Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

A Comprehensive Review on COVID-19: Emphasis on Current Vaccination and Nanotechnology Aspects

Author(s): Akriti Rai, Kamal Shah, Rajiv Sharma and Hitesh Kumar Dewangan*

Volume 17, Issue 4, 2023

Published on: 19 September, 2022

Page: [359 - 377] Pages: 19

DOI: 10.2174/1872210516666220819104853

Price: $65

Abstract

COVID-19, caused by the SARS-CoV-2 virus, has been expanding. SARS-CoV caused an outbreak in early 2000, while MERS-CoV had a similar expansion of illness in early 2010. Nanotechnology has been employed for nasal delivery of drugs to conquer a variety of challenges that emerge during mucosal administration. The role of nanotechnology is highly relevant to counter this “virus” nano enemy. This technique directs the safe and effective distribution of accessible therapeutic choices using tailored nanocarriers, as well as the interruption of virion assembly, by preventing the early contact of viral spike glycoprotein with host cell surface receptors. This study summarises what we know about earlier SARS-CoV and MERS-CoV illnesses, with the goal of better understanding the recently discovered SARS-CoV-2 virus. It also explains the progress made so far in creating COVID-19 vaccines/ treatments using existing methods. Furthermore, we studied nanotechnology- based vaccinations and therapeutic medications that are now undergoing clinical trials and other alternatives.

Keywords: COVID-19, SARS-CoV-2, MERS-CoV, immune system, nanotechnology, treatment.

[1]
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020; 395(10223): 470-3.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[2]
Perlman S. Another decade, another coronavirus. N Engl J Med 2020; 382(8): 760-2.
[http://dx.doi.org/10.1056/NEJMe2001126] [PMID: 31978944]
[3]
Gorbalenya AE, Baker SC, Baric RS. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[4]
Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international expand of the 2019-nCoV outbreak originating in wuhan, china: A modelling study. Lancet 2020; 395(10225): E41.
[http://dx.doi.org/10.1016/S0140-6736(20)30260-9] [PMID: 32014114]
[5]
Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses 2010; 2(8): 1804-20.
[http://dx.doi.org/10.3390/v2081803] [PMID: 21994708]
[6]
Guy JS, Breslin JJ, Breuhaus B, Vivrette S, Smith LG. Characterization of a coronavirus isolated from a diarrheic foal. J Clin Microbiol 2000; 38(12): 4523-6.
[http://dx.doi.org/10.1128/JCM.38.12.4523-4526.2000] [PMID: 11101590]
[7]
Pene F, Merlat A, Vabret A, et al. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin Infect Dis 2003; 37(7): 929-32.
[http://dx.doi.org/10.1086/377612] [PMID: 13130404]
[8]
Vijgen L, Keyaerts E, Moës E, Maes P, Duson G, Van Ranst M. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J Clin Microbiol 2005; 43(11): 5452-6.
[http://dx.doi.org/10.1128/JCM.43.11.5452-5456.2005] [PMID: 16272469]
[9]
Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 2015; 28(2): 465-522.
[http://dx.doi.org/10.1128/CMR.00102-14] [PMID: 25810418]
[10]
Palmenberg AC, Spiro D, Kuzmickas R, et al. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 2009; 324(5923): 55-9.
[http://dx.doi.org/10.1126/science.1165557] [PMID: 19213880]
[11]
Cecil RL, Goldman L, Schafer AI. Goldman’s Cecil Medicine. (24th ed.), Elsevier/Saunders 2012.
[12]
van der Hoek L. Human coronaviruses: What do they cause? Antivir Ther 2007; 4(B): 651-8.
[13]
Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): A report from China. J Pathol 2003; 200(3): 282-9.
[http://dx.doi.org/10.1002/path.1440] [PMID: 12845623]
[14]
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens 2019; 9(3): 231.
[http://dx.doi.org/10.3390/pathogens]
[15]
Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta 2020; 508: 254-66.
[http://dx.doi.org/10.1016/j.cca.2020.05.044] [PMID: 32474009]
[16]
Shi H, Han X, Zheng C. Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology 2020; 295(1): 20.
[http://dx.doi.org/10.1148/radiol.2020200269] [PMID: 32032497]
[17]
Su S, Wong G, Shi W, et al. Epidemiology, genetic Recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[18]
Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases. Nature 2007; 447(7142): 279-83.
[http://dx.doi.org/10.1038/nature05775] [PMID: 17507975]
[19]
Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ 2020; 369: m1375.
[http://dx.doi.org/10.1136/bmj.m1375] [PMID: 32241884]
[20]
Sutton D, Fuchs K, D’Alton M, Goffman D. Universal screening for SARS-CoV-2 in women admitted for delivery. N Engl J Med 2020; 382(22): 2163-4.
[http://dx.doi.org/10.1056/NEJMc2009316] [PMID: 32283004]
[21]
Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 2020; 25(10)
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.10.2000180] [PMID: 32183930]
[22]
Dewangan HK. Rational application of nanoadjuvant for mucosal vaccine delivery system. J Immunol Methods 2020; 481-2.
[23]
Sivasankarapillai VS, Pillai AM, Rahdar A, et al. On Facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: Possible strategies and first challenges. Nanomaterials (Basel) 2020; 10(5): 4.
[http://dx.doi.org/10.3390/nano10050852] [PMID: 32354113]
[24]
Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials (Basel) 2020; 10(6): 10.
[http://dx.doi.org/10.3390/nano10061072]
[25]
Arshad R, Fatima I, Sargazi S, et al. Novel perspectives towards RNA-Based nano-theranostic approaches for cancer management. Nanomaterials (Basel) 2021; 11(12): 11.
[http://dx.doi.org/10.3390/nano11123330]
[26]
Er S, Laraib U, Arshad R, et al. Amino acids, peptides, and proteins: Implications for nanotechnological applications in biosensing and drug/gene delivery. Nanomaterials (Basel) 2021; 11(11): 3002.
[http://dx.doi.org/10.3390/nano11113002] [PMID: 34835766]
[27]
Sabir F, Zeeshan M, Laraib U, et al. DNA Based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: Applications and challenges. Cancers 2021; 13(14): 13.
[http://dx.doi.org/10.3390/cancers13143396]
[28]
Lau SKP, Woo PCY, Li KSM, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 2005; 102(39): 14040-5.
[http://dx.doi.org/10.1073/pnas.0506735102] [PMID: 16169905]
[29]
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[30]
Bertram S, Glowacka I, Müller MA, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol 2011; 85(24): 13363-72.
[http://dx.doi.org/10.1128/JVI.05300-11] [PMID: 21994442]
[31]
Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol 2019; 93(6): e01815-8.
[http://dx.doi.org/10.1128/JVI.01815-18] [PMID: 30626688]
[32]
Seto WH, Tsang D, Yung RWH, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 2003; 361(9368): 1519-20.
[http://dx.doi.org/10.1016/S0140-6736(03)13168-6] [PMID: 12737864]
[33]
Sui J, Li W, Murakami A, et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA 2004; 101(8): 2536-41.
[http://dx.doi.org/10.1073/pnas.0307140101] [PMID: 14983044]
[34]
Li BJ, Tang Q, Cheng D, et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005; 11(9): 944-51.
[http://dx.doi.org/10.1038/nm1280] [PMID: 16116432]
[35]
Ni B, Shi X, Li Y, Gao W, Wang X, Wu Y. Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA. Antivir Ther 2005; 10(4): 527-33.
[http://dx.doi.org/10.1177/135965350501000401] [PMID: 16038478]
[36]
Dewangan HK, Tomar S. Nanovaccine for transdermal delivery system. J Drug Deliv Sci Technol 2022; 67: 102988.
[http://dx.doi.org/10.1016/j.jddst.2021.102988]
[37]
Shi Y, Yang DH, Xiong J, Jia J, Huang B, Jin YX. Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res 2005; 15(3): 193-200.
[http://dx.doi.org/10.1038/sj.cr.7290286] [PMID: 15780182]
[38]
Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL. Inhibition of SARS-CoV replication by siRNA. Antiviral Res 2005; 65(1): 45-8.
[http://dx.doi.org/10.1016/j.antiviral.2004.09.005] [PMID: 15652970]
[39]
Qin ZL, Zhao P, Zhang XL, et al. Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem Biophys Res Commun 2004; 324(4): 1186-93.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.180] [PMID: 15504339]
[40]
Zheng BJ, Guan Y, Tang Q, et al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir Ther 2004; 9(3): 365-74.
[http://dx.doi.org/10.1177/135965350400900310] [PMID: 15259899]
[41]
Wang Z, Ren L, Zhao X, et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol 2004; 78(14): 7523-7.
[http://dx.doi.org/10.1128/JVI.78.14.7523-7527.2004] [PMID: 15220426]
[42]
Zhang Y, Li T, Fu L, et al. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 2004; 560(1-3): 141-6.
[http://dx.doi.org/10.1016/S0014-5793(04)00087-0] [PMID: 14988013]
[43]
Li T, Zhang Y, Fu L, et al. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther 2005; 12(9): 751-61.
[http://dx.doi.org/10.1038/sj.gt.3302479] [PMID: 15772689]
[44]
ter Meulen J, van den Brink EN, Poon LL, et al. Human monoclonal antibody combination against SARS coronavirus: Synergy and coverage of escape mutants. PLoS Med 2006; 3(7): e237.
[http://dx.doi.org/10.1371/journal.pmed.0030237] [PMID: 16796401]
[45]
Sui J, Li W, Roberts A, et al. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J Virol 2005; 79(10): 5900-6.
[http://dx.doi.org/10.1128/JVI.79.10.5900-5906.2005] [PMID: 15857975]
[46]
Zhu Z, Chakraborti S, He Y, et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci USA 2007; 104(29): 12123-8.
[http://dx.doi.org/10.1073/pnas.0701000104] [PMID: 17620608]
[47]
Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 2003; 289(21): 2801-9.
[http://dx.doi.org/10.1001/jama.289.21.JOC30885] [PMID: 12734147]
[48]
Leung GM, Hedley AJ, Ho LM, et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: An analysis of all 1755 patients. Ann Intern Med 2004; 141(9): 662-73.
[http://dx.doi.org/10.7326/0003-4819-141-9-200411020-00006] [PMID: 15520422]
[49]
Peiris JSM, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet 2003; 361(9371): 1767-72.
[http://dx.doi.org/10.1016/S0140-6736(03)13412-5] [PMID: 12781535]
[50]
Liang W, Zhu Z, Guo J, et al. Severe acute respiratory syndrome, Beijing, 2003. Emerg Infect Dis 2004; 10(1): 25-31.
[http://dx.doi.org/10.3201/eid1001.030553] [PMID: 15078593]
[51]
Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006; 24(8): 1159-69.
[http://dx.doi.org/10.1016/j.vaccine.2005.08.105] [PMID: 16213065]
[52]
Haynes L, Eaton SM, Burns EM, Rincon M, Swain SL. Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J Immunol 2004; 172(9): 5194-9.
[http://dx.doi.org/10.4049/jimmunol.172.9.5194] [PMID: 15100256]
[53]
Pulendran B, Ahmed R. Translating innate immunity into immunological memory: Implications for vaccine development. Cell 2006; 124(4): 849-63.
[http://dx.doi.org/10.1016/j.cell.2006.02.019] [PMID: 16497593]
[54]
Thompson JM, Whitmore AC, Konopka JL, et al. Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc Natl Acad Sci USA 2006; 103(10): 3722-7.
[http://dx.doi.org/10.1073/pnas.0600287103] [PMID: 16505353]
[55]
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367(19): 1814-20.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[56]
Bialek SR, Allen D, Alvarado-Ramy F, et al. First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities - May 2014. MMWR Morb Mortal Wkly Rep 2014; 63(19): 431-6.
[PMID: 24827411]
[57]
Cauchemez S, Van Kerkhove MD, Riley S, Donnelly CA, Fraser C, Ferguson NM. Transmission scenarios for middle east respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill 2013; 18(24): 7-13.
[http://dx.doi.org/10.2807/ese.18.24.20503-en] [PMID: 23787162]
[58]
Drosten C, Seilmaier M, Corman VM, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis 2013; 13(9): 745-51.
[http://dx.doi.org/10.1016/S1473-3099(13)70154-3] [PMID: 23782859]
[59]
Mailles A, Blanckaert K, Chaud P, et al. First cases of middle east respiratory syndrome coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013. Euro Surveill 2013; 18(24): 2-6.
[http://dx.doi.org/10.2807/ese.18.24.20502-en] [PMID: 23787161]
[60]
Tahir M, Gajraj R, Bardhan M, et al. Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013. Euro Surveill 2013; 18(11): 20427.
[PMID: 23517868]
[61]
Puzelli S, Azzi A, Santini MG, et al. Investigation of an imported case of middle east respiratory syndrome coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013. Euro Surveill 2013; 18(34): 2-5.
[62]
Tsiodras S, Baka A, Mentis A, et al. A case of imported middle east respiratory syndrome coronavirus infection and public health response, Greece, April 2014. Euro Surveill 2014; 19(16): 20782.
[http://dx.doi.org/10.2807/1560-7917.ES2014.19.16.20782] [PMID: 24786258]
[63]
de Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group. J Virol 2013; 87(14): 7790-2.
[http://dx.doi.org/10.1128/JVI.01244-13] [PMID: 23678167]
[64]
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251-4.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[65]
Barlan A, Zhao J, Sarkar MK, et al. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J Virol 2014; 88(9): 4953-61.
[http://dx.doi.org/10.1128/JVI.00161-14] [PMID: 24554656]
[66]
Millet JK, Whittaker GR. Hosts. Proc Natl Acad Sci USA 2014; 111(42): 15214-9.
[http://dx.doi.org/10.1073/pnas.1407087111] [PMID: 25288733]
[67]
Chowell G, Blumberg S, Simonsen L, Miller MA, Viboud C. Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission. Epidemics 2014; 9: 40-51.
[http://dx.doi.org/10.1016/j.epidem.2014.09.011] [PMID: 25480133]
[68]
Dewangan HK, Singh N, Kumar Megh S, Singh S. Lakshmi. Optimisation and evaluation of Gymnema sylvestre extract loaded polymeric nanoparticles for enhancement of in vivo efficacy and reduction of toxicity. J Microencapsul 2022; 1-11.
[http://dx.doi.org/10.1080/02652048.2022.2051625] [PMID: 35282781]
[69]
Memish ZA, Al-Tawfiq JA, Makhdoom HQ, et al. Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study. Clin Microbiol Infect 2014; 20(5): 469-74.
[http://dx.doi.org/10.1111/1469-0691.12562] [PMID: 24460984]
[70]
Saad M, Omrani AS, Baig K, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia. Int J Infect Dis 2014; 29: 301-6.
[http://dx.doi.org/10.1016/j.ijid.2014.09.003] [PMID: 25303830]
[71]
Hayden FG, Farrar J, Peiris JS. Towards improving clinical management of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis 2014; 14(7): 544-6.
[http://dx.doi.org/10.1016/S1473-3099(14)70793-5] [PMID: 24964934]
[72]
Guery B, Poissy J, el Mansouf L, et al. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission. Lancet 2013; 381(9885): 2265-72.
[http://dx.doi.org/10.1016/S0140-6736(13)60982-4] [PMID: 23727167]
[73]
Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 2014; 160(6): 389-97.
[http://dx.doi.org/10.7326/M13-2486] [PMID: 24474051]
[74]
Perera RA, Wang P, Gomaa MR, et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill 2013; 18(36): 20574.
[http://dx.doi.org/10.2807/1560-7917.ES2013.18.36.20574] [PMID: 24079378]
[75]
Reusken CBEM, Messadi L, Feyisa A, et al. Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg Infect Dis 2014; 20(8): 1370-4.
[http://dx.doi.org/10.3201/eid2008.140590] [PMID: 25062254]
[76]
Corman VM, Jores J, Meyer B, et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013. Emerg Infect Dis 2014; 20(8): 1319-22.
[http://dx.doi.org/10.3201/eid2008.140596] [PMID: 25075637]
[77]
Reusken CB, Ababneh M, Raj VS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in jordan, June to September 2013. Euro Surveill 2013; 18(50): 14-20.
[78]
Reusken CBEM, Haagmans BL, Müller MA, et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study. Lancet Infect Dis 2013; 13(10): 859-66.
[http://dx.doi.org/10.1016/S1473-3099(13)70164-6] [PMID: 23933067]
[79]
Alagaili AN, Briese T, Mishra N, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio 2014; 5(2): e00884-14.
[http://dx.doi.org/10.1128/mBio.00884-14] [PMID: 24570370]
[80]
Hemida MG, Chu DKW, Poon LLM, et al. MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg Infect Dis 2014; 20(7): 1231-4.
[http://dx.doi.org/10.3201/eid2007.140571] [PMID: 24964193]
[81]
Müller MA, Corman VM, Jores J, et al. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997. Emerg Infect Dis 2014; 20(12): 2093-5.
[http://dx.doi.org/10.3201/eid2012.141026] [PMID: 25425139]
[82]
Alexandersen S, Kobinger GP, Soule G, Wernery U. Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005. Transbound Emerg Dis 2014; 61(2): 105-8.
[http://dx.doi.org/10.1111/tbed.12212] [PMID: 24456414]
[83]
Meyer B, Müller MA, Corman VM, et al. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis 2014; 20(4): 552-9.
[http://dx.doi.org/10.3201/eid2004.131746] [PMID: 24655412]
[84]
Peck KM, Cockrell AS, Yount BL, Scobey T, Baric RS, Heise MT. Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection. J Virol 2015; 89(8): 4696-9.
[http://dx.doi.org/10.1128/JVI.03445-14] [PMID: 25653445]
[85]
Cockrell AS, Yount BL, Scobey T, et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat Microbiol 2016; 2(2): 16226.
[http://dx.doi.org/10.1038/nmicrobiol.2016.226] [PMID: 27892925]
[86]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[87]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[88]
Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol 2020; 92(4): 433-40.
[http://dx.doi.org/10.1002/jmv.25682] [PMID: 31967321]
[89]
Lam TTY, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583(7815): 282-5.
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[90]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[91]
Garg A, Dewangan HK. CritRevTherDrugCarrierSyst. 2020033273. Rev Ther Drug Carrer System 1615; 37(2): 183-204.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2020033273]
[92]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[93]
Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 2020; 3(9): e202000786.
[http://dx.doi.org/10.26508/lsa.202000786] [PMID: 32703818]
[94]
Leung JM, Yang CX, Tam A, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur Respir J 2020; 55(5): 32269089.
[http://dx.doi.org/10.1183/13993003.00688-2020] [PMID: 32269089]
[95]
Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020; 116(6): 1097-100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[96]
Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in germany. N Engl J Med 2020; 382(10): 970-1.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[97]
Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020; 105(3): 587.
[http://dx.doi.org/10.1016/j.jhin.2020.06.001] [PMID: 32360355]
[98]
van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[99]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506, 30183-30185.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[100]
Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis 2020; 20(4): 425-34.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[101]
Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med 2020; 382(17): 1663-5.
[http://dx.doi.org/10.1056/NEJMc2005073] [PMID: 32187458]
[102]
Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: An observational cohort study. Lancet Infect Dis 2020; 20(6): 689-96.
[http://dx.doi.org/10.1016/S1473-3099(20)30198-5] [PMID: 32220650]
[103]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[104]
Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[105]
Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-CoV-2 mutations. Front Microbiol 2020; 11: 1800.
[http://dx.doi.org/10.3389/fmicb.2020.01800] [PMID: 32793182]
[106]
Becerra-Flores M, Cardozo T. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int J Clin Pract 2020; 74(8): e13525.
[http://dx.doi.org/10.1111/ijcp.13525] [PMID: 32374903]
[107]
Hu J, He C-L, Gao Q-Z, et al. D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.06.20.161323]
[108]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[109]
Choy KT, Wong AYL, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 2020; 178: 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[110]
Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[111]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[112]
Yao X, Ye F, Zhang M, et al. In Vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71(15): 732-9.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[113]
Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49(2): 215-9.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2020.03.03]
[114]
Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs. low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Netw Open 2020; 3(4): e208857.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.8857] [PMID: 32330277]
[115]
Chu CM, Cheng VCC, Hung IFN, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[116]
Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020; 17(7): 765-7.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[117]
Wrapp D, De Vlieger D, Corbett KS, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 2020; 181(5): 1004-1015.e15.
[http://dx.doi.org/10.1016/j.cell.2020.04.031] [PMID: 32375025]
[118]
Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020; 11(1): 2251.
[http://dx.doi.org/10.1038/s41467-020-16256-y] [PMID: 32366817]
[119]
Pinto D, Park YJ, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020; 583(7815): 290-5.
[http://dx.doi.org/10.1038/s41586-020-2349-y] [PMID: 32422645]
[120]
Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016; 8(8): 959-70.
[http://dx.doi.org/10.2217/imt-2016-0020] [PMID: 27381687]
[121]
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat Rev Rheumatol 2020; 16(3): 155-66.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[122]
Della-Torre E, Campochiaro C, Cavalli G, et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: An open-label cohort study. Ann Rheum Dis 2020; 79(10): 1277-85.
[123]
Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020; 55(5): 105955.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105955] [PMID: 32234468]
[124]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[125]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[126]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[127]
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[128]
Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: Evidence for virus evolution. J Med Virol 2020; 92(4): 455-9.
[http://dx.doi.org/10.1002/jmv.25688] [PMID: 31994738]
[129]
Yuan M, Wu NC, Zhu XY, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020; 368(6491): 630-3.
[130]
Enjuanes L, Zuñiga S, Castaño-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Molecular basis of coronavirus virulence and vaccine development. Adv Virus Res 2016; 96: 245-86.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.003] [PMID: 27712626]
[131]
Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 11(1): 59.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[132]
Thi Nhu Thao T, Labroussaa F, Ebert N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020; 582(7813): 561-5.
[http://dx.doi.org/10.1038/s41586-020-2294-9] [PMID: 32365353]
[133]
Xie X, Muruato A, Lokugamage KG, et al. An infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe 2020; 27(5): 841-848.e3.
[http://dx.doi.org/10.1016/j.chom.2020.04.004] [PMID: 32289263]
[134]
Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: An overview. Curr Trop Med Rep 2020; 7(2): 1-4.
[http://dx.doi.org/10.1007/s40475-020-00201-6] [PMID: 32219057]
[135]
Bull JJ, Nuismer SL, Antia R. Recombinant vector vaccine evolution. PLOS Comput Biol 2019; 15(7): e1006857.
[http://dx.doi.org/10.1371/journal.pcbi.1006857] [PMID: 31323032]
[136]
Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020; 19(5): 305-6.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[137]
Lakshmi Singh S. Vijayakumar MR, Dewangan HK. lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr Drug Deliv 2018; 15(9): 1284-93.
[http://dx.doi.org/10.2174/1567201815666180716112457] [PMID: 30009708]
[138]
Sutter G, Staib C. Vaccinia vectors as candidate vaccines: The development of modified vaccinia virus Ankara for antigen delivery. Curr Drug Targets Infect Disord 2003; 3(3): 263-71.
[http://dx.doi.org/10.2174/1568005033481123] [PMID: 14529359]
[139]
Frey SE, Winokur PL, Salata RA, et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for a post event scenario. Vaccine 2013; 31(29): 3025-33.
[http://dx.doi.org/10.1016/j.vaccine.2013.04.050] [PMID: 23664987]
[140]
Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ. Development of a preventive vaccine for Ebola virus infection in primates. Nature 2000; 408(6812): 605-9.
[http://dx.doi.org/10.1038/35046108] [PMID: 11117750]
[141]
Shiver JW, Fu TM, Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002; 415(6869): 331-5.
[http://dx.doi.org/10.1038/415331a] [PMID: 11797011]
[142]
Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002; 13(16): 1935-43.
[http://dx.doi.org/10.1089/10430340260355347] [PMID: 12427305]
[143]
Kotin RM. Large-scale recombinant adeno-associated virus production. Hum Mol Genet 2011; 20(R1): R2-6.
[http://dx.doi.org/10.1093/hmg/ddr141] [PMID: 21531790]
[144]
Flotte TR. Gene therapy progress and prospects: Recombinant adeno-associated virus (rAAV) vectors. Gene Ther 2004; 11(10): 805-10.
[http://dx.doi.org/10.1038/sj.gt.3302233] [PMID: 15042119]
[145]
Monahan PE, Samulski RJ. AAV vectors: Is clinical success on the horizon? Gene Ther 2000; 7(1): 24-30.
[http://dx.doi.org/10.1038/sj.gt.3301109] [PMID: 10680012]
[146]
Choi VW, McCarty DM, Samulski RJ. AAV hybrid serotypes: Improved vectors for gene delivery. Curr Gene Ther 2005; 5(3): 299-310.
[http://dx.doi.org/10.2174/1566523054064968] [PMID: 15975007]
[147]
Li H, Malani N, Hamilton SR, et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood 2011; 117(12): 3311-9.
[http://dx.doi.org/10.1182/blood-2010-08-302729] [PMID: 21106988]
[148]
Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020; 396(10249): 467-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[149]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8): 541-55.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[150]
Vincent M, de Lázaro I, Kostarelos K. Graphene materials as 2D non-viral gene transfer vector platforms. Gene Ther 2017; 24(3): 123-32.
[http://dx.doi.org/10.1038/gt.2016.79] [PMID: 27874854]
[151]
Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013; 3: 13.
[http://dx.doi.org/10.3389/fcimb.2013.00013] [PMID: 23532930]
[152]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[153]
Shen Y, Hao T, Ou S, Hu C, Chen L. Applications and perspectives of nanomaterials in novel vaccine development. MedChemComm 2017; 9(2): 226-38.
[http://dx.doi.org/10.1039/C7MD00158D] [PMID: 30108916]
[154]
Qi F, Wu J, Li H, Ma GH. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects. Front Chem Sci Eng 2019; 13(1): 14-27.
[http://dx.doi.org/10.1007/s11705-018-1729-4]
[155]
Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015; 468(3): 504-10.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.023] [PMID: 26260323]
[156]
Mogrão J, da Costa CA, Gaspar R, Florindo HF. Modulation of dendritic cells by nanotechnology-based immunotherapeutic strategies. J Biomed Nanotechnol 2016; 12(3): 405-34.
[http://dx.doi.org/10.1166/jbn.2016.2157] [PMID: 27280242]
[157]
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. Nano Today 2021; 36: 101051.
[http://dx.doi.org/10.1016/j.nantod.2020.101051] [PMID: 33519949]
[158]
Barik S. New treatments for influenza. BMC Med 2012; 10(1): 104.
[http://dx.doi.org/10.1186/1741-7015-10-104] [PMID: 22973873]
[159]
Levina AS, Repkova MN, Mazurkova NA, Zarytova VF. Nanoparticle-Mediated nonviral dna delivery for effective inhibition of influenza a viruses in cells. IEEE Trans Nanotechnol 2016; 15(2): 248-54.
[http://dx.doi.org/10.1109/TNANO.2016.2516561]
[160]
Hendricks GL, Weirich KL, Viswanathan K, et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza a virus. J Biol Chem 2013; 288(12): 8061-73.
[http://dx.doi.org/10.1074/jbc.M112.437202] [PMID: 23362274]
[161]
Dunning J, Sahr F, Rojek A, et al. Experimental treatment of ebola virus disease with TKM-130803: A single-arm phase 2 clinical trial. PLoS Med 2016; 13(4): e1001997.
[http://dx.doi.org/10.1371/journal.pmed.1001997] [PMID: 27093560]
[162]
Pereira de Oliveira M, Garcion E, Venisse N, Benoit JP, Couet W, Olivier JC. Tissue distribution of indinavir administered as solid lipid nanocapsule formulation in mdr1a (+/+) and mdr1a (-/-) CF-1 mice. Pharm Res 2005; 22(11): 1898-905.
[http://dx.doi.org/10.1007/s11095-005-7147-6] [PMID: 16132350]
[163]
Rodriguez B, Asmuth DM, Matining RM, et al. Safety, tolerability, and immunogenicity of repeated doses of dermavir, a candidate therapeutic HIV vaccine, in HIV-infected patients receiving combination antiretroviral therapy: Results of the ACTG 5176 trial. J Acquir Immune Defic Syndr 2013; 64(4): 351-9.
[http://dx.doi.org/10.1097/QAI.0b013e3182a99590] [PMID: 24169120]
[164]
Orkin C, Squires KE, Molina JM, et al. Doravirine/Lamivudine/Tenofovir disoproxil fumarate is non-inferior to efavirenz/emtricitabine/tenofovir disoproxil fumarate in treatment-naive adults with human immunodeficiency virus-1 infection: Week 48 results of the DRIVE-AHEAD trial. Clin Infect Dis 2019; 68(4): 535-44.
[http://dx.doi.org/10.1093/cid/ciy540] [PMID: 30184165]
[165]
Price CF, Tyssen D, Sonza S, et al. SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One 2011; 6(9): e24095.
[http://dx.doi.org/10.1371/journal.pone.0024095] [PMID: 21935377]
[166]
Cavalli R, Donalisio M, Bisazza A, et al. Enhanced antiviral activity of acyclovir loaded into nanoparticles. Methods Enzymol 2012; 509: 1-19.
[http://dx.doi.org/10.1016/B978-0-12-391858-1.00001-0] [PMID: 22568898]
[167]
Lembo D, Swaminathan S, Donalisio M, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 2013; 443(1-2): 262-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[168]
Hu RL, Li SR, Kong FJ, Hou RJ, Guan XL, Guo F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res 2014; 13(3): 7022-8.
[http://dx.doi.org/10.4238/2014.March.19.2] [PMID: 24682984]
[169]
Rupp R, Rosenthal SL, Stanberry LR. VivaGel (SPL7013 Gel): A candidate dendrimer--microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine 2007; 2(4): 561-6.
[PMID: 18203424]
[170]
Dewangan HK, Maurya L, Srivastava A, Singh S. Hepatitis B antigen loaded biodegradable polymeric nanoparticles: Formulation optimization and in-vivo immunization in BALB/C mice. Curr Drug Deliv 2018; 15(8): 1204-15.
[http://dx.doi.org/10.2174/1567201815666180604110457]
[171]
Liang TJ, Block TM, McMahon BJ, et al. Present and future therapies of hepatitis B: From discovery to cure. Hepatology 2015; 62(6): 1893-908.
[http://dx.doi.org/10.1002/hep.28025] [PMID: 26239691]
[172]
Lingala S, Lau DTY, Koh C, Auh S, Ghany MG, Hoofnagle JH. Long-term lamivudine therapy in chronic hepatitis B. Aliment Pharmacol Ther 2016; 44(4): 380-9.
[http://dx.doi.org/10.1111/apt.13707] [PMID: 27375283]
[173]
Marcellin P, Chang TT, Lim SG, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med 2003; 348(9): 808-16.
[http://dx.doi.org/10.1056/NEJMoa020681] [PMID: 12606735]
[174]
Dimou E, Papadimitropoulos V, Hadziyannis SJ. The role of entecavir in the treatment of chronic hepatitis B. Ther Clin Risk Manag 2007; 3(6): 1077-86.
[PMID: 18516259]
[175]
Dewangan HK, Pandey T, Singh S. Nanovaccine for immunotherapy and reduced hepatitis-B virus in humanized model. Artif Cells Nanomed Biotechnol 2018; 46(8): 2033-42.
[PMID: 29179600]
[176]
Manzoor S, Saalim M, Imran M, Resham S, Ashraf J, Hepatitis B. Hepatitis B virus therapy: What’s the future holding for us? World J Gastroenterol 2015; 21(44): 12558-75.
[http://dx.doi.org/10.3748/wjg.v21.i44.12558] [PMID: 26640332]
[177]
Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the Inhibition of Viral Infections. Molecules 2015; 20(8): 14051-81.
[http://dx.doi.org/10.3390/molecules200814051] [PMID: 26247927]
[178]
Broglie JJ, Alston B, Yang C, et al. Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS One 2015; 10(10): e0141050.
[http://dx.doi.org/10.1371/journal.pone.0141050] [PMID: 26474396]
[179]
Lammers T, Sofias AM, van der Meel R, et al. Dexamethasone nanomedicines for COVID-19. Nat Nanotechnol 2020; 15(8): 622-4.
[http://dx.doi.org/10.1038/s41565-020-0752-z] [PMID: 32747742]
[180]
Alshweiat A, Ambrus R, Csoka I. Intranasal nanoparticulate systems as alternative route of drug delivery. Curr Med Chem 2019; 26(35): 6459-92.
[http://dx.doi.org/10.2174/0929867326666190827151741] [PMID: 31453778]
[181]
Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: Physicochemical and therapeutic aspects. Int J Pharm 2007; 337(1-2): 1-24.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.025] [PMID: 17475423]
[182]
Marasini N, Kaminskas LM. Subunit-based mucosal vaccine delivery systems for pulmonary delivery - Are they feasible? Drug Dev Ind Pharm 2019; 45(6): 882-94.
[http://dx.doi.org/10.1080/03639045.2019.1583758] [PMID: 30767591]
[183]
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: Revolution for efficient therapeutics delivery. Drug Deliv 2016; 23(3): 681-93.
[http://dx.doi.org/10.3109/10717544.2014.920431] [PMID: 24901207]
[184]
Alyane M, Barratt G, Lahouel M. Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells. Saudi Pharm J 2016; 24(2): 165-75.
[http://dx.doi.org/10.1016/j.jsps.2015.02.014] [PMID: 27013909]
[185]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[186]
Rodrigues C, Gameiro P, Prieto M, de Castro B. Interaction of rifampicin and isoniazid with large unilamellar liposomes: Spectroscopic location studies. BBA Gen Subj 2003; 1620: 1-3.
[http://dx.doi.org/10.1016/S0304-4165(02)00528-7]
[187]
Zou Y, Lee HY, Seo YC, Ahn J. Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against foodborne pathogens. J Food Sci 2012; 77(3): M165-70.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02580.x] [PMID: 22329855]
[188]
Del Amo EM, Rimpelä AK, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2017; 57: 134-85.
[http://dx.doi.org/10.1016/j.preteyeres.2016.12.001] [PMID: 28028001]
[189]
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015; 115(19): 10938-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[190]
Zuidam NJ, Lee SS, Crommelin DJ. Sterilization of liposomes by heat treatment. Pharm Res 1993; 10(11): 1591-6.
[http://dx.doi.org/10.1023/A:1018916518515] [PMID: 8290471]
[191]
Grit M, Crommelin DJ. Chemical stability of liposomes: Implications for their physical stability. Chem Phys Lipids 1993; 64(1-3): 3-18.
[http://dx.doi.org/10.1016/0009-3084(93)90053-6] [PMID: 8242840]
[192]
Ishida T, Harashima H, Kiwada H. Liposome clearance. Biosci Rep 2002; 22(2): 197-224.
[http://dx.doi.org/10.1023/A:1020134521778] [PMID: 12428901]
[193]
LaBauve AE, Rinker TE, Noureddine A, et al. Lipid-Coated mesoporous silica nanoparticles for the delivery of the ML336 antiviral to inhibit encephalitic alphavirus infection. Sci Rep 2018; 8(1): 13990.
[http://dx.doi.org/10.1038/s41598-018-32033-w] [PMID: 30228359]
[194]
Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 2014; 4(9): 872-92.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[195]
Davis ME, Zuckerman JE, Choi CHJ, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010; 464(7291): 1067-70.
[http://dx.doi.org/10.1038/nature08956]
[196]
Dewangan HK. The emerging role of nanosuspensions for drug delivery and stability. Curr Nanomed 2021; 11(4): 213-23.
[http://dx.doi.org/10.2174/2468187312666211222123307]
[197]
Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[198]
Sonaje K, Chuang EY, Lin KJ, et al. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: Microscopic, ultrastructural, and computed-tomographic observations. Mol Pharm 2012; 9(5): 1271-9.
[http://dx.doi.org/10.1021/mp200572t] [PMID: 22462641]
[199]
Chua BY, Al Kobaisi M, Zeng W, Mainwaring D, Jackson DC. Chitosan microparticles and nanoparticles as biocompatible delivery vehicles for peptide and protein-based immunocontraceptive vaccines. Mol Pharm 2012; 9(1): 81-90.
[http://dx.doi.org/10.1021/mp200264m] [PMID: 22149016]
[200]
Qi R, Wang Y, Bruno PM, et al. Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nat Commun 2017; 8(1): 2166.
[http://dx.doi.org/10.1038/s41467-017-02390-7] [PMID: 29255160]
[201]
Ashton S, Song YH, Nolan J, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med 2016; 8(325): 325ra17.
[http://dx.doi.org/10.1126/scitranslmed.aad2355] [PMID: 26865565]
[202]
Kim Y, Park EJ, Na DH. Recent progress in dendrimer-based nanomedicine development. Arch Pharm Res 2018; 41(6): 571-82.
[http://dx.doi.org/10.1007/s12272-018-1008-4] [PMID: 29450862]
[203]
Ahmad Z, Shah A, Siddiq M, Kraatz HB. Polymeric micelles as drug delivery vehicles. RSC Advances 2014; 4(33): 17028-38.
[http://dx.doi.org/10.1039/C3RA47370H]
[204]
Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting. J Pharm Sci 2019; 108(2): 851-9.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013]
[205]
Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2009; 26(5): 1025-58.
[http://dx.doi.org/10.1007/s11095-008-9800-3] [PMID: 19107579]
[206]
Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 2011; 36(7): 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[207]
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[208]
He J, Perez MT, Zhang P, et al. A general approach to synthesize asymmetric hybrid nanoparticles by interfacial reactions. J Am Chem Soc 2012; 134(8): 3639-42.
[http://dx.doi.org/10.1021/ja210844h] [PMID: 22320198]
[209]
Lee CC, MacKay JA, Fréchet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005; 23(12): 1517-26.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[210]
Singh I, Rehni AK, Kalra R, Joshi G, Kumar M. Dendrimers and their pharmaceutical applications--a review. Pharmazie 2008; 63(7): 491-6.
[PMID: 18717480]
[211]
Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM. PEG-Epirubicin conjugates with high drug loading. J Bioact Compat Polym 2005; 20(3): 213-30.
[http://dx.doi.org/10.1177/0883911505053377]
[212]
Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007; 35(Pt 1): 61-7.
[http://dx.doi.org/10.1042/BST0350061] [PMID: 17233602]
[213]
Saraf S. Process optimization for the production of nanoparticles for drug delivery applications. Expert Opin Drug Deliv 2009; 6(2): 187-96.
[http://dx.doi.org/10.1517/17425240902735806] [PMID: 19239390]
[214]
Jesus S, Schmutz M, Som C, Borchard G, Wick P, Borges O. Hazard assessment of polymeric nanobiomaterials for drug delivery: What can we learn from literature so far. Front Bioeng Biotechnol 2019; 7: 261.
[http://dx.doi.org/10.3389/fbioe.2019.00261] [PMID: 31709243]
[215]
Stiriba SE, Frey H, Haag R. Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Angew Chem Int Ed Engl 2002; 41(8): 1329-34.
[216]
Salazar-González JA, González-Ortega O, Rosales-Mendoza S. Gold nanoparticles and vaccine development. Expert Rev Vaccines 2015; 14(9): 1197-211.
[http://dx.doi.org/10.1586/14760584.2015.1064772] [PMID: 26152550]
[217]
Marques Neto LM, Kipnis A, Junqueira-Kipnis AP. Role of metallic nanoparticles in vaccinology: Implications for infectious disease vaccine development. Front Immunol 2017; 8: 239.
[http://dx.doi.org/10.3389/fimmu.2017.00239] [PMID: 28337198]
[218]
Ding Y, Jiang Z, Saha K, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther 2014; 22(6): 1075-83.
[http://dx.doi.org/10.1038/mt.2014.30] [PMID: 24599278]
[219]
Roca M, Haes AJ. Probing cells with noble metal nanoparticle aggregates. Nanomedicine (Lond) 2008; 3(4): 555-65.
[http://dx.doi.org/10.2217/17435889.3.4.555] [PMID: 18694317]
[220]
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015; 10(4): 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]
[221]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[222]
Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv 2020; 2(9): 3764-87.
[http://dx.doi.org/10.1039/D0NA00472C]
[223]
Kato T, Takami Y, Kumar Deo V, Park EY. Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J Biotechnol 2019; 306: 177-84.
[http://dx.doi.org/10.1016/j.jbiotec.2019.10.007] [PMID: 31614169]
[224]
Dewangan HK, Pandey T, Maurya L, Singh S. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers. Int J Biol Macromol 2018; 111: 804-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.073] [PMID: 29343454]
[225]
Quan FS, Compans RW, Nguyen HH, Kang SM. Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J Virol 2008; 82(3): 1350-9.
[http://dx.doi.org/10.1128/JVI.01615-07] [PMID: 18032492]
[226]
Lee YT, Ko EJ, Lee Y, et al. Intranasal vaccination with M2e5x virus-like particles induces humoral and cellular immune responses conferring cross-protection against heterosubtypic influenza viruses. PLoS One 2018; 13(1): e0190868.
[http://dx.doi.org/10.1371/journal.pone.0190868] [PMID: 29324805]
[227]
Bundy BC, Swartz JR. Efficient disulfide bond formation in virus-like particles. J Biotechnol 2011; 154(4): 230-9.
[http://dx.doi.org/10.1016/j.jbiotec.2011.04.011] [PMID: 21536082]
[228]
Lu Y, Chan W, Ko BY, VanLang CC, Swartz JR. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci USA 2015; 112(40): 12360-5.
[http://dx.doi.org/10.1073/pnas.1510533112] [PMID: 26392546]
[229]
Bundy BC, Franciszkowicz MJ, Swartz JR. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng 2008; 100(1): 28-37.
[http://dx.doi.org/10.1002/bit.21716] [PMID: 18023052]
[230]
Ashley CE, Carnes EC, Phillips GK, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 2011; 5(7): 5729-45.
[http://dx.doi.org/10.1021/nn201397z] [PMID: 21615170]
[231]
Hovlid ML, Lau JL, Breitenkamp K, et al. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS Nano 2014; 8(8): 8003-14.
[http://dx.doi.org/10.1021/nn502043d] [PMID: 25073013]
[232]
Peyret H, Gehin A, Thuenemann EC, et al. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One 2015; 10(4): e0120751.
[http://dx.doi.org/10.1371/journal.pone.0120751] [PMID: 25830365]
[233]
Patel KG, Swartz JR. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug Chem 2011; 22(3): 376-87.
[http://dx.doi.org/10.1021/bc100367u] [PMID: 21355575]
[234]
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): Toward better engineering of VLPs. Front Immunol 2020; 11: 1100.
[http://dx.doi.org/10.3389/fimmu.2020.01100] [PMID: 32582186]
[235]
Champion J A, Katare Y K, Mitragotri S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. j controlRelease 2007; 121(1-2): 3-9.
[236]
Henry BD, Neill DR, Becker KA, et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 2015; 33(1): 81-8.
[http://dx.doi.org/10.1038/nbt.3037] [PMID: 25362245]
[237]
Hu CMJ, Fang RH, Copp J, Luk BT, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 2013; 8(5): 336-40.
[http://dx.doi.org/10.1038/nnano.2013.54] [PMID: 23584215]
[238]
Keller MD, Ching KL, Liang FX, et al. Decoy exosomes provide protection against bacterial toxins. Nature 2020; 579(7798): 260-4.
[http://dx.doi.org/10.1038/s41586-020-2066-6] [PMID: 32132711]
[239]
Zhang P, Chen Y, Zeng Y, et al. Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proc Natl Acad Sci USA 2015; 112(45): E6129-38.
[http://dx.doi.org/10.1073/pnas.1505799112] [PMID: 26504197]
[240]
Wang J, Li P, Yu Y, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 2020; 367(6480): eaau0810.
[http://dx.doi.org/10.1126/science.aau0810] [PMID: 32079747]
[241]
Zhang P, Zhang L, Qin Z, et al. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv Mater 2018; 30(7): 1705350.
[http://dx.doi.org/10.1002/adma.201705350] [PMID: 29280210]
[242]
Rao L, Xia S, Xu W, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci USA 2020; 117(44): 27141-7.
[http://dx.doi.org/10.1073/pnas.2014352117] [PMID: 33024017]
[243]
Zhang Q, Honko A, Zhou J, et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett 2020; 20(7): 5570-4.
[http://dx.doi.org/10.1021/acs.nanolett.0c02278] [PMID: 32551679]
[244]
Patil AA, Rhee WJ. Exosomes: Biogenesis, composition, functions, and their role in pre-metastatic niche formation. Biotechnol Bioprocess Eng; BBE 2019; 24(5): 689-701.
[http://dx.doi.org/10.1007/s12257-019-0170-y]
[245]
Kuate S, Cinatl J, Doerr HW, Uberla K. Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology 2007; 362(1): 26-37.
[http://dx.doi.org/10.1016/j.virol.2006.12.011] [PMID: 17258782]
[246]
Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol 2010; 21(7): 1218-22.
[http://dx.doi.org/10.1681/ASN.2009111156] [PMID: 20558536]
[247]
Buyanovskaya OA, Kuleshov NP, Nikitina VA, Voronina ES, Katosova LD, Bochkov NP. Spontaneous aneuploidy and clone formation in adipose tissue stem cells during different periods of culturing. Bull Exp Biol Med 2009; 148(1): 109-12.
[http://dx.doi.org/10.1007/s10517-009-0647-3] [PMID: 19902110]
[248]
Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 2009; 20(5): 1053-67.
[http://dx.doi.org/10.1681/ASN.2008070798] [PMID: 19389847]
[249]
Baj-Krzyworzeka M, Majka M, Pratico D, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 2002; 30(5): 450-9.
[http://dx.doi.org/10.1016/S0301-472X(02)00791-9] [PMID: 12031651]
[250]
Gasser O, Hess C, Miot S, Deon C, Sanchez JC, Schifferli JA. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 2003; 285(2): 243-57.
[http://dx.doi.org/10.1016/S0014-4827(03)00055-7] [PMID: 12706119]
[251]
Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS. New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 2004; 53(4): 210-30.
[http://dx.doi.org/10.2302/kjm.53.210] [PMID: 15647627]
[252]
Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 2003; 114(1): 33-45.
[http://dx.doi.org/10.1016/S0092-8674(03)00513-0] [PMID: 12859896]
[253]
Safaei R, Larson BJ, Cheng TC, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 2005; 4(10): 1595-604.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0102] [PMID: 16227410]
[254]
Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: Association with gene expression and chemosensitivity profiles. Cancer Res 2003; 63(15): 4331-7.
[PMID: 12907600]
[255]
Dewangan HK, Singh S, Mishra R, Dubey RK. A review on application of nanoadjuvant as delivery system. Int J App Pharm 2020; 12(4): 24-33.
[http://dx.doi.org/10.22159/ijap.2020v12i4.36856]
[256]
Fiandra L, Colombo M, Mazzucchelli S, et al. Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine 2015; 11(6): 1387-97.
[http://dx.doi.org/10.1016/j.nano.2015.03.009] [PMID: 25839392]
[257]
Mazur NI, Higgins D, Nunes MC, et al. The respiratory syncytial virus vaccine landscape: Lessons from the graveyard and promising candidates. Lancet Infect Dis 2018; 18(10): e295-311.
[http://dx.doi.org/10.1016/S1473-3099(18)30292-5] [PMID: 29914800]
[258]
Little SJ, Holte S, Routy J-P, et al. Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 2002; 347(6): 385-94.
[http://dx.doi.org/10.1056/NEJMoa013552] [PMID: 12167680]
[259]
Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ. Nanotechnology: A focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 2006; 1(3): 340-50.
[http://dx.doi.org/10.1007/s11481-006-9032-4] [PMID: 18040810]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy