, Pramod SN, Venkatesh YP. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. Int Immunopharmacol 2010; 10(3): 316-24.
[http://dx.doi.org/10.1016/j.intimp.2009.12.002] [PMID: 20004743]
[88]
Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B. Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 1996; 50(2): 69-76.
[http://dx.doi.org/10.1016/0378-8741(95)01318-0] [PMID: 8866726]
[89]
Rasool M, Varalakshmi P. Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vascul Pharmacol 2006; 44(6): 406-10.
[http://dx.doi.org/10.1016/j.vph.2006.01.015] [PMID: 16713367]
[90]
Ramnath V, Rekha PS. Brahma Rasayana enhances in vivo antioxidant status in cold-stressed chickens (Gallus gallus domesticus). Indian J Pharmacol 2009; 41(3): 115-9.
[http://dx.doi.org/10.4103/0253-7613.55209] [PMID: 20442818]
[91]
Liu X, Zhao M, Wu K, et al. Immunomodulatory and anticancer activities of phenolics from emblica fruit (Phyllanthus emblica L.). Food Chem 2012; 131(2): 685-90.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.063]
[92]
Singh MK, Yadav SS, Gupta V, Khattri S. Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC Complement Altern Med 2013; 13(1): 193.
[http://dx.doi.org/10.1186/1472-6882-13-193] [PMID: 23889914]
[93]
Kapil A, Sharma S. Immunopotentiating compounds from Tinospora cordifolia. J Ethnopharmacol 1997; 58(2): 89-95.
[http://dx.doi.org/10.1016/S0378-8741(97)00086-X] [PMID: 9406896]
[94]
Nair PKR, Melnick SJ, Ramachandran R, Escalon E, Ramachandran C. Mechanism of macrophage activation by (1,4)-α-d-glucan isolated from Tinospora cordifolia. Int Immunopharmacol 2006; 6(12): 1815-24.
[http://dx.doi.org/10.1016/j.intimp.2006.07.028] [PMID: 17052672]
[95]
Ismail S, Asad M. Immunomodulatory activity of Acacia catechu. Indian J Physiol Pharmacol 2009; 53(1): 25-33.
[PMID: 19810573]
[96]
Maiti K, Mukherjee K, Murugan V, Saha BP, Mukherjee PK. Enhancing bioavailability and hepatoprotective activity of andrographolide from Andrographis paniculata, a well-known medicinal food, through its herbosome. J Sci Food Agric 2010; 90(1): 43-51.
[http://dx.doi.org/10.1002/jsfa.3777] [PMID: 20355010]
[97]
Chang SL, Chiang YM, Chang CLT, et al. Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-γ expression. J Ethnopharmacol 2007; 112(2): 232-6.
[http://dx.doi.org/10.1016/j.jep.2007.03.001] [PMID: 17408892]
[98]
Shivaprasad HN, Kharya MD, Rana AC, Mohan S. Preliminary immunomodulatory activities of the aqueous extract of Terminalia chebula. Pharm Biol 2006; 44(1): 32-4.
[http://dx.doi.org/10.1080/13880200500530542]
[99]
Lee HS, Jung SH, Yun BS, Lee KW. Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes. Arch Toxicol 2007; 81(3): 211-8.
[http://dx.doi.org/10.1007/s00204-006-0139-4] [PMID: 16932919]
[100]
Lee HS, Won NH, Kim KH, Lee H, Jun W, Lee KW. Antioxidant effects of aqueous extract of Terminalia chebula in vivo and in vitro. Biol Pharm Bull 2005; 28(9): 1639-44.
[http://dx.doi.org/10.1248/bpb.28.1639] [PMID: 16141531]
[101]
Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS. Antioxidant, antihypertensive, and antibacterial properties of endophytic Pestalotiopsis species from medicinal plants. Can J Microbiol 2008; 54(9): 769-80.
[http://dx.doi.org/10.1139/W08-070] [PMID: 18772940]
[102]
Kapiszewska M. Sołtys E, Visioli F, Cierniak A, Zajac G. The protective ability of the Mediterranean plant extracts against the oxidative DNA damage. The role of the radical oxygen species and the polyphenol content. J Physiol Pharmacol 2005; 56 (Suppl. 1): 183-97.
[PMID: 15800394]
[103]
Amalraj A, Gopi S. Biological activities and medicinal properties of Asafoetida: A review. J Tradit Complement Med 2017; 7(3): 347-59.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.004] [PMID: 28725631]
[104]
Thakur M, Bhargava S, Dixit VK. Immunomodulatory activity of Chlorophytum borivilianum Sant. F. Evid Based Complement Alternat Med 2007; 4(4): 419-23.
[http://dx.doi.org/10.1093/ecam/nel094] [PMID: 18227908]
[105]
Thakur M, Connellan P, Deseo MA, Morris C, Dixit VK. Immunomodulatory polysaccharide from Chlorophytum borivilianum roots. Evid Based Complement Alternat Med 2011; 2011: 1-7.
[http://dx.doi.org/10.1093/ecam/neq012] [PMID: 21792363]
[106]
Yuan C, Pan X, Gong Y, et al. Effects of Astragalus polysaccharides (APS) on the expression of immune response genes in head kidney, gill and spleen of the common carp, Cyprinus carpio L. Int Immunopharmacol 2008; 8(1): 51-8.
[http://dx.doi.org/10.1016/j.intimp.2007.10.009] [PMID: 18068100]
[107]
Pettit GR, Hoard MS, Doubek DL, et al. Antineoplastic agents 338. The cancer cell growth inhibitory. Constituents of Terminalia arjuna (Combretaceae). J Ethnopharmacol 1996; 53(2): 57-63.
[http://dx.doi.org/10.1016/S0378-8741(96)01421-3] [PMID: 8844460]
[108]
Sun L, Zhu H, Gan L, Mo J, Feng F, Zhou C. Constituents from the bark of Annona squamosa and their anti-tumor activity. Zhongguo Zhongyao Zazhi 2012; 37(14): 2100-4.
[PMID: 23126192]
[109]
Singh SK, Rajoria K, Sharma S. Principles of Rajayakshma management for COVID-19. J Ayurveda Integr Med 2022; 13(1): 100349.
[http://dx.doi.org/10.1016/j.jaim.2020.08.002] [PMID: 32863675]
[110]
Patwardhan B, Gautam M. Botanical immunodrugs: Scope and opportunities. Drug Discov Today 2005; 10(7): 495-502.
[http://dx.doi.org/10.1016/S1359-6446(04)03357-4] [PMID: 15809195]
[111]
Manavalan R, Singh J. Chemical and some pharmacological studies on leaves of Piper longum Linn. Indian J Pharm Sci 1979.
[112]
Gang DR, Ma X-Q. Ginger and turmeric ancient spices and modern medicines. In: Moore PH, Ming R, Eds. Genomics of Tropical Crop Plants. New York, NY: Springer New York 2008; pp. 299-311.
[http://dx.doi.org/10.1007/978-0-387-71219-2_12]
[113]
Sivakumar V, Sivakumar S. Effect of an indigenous herbal compound preparation? Trikatu? On the lipid profiles of atherogenic diet and standard diet fed Rattus norvegicus. Phytother Res 2004; 18(12): 976-81.
[http://dx.doi.org/10.1002/ptr.1586] [PMID: 15742354]
[114]
Amritpal S, Sanjiv D. Piperine- review of advances in pharmacology. Int J Pharm Sci Nanotechnol 2009; 2(3)
[115]
Sharma S, Kalia NP, Suden P, et al. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014; 94(4): 389-96.
[http://dx.doi.org/10.1016/j.tube.2014.04.007] [PMID: 24880706]
[116]
Naeini A, Khosravi A, Tajbakhsh H, Ghazanfari T. Anticandida and immunomodulatory effects of Foeniculum vulgare mill in vitro. Dan Med 2009; 16(82): 7-20.
[117]
Orhan İE, ÖZÇELİK B, Kartal M, Kan Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk J Biol 2012; 36(3): 239-46.
[118]
Bachiega TF, de Sousa JPB, Bastos JK, Sforcin JM. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. J Pharm Pharmacol 2012; 64(4): 610-6.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01440.x] [PMID: 22420667]
[119]
Halder S, Mehta AK, Mediratta PK, Sharma KK. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity. Phytother Res 2011; 25(8): 1254-6.
[http://dx.doi.org/10.1002/ptr.3412] [PMID: 21796701]
[120]
Nworu CS, Akah PA, Okoye FBC, Proksch P, Esimone CO. The effects of Phyllanthus niruri aqueous extract on the activation of murine lymphocytes and bone marrow-derived macrophages. Immunol Invest 2010; 39(3): 245-67.
[http://dx.doi.org/10.3109/08820131003599585] [PMID: 20380522]
[121]
Ahmad S, Zahiruddin S, Parveen B, Basist P, Parveen A. Indian medicinal plants and formulations and their potential against COVID-19-preclinical and clinical research. Front Pharmacol 2021; 11: 578970.
[122]
Mandal SC, Nandy A, Pal M, Saha BP. Evaluation of antibacterial activity of Asparagus racemosus Willd. root. Phytother Res 2000; 14(2): 118-9.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<118:AID-PTR493>3.0.CO;2-P] [PMID: 10685109]
[123]
Muraoka K, Shimizu K, Sun X, et al. Flavonoids exert diverse inhibitory effects on the activation of nf-κb. Transplant Proc 2002; 34(4): 1335-40.
[http://dx.doi.org/10.1016/S0041-1345(02)02795-1] [PMID: 12072354]
[124]
Gupta A, Kumar S, Dole S, et al. Evaluation of Cyavanaprāśa on health and immunity related parameters in healthy children: A two arm, randomized, open labeled, prospective, multicenter, clinical study. Anc Sci Life 2017; 36(3): 141-50.
[http://dx.doi.org/10.4103/asl.ASL_8_17] [PMID: 28867858]
[125]
Rege NN, Thatte UM, Dahanukar SA. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother Res 1999; 13(4): 275-91.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4<275:AID-PTR510>3.0.CO;2-S] [PMID: 10404532]
[126]
Mishra L-C, Singh BB, Dagenais S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Altern Med Rev 2000; 5(4): 334-46.
[PMID: 10956379]
[127]
Chiou WF, Chen CF, Lin JJ. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide. Br J Pharmacol 2000; 129(8): 1553-60.
[http://dx.doi.org/10.1038/sj.bjp.0703191] [PMID: 10780958]
[128]
Aher V, Wahi A. Immunomodulatory activity of alcohol extract of Terminalia chebula retz combretaceae. Trop J Pharm Res 2011; 10(5): 567-75.
[http://dx.doi.org/10.4314/tjpr.v10i5.5]
[129]
Cheng HY, Lin CC, Lin TC. Antiherpes simplex virus type 2 activity of casuarinin from the bark of Terminalia arjuna Linn. Antiviral Res 2002; 55(3): 447-55.
[http://dx.doi.org/10.1016/S0166-3542(02)00077-3] [PMID: 12206882]
[130]
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res Int 2018; 105: 305-23.
[http://dx.doi.org/10.1016/j.foodres.2017.11.019] [PMID: 29433220]
[131]
Singh S, Nandy B, Tapadia MG. Complex effects of Ayurvedic formulation: Guduchi and Madhuyashti on different components of life history may elude the elixir effect. J Genet 2018; 97(5): 1253-61.
[http://dx.doi.org/10.1007/s12041-018-1045-2] [PMID: 30555074]
[132]
Johri RK, Zutshi U. An Ayurvedic formulation ‘Trikatu’ and its constituents. J Ethnopharmacol 1992; 37(2): 85-91.
[http://dx.doi.org/10.1016/0378-8741(92)90067-2] [PMID: 1434692]
[133]
Azam S, Park JY, Kim IS, Choi DK. Piperine and its metabolite’s pharmacology in neurodegenerative and neurological diseases. Biomedicines 2022; 10(1): 154.
[http://dx.doi.org/10.3390/biomedicines10010154] [PMID: 35052833]
[134]
Chanda D, Shanker K, Pal A, et al. Safety evaluation of Trikatu, a generic Ayurvedic medicine in Charles Foster rats. J Toxicol Sci 2009; 34(1): 99-108.
[http://dx.doi.org/10.2131/jts.34.99] [PMID: 19182439]
[135]
Murunikkara V, Rasool M. Trikatu, an herbal compound as immunomodulatory and anti-inflammatory agent in the treatment of rheumatoid arthritis – An experimental study. Cell Immunol 2014; 287(1): 62-8.
[http://dx.doi.org/10.1016/j.cellimm.2013.12.002] [PMID: 24394943]
[136]
Bode M. Assembling cyavanaprāsh, Ayurveda’s best-selling medicine. Anthropol Med 2015; 22(1): 23-33.
[http://dx.doi.org/10.1080/13648470.2015.1005285] [PMID: 25639150]
[137]
Narayana DBA, Durg S, Manohar PR, Mahapatra A, Aramya AR. Chyawanprash: A review of therapeutic benefits as in authoritative texts and documented clinical literature. J Ethnopharmacol 2017; 197: 52-60.
[http://dx.doi.org/10.1016/j.jep.2016.07.078] [PMID: 27496580]
[138]
Sastry J, Gupta A, Brindavanam N, et al. Quantification of immunity status of Dabur chyawanprash-A review part-2 (clinical studies). Indian J Appl Res 2014; 4: 205.
[http://dx.doi.org/10.15373/2249555X/MAR2014/61]
[139]
Singh N, Bhalla M, De Jager P, Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 2011; 8(5S) (Suppl.): 208-13.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[140]
Suresh Gupta M, Shivaprasad HN, Kharya MD, Rana AC. Immunomodulatory activity of the Ayurvedic formulation “Ashwagandha Churna”. Pharm Biol 2006; 44(4): 263-5.
[http://dx.doi.org/10.1080/13880200600713949]
[141]
More P, Pai K. In vitro NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of macrophages after Tinospora cordifolia (guduchi) treatment. Immunopharmacol Immunotoxicol 2012; 34(3): 368-72.
[http://dx.doi.org/10.3109/08923973.2011.606324] [PMID: 22295977]
[142]
Upadhyaya R, Pandey R, Sharma V, Verma Anita K. Assessment of the multifaceted immunomodulatory potential of the aqueous extract of Tinospora cordifolia. Res J Chem Sci ISSN 2011; 2231: 606X.
[143]
Balkrishna A, Rastogi S, Kharayat B, et al. Anu taila, an herbal nasal drop, suppresses mucormycosis by regulating host TNF ‐α response and fungal ergosterol biosynthesis. J Appl Microbiol 2022; 132(4): 3355-74.
[http://dx.doi.org/10.1111/jam.15451] [PMID: 35025137]
[144]
Parle M, Bansal N. Traditional medicinal formulation, Chyawanprash-A review. Indian J Tradit Knowl 2006; 5: 484-8.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy