Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Human microRNA-4433 (hsa-miR-4443) Targets 18 Genes to be a Risk Factor of Neurodegenerative Diseases

Author(s): Xing Ge, Tingting Yao, Chaoran Zhang, Qingqing Wang, Xuxu Wang and Li-Chun Xu*

Volume 19, Issue 7, 2022

Published on: 31 August, 2022

Page: [511 - 522] Pages: 12

DOI: 10.2174/1567205019666220805120303

open access plus

Abstract

Background: Neurodegenerative diseases, such as Alzheimer's disease patients (AD), Huntington's disease (HD) and Parkinson’s disease (PD), are common causes of morbidity, mortality, and cognitive impairment in older adults.

Objective: We aimed to understand the transcriptome characteristics of the cortex of neurodegenerative diseases and to provide an insight into the target genes of differently expressed microRNAs in the occurrence and development of neurodegenerative diseases.

Methods: The Limma package of R software was used to analyze GSE33000, GSE157239, GSE64977 and GSE72962 datasets to identify the differentially expressed genes (DEGs) and microRNAs in the cortex of neurodegenerative diseases. Bioinformatics methods, such as GO enrichment analysis, KEGG enrichment analysis and gene interaction network analysis, were used to explore the biological functions of DEGs. Weighted gene co-expression network analysis (WGCNA) was used to cluster DEGs into modules. RNA22, miRDB, miRNet 2.0 and TargetScan7 databases were performed to predict the target genes of microRNAs.

Results: Among 310 Alzheimer's disease (AD) patients, 157 Huntington's disease (HD) patients and 157 non-demented control (Con) individuals, 214 co-DEGs were identified. Those co-DEGs were filtered into 2 different interaction network complexes, representing immune-related genes and synapserelated genes. The WGCNA results identified five modules: yellow, blue, green, turquoise, and brown. Most of the co-DEGs were clustered into the turquoise module and blue module, which respectively regulated synapse-related function and immune-related function. In addition, human microRNA-4433 (hsa-miR-4443), which targets 18 co-DEGs, was the only 1 co-up-regulated microRNA identified in the cortex of neurodegenerative diseases.

Conclusion: 214 DEGs and 5 modules regulate the immune-related and synapse-related function of the cortex in neurodegenerative diseases. Hsa-miR-4443 targets 18 co-DEGs and may be a potential molecular mechanism in neurodegenerative diseases' occurrence and development.

Keywords: neurodegenerative diseases, differentially expressed genes, bioinformatics analysis, weighted gene co-expression network analysis, differentially expressed microRNA, risk factor

[1]
Nazam F, Shaikh S, Nazam N, Alshahrani AS, Hasan GM, Hassan MI. Mechanistic insights into the pathogenesis of neuro-degenerative diseases: Towards the development of effective therapy. Mol Cell Biochem 2021; 476(7): 2739-52.
[http://dx.doi.org/10.1007/s11010-021-04120-6] [PMID: 33687588]
[2]
Marešová P, Mohelská H, Dolejš J. Kuča K. Socio-economic aspects of Alzheimer’s disease. Curr Alzheimer Res 2015; 12(9): 903-11.
[http://dx.doi.org/10.2174/156720501209151019111448] [PMID: 26510983]
[3]
Beagle AJ, Zahir A, Borzello M, et al. Amount and delay insensitivity during intertemporal choice in three neurodegenerative diseases reflects dorsomedial prefrontal atrophy. Cortex 2020; 124: 54-65.
[http://dx.doi.org/10.1016/j.cortex.2019.10.009] [PMID: 31837518]
[4]
Stanton BR, Leigh PN, Howard RJ, Barker GJ, Brown RG. Behavioural and emotional symptoms of apathy are associated with distinct patterns of brain atrophy in neurodegenerative disorders. J Neurol 2013; 260(10): 2481-90.
[http://dx.doi.org/10.1007/s00415-013-6989-9] [PMID: 23793818]
[5]
Narayanan M, Huynh JL, Wang K, et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol Syst Biol 2014; 10(7): 743.
[http://dx.doi.org/10.15252/msb.20145304] [PMID: 25080494]
[6]
Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019; 570(7761): 332-7.
[http://dx.doi.org/10.1038/s41586-019-1195-2] [PMID: 31042697]
[7]
Alieva AK, Filatova EV, Kolacheva AA, et al. Transcriptome profile changes in mice with MPTP-induced early stages of Parkinson’s disease. Mol Neurobiol 2017; 54(9): 6775-84.
[http://dx.doi.org/10.1007/s12035-016-0190-y] [PMID: 27757834]
[8]
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9(1): 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[9]
Juźwik CA, S Drake S, Zhang Y, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182: 101664.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101664] [PMID: 31356849]
[10]
Ridolfi B, Abdel-Haq H. Neurodegenerative disorders treatment: The MicroRNA role. Curr Gene Ther 2017; 17(5): 327-63.
[PMID: 29357791]
[11]
Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem 2010; 285(24): 18344-51.
[http://dx.doi.org/10.1074/jbc.M110.112664] [PMID: 20395292]
[12]
Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer’s disease patients. J Biol Chem 2012; 287(37): 31298-310.
[http://dx.doi.org/10.1074/jbc.M112.366336] [PMID: 22733824]
[13]
Long JM, Ray B, Lahiri DK. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer’s disease subjects. J Biol Chem 2014; 289(8): 5184-98.
[http://dx.doi.org/10.1074/jbc.M113.518241] [PMID: 24352696]
[14]
Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease. Mol Psychiatry 2019; 24(3): 345-63.
[http://dx.doi.org/10.1038/s41380-018-0266-3] [PMID: 30470799]
[15]
Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6): 1203-17.
[http://dx.doi.org/10.1016/j.cell.2006.07.031] [PMID: 16990141]
[16]
Chen Y, Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127-31.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[17]
Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 2019; 20(1): 18.
[http://dx.doi.org/10.1186/s13059-019-1629-z] [PMID: 30670076]
[18]
Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 2020; 48(W1): W244-51.
[http://dx.doi.org/10.1093/nar/gkaa467] [PMID: 32484539]
[19]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: 4.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[20]
Sabaie H, Talebi M, Gharesouarn J, et al. Identification and analysis of BCAS4/hsa-miR-185-5p/SHISA7 competing endogenous RNA axis in late-onset Alzheimer’s disease using bioinformatic and experimental approaches. Front Aging Neurosci 2022; 14: 812169.
[http://dx.doi.org/10.3389/fnagi.2022.812169] [PMID: 35264942]
[21]
Hoss AG, Labadorf A, Latourelle JC, et al. miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal involvement. BMC Med Genomics 2015; 8(1): 10.
[http://dx.doi.org/10.1186/s12920-015-0083-3] [PMID: 25889241]
[22]
Wake C, Labadorf A, Dumitriu A, et al. Novel microRNA discovery using small RNA sequencing in post-mortem human brain. BMC Genomics 2016; 17(1): 776.
[http://dx.doi.org/10.1186/s12864-016-3114-3] [PMID: 27716130]
[23]
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[24]
Chen L, Zhang Y-H, Wang S, Zhang Y, Huang T, Cai Y-D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One 2017; 12(9): e0184129.
[http://dx.doi.org/10.1371/journal.pone.0184129] [PMID: 28873455]
[25]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[26]
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 2017; 9(7): a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[27]
Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154(2): 204-19.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[28]
Farhadian M, Rafat SA, Panahi B, Mayack C. Weighted gene co-expression network analysis identifies modules and functionally enriched pathways in the lactation process. Sci Rep 2021; 11(1): 2367.
[http://dx.doi.org/10.1038/s41598-021-81888-z] [PMID: 33504890]
[29]
Rangaraju S, Dammer EB, Raza SA, et al. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol Neurodegener 2018; 13(1): 24.
[http://dx.doi.org/10.1186/s13024-018-0254-8] [PMID: 29784049]
[30]
Chuang YH, Lu AT, Paul KC, et al. Longitudinal epigenome-wide methylation study of cognitive decline and motor progression in Parkinson’s disease. J Parkinsons Dis 2019; 9(2): 389-400.
[http://dx.doi.org/10.3233/JPD-181549] [PMID: 30958317]
[31]
Tian Z, He W, Tang J, et al. Identification of important modules and biomarkers in breast cancer based on WGCNA. OncoTargets Ther 2020; 13: 6805-17.
[http://dx.doi.org/10.2147/OTT.S258439] [PMID: 32764968]
[32]
Wang M, Wang L, Pu L, et al. LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA). Genomics 2020; 112(3): 2302-8.
[http://dx.doi.org/10.1016/j.ygeno.2020.01.001] [PMID: 31923616]
[33]
Dai Y, Sun X, Wang C, et al. Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage (Brassica rapa L.) during vernalization. BMC Genomics 2021; 22(1): 236.
[http://dx.doi.org/10.1186/s12864-021-07510-8] [PMID: 33823810]
[34]
Arena A, Iyer AM, Milenkovic I, et al. Developmental expression and dysregulation of miR-146a and miR-155 in down’s syndrome and mouse models of down’s syndrome and Alzheimer’s disease. Curr Alzheimer Res 2017; 14(12): 1305-17.
[http://dx.doi.org/10.2174/1567205014666170706112701] [PMID: 28720071]
[35]
Hu W, Wen L, Cao F, Wang Y. Down-Regulation of Mir-107 worsen spatial memory by suppressing SYK expression and inactivating NF-KB signaling pathway. Curr Alzheimer Res 2019; 16(2): 135-45.
[http://dx.doi.org/10.2174/1567205016666181212154347] [PMID: 30543171]
[36]
Chen X, Zhong SL, Lu P, et al. miR-4443 participates in the malignancy of breast cancer. PLoS One 2016; 11(8): e0160780.
[http://dx.doi.org/10.1371/journal.pone.0160780] [PMID: 27504971]
[37]
Wang J, Zhang Q, Wang D, et al. Microenvironment-induced TIMP2 loss by cancer-secreted exosomal miR-4443 promotes liver metastasis of breast cancer. J Cell Physiol 2020; 235(7-8): 5722-35.
[http://dx.doi.org/10.1002/jcp.29507] [PMID: 31970775]
[38]
Drusco A, Fadda P, Nigita G, et al. Circulating micrornas predict survival of patients with tumors of glial origin. EBioMedicine 2018; 30: 105-12.
[http://dx.doi.org/10.1016/j.ebiom.2018.03.022] [PMID: 29643013]
[39]
Gao Y, Xu Y, Wang J, Yang X, Wen L, Feng J. lncRNA MNX1-AS1 promotes glioblastoma progression through inhibition of miR-4443. Oncol Res 2019; 27(3): 341-7.
[http://dx.doi.org/10.3727/096504018X15228909735079] [PMID: 29678219]
[40]
Li M, Zhang X, Ding X, et al. Long Noncoding RNA LINC00460 promotes cell progression by sponging miR-4443 in head and neck squamous cell carcinoma. Cell Transplant 2020; 29: 963689720927405.
[http://dx.doi.org/10.1177/0963689720927405] [PMID: 32478564]
[41]
Ebrahimi SO, Reiisi S. Downregulation of miR-4443 and miR-5195-3p in ovarian cancer tissue contributes to metastasis and tumorigenesis. Arch Gynecol Obstet 2019; 299(5): 1453-8.
[http://dx.doi.org/10.1007/s00404-019-05107-x] [PMID: 30810880]
[42]
Meerson A. Leptin-responsive MiR-4443 is a small regulatory RNA independent of the canonic MicroRNA biogenesis pathway. Biomolecules 2020; 10(2): E293.
[http://dx.doi.org/10.3390/biom10020293] [PMID: 32069948]
[43]
Zhang W, Qiao B, Fan J. Overexpression of miR-4443 promotes the resistance of non-small cell lung cancer cells to epirubicin by targeting INPP4A and regulating the activation of JAK2/STAT3 pathway. Pharmazie 2018; 73(7): 386-92.
[PMID: 30001772]
[44]
Song Z, Jia G, Ma P, Cang S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci 2021; 276: 119399.
[http://dx.doi.org/10.1016/j.lfs.2021.119399] [PMID: 33781830]
[45]
Gong J, Wang J, Liu T, Hu J, Zheng J. lncRNA FEZF1 AS1 contributes to cell proliferation, migration and invasion by sponging miR 4443 in hepatocellular carcinoma. Mol Med Rep 2018; 18(6): 5614-20.
[http://dx.doi.org/10.3892/mmr.2018.9585] [PMID: 30365146]
[46]
Zhang Z, Yang X, Liu O, et al. Differentially expressed microRNAs in peripheral blood mononuclear cells of non-segmental vitiligo and their clinical significance. J Clin Lab Anal 2021; 35(2): e23648.
[http://dx.doi.org/10.1002/jcla.23648] [PMID: 33169883]
[47]
Chen Y, Ding YY, Ren Y, et al. Identification of differentially expressed microRNAs in acute Kawasaki disease. Mol Med Rep 2018; 17(1): 932-8.
[PMID: 29115644]
[48]
Ma J, Gui H, Tang Y, et al. In silico Identification of 10 hub genes and an miRNA-mRNA regulatory network in acute kawasaki disease. Front Genet 2021; 12: 585058.
[http://dx.doi.org/10.3389/fgene.2021.585058] [PMID: 33868359]
[49]
Shefler I, Salamon P, Levi-Schaffer F, Mor A, Hershko AY, Mekori YA. MicroRNA-4443 regulates mast cell activation by T cell-derived microvesicles. J Allergy Clin Immunol 2018; 141(6): 2132-2141.e4.
[http://dx.doi.org/10.1016/j.jaci.2017.06.045] [PMID: 28823811]
[50]
Li S, Lu G, Wang D, et al. MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur J Neurol 2020; 27(8): 1625-37.
[http://dx.doi.org/10.1111/ene.14282] [PMID: 32337817]
[51]
Ghani M, Sato C, Lee JH, et al. Evidence of recessive Alzheimer’s disease loci in a Caribbean Hispanic data set: Genome-wide survey of runs of homozygosity. JAMA Neurol 2013; 70(10): 1261-7.
[http://dx.doi.org/10.1001/jamaneurol.2013.3545] [PMID: 23978990]
[52]
Aminyavari S, Zahmatkesh M, Khodagholi F, Sanati M. Anxiolytic impact of Apelin-13 in a rat model of Alzheimer’s disease: Involvement of glucocorticoid receptor and FKBP5. Peptides 2019; 118: 170102.
[http://dx.doi.org/10.1016/j.peptides.2019.170102] [PMID: 31199948]
[53]
Arlt S, Demiralay C, Tharun B, et al. Genetic risk factors for depression in Alzheimer’s disease patients. Curr Alzheimer Res 2013; 10(1): 72-81.
[http://dx.doi.org/10.2174/156720513804871435] [PMID: 23157339]
[54]
Schröder N, Schaffrath A, Welter JA, et al. Inhibition of formyl peptide receptors improves the outcome in a mouse model of Alzheimer disease. J Neuroinflammation 2020; 17(1): 131.
[http://dx.doi.org/10.1186/s12974-020-01816-2] [PMID: 32331524]
[55]
Le Y, Ye RD, Gong W, Li J, Iribarren P, Wang JM. Identification of functional domains in the formyl peptide receptor-like 1 for agonist-induced cell chemotaxis. FEBS J 2005; 272(3): 769-78.
[http://dx.doi.org/10.1111/j.1742-4658.2004.04514.x] [PMID: 15670157]
[56]
Haque ME, Azam S, Akther M, Cho DY, Kim IS, Choi DK. The neuroprotective effects of gpr4 inhibition through the attenuation of caspase mediated apoptotic cell death in an MPTP induced mouse model of Parkinson’s disease. Int J Mol Sci 2021; 22(9): 4674.
[http://dx.doi.org/10.3390/ijms22094674] [PMID: 33925146]
[57]
Wang Q, Li WX, Dai SX, et al. Meta-analysis of parkinson’s disease and Alzheimer’s disease revealed commonly impaired pathways and dysregulation of NRF2-dependent genes. J Alzheimers Dis 2017; 56(4): 1525-39.
[http://dx.doi.org/10.3233/JAD-161032] [PMID: 28222515]
[58]
Baltus THL, Morelli NR, de Farias CC, et al. Association of -94 ATTG insertion/deletion NFkB1 and c.*126G>A NFkBIA genetic polymorphisms with oxidative and nitrosative stress biomarkers in Brazilian subjects with Parkinson’s disease. Neurosci Lett 2021; 740: 135487.
[http://dx.doi.org/10.1016/j.neulet.2020.135487] [PMID: 33161109]
[59]
Horvath I, Iashchishyn IA, Moskalenko RA, et al. Co-aggregation of pro-inflammatory S100A9 with α-synuclein in Parkinson’s disease: Ex vivo and in vitro studies. J Neuroinflammation 2018; 15(1): 172.
[http://dx.doi.org/10.1186/s12974-018-1210-9] [PMID: 29866153]
[60]
Leri M, Chaudhary H, Iashchishyn IA, et al. Natural compound from olive oil inhibits S100A9 amyloid formation and cytotoxicity: Implications for preventing Alzheimer’s disease. ACS Chem Neurosci 2021; 12(11): 1905-18.
[http://dx.doi.org/10.1021/acschemneuro.0c00828] [PMID: 33979140]
[61]
Recabarren D, Alarcón M. Gene networks in neurodegenerative disorders. Life Sci 2017; 183: 83-97.
[http://dx.doi.org/10.1016/j.lfs.2017.06.009] [PMID: 28623007]
[62]
Leandro GS, Evangelista AF, Lobo RR, Xavier DJ, Moriguti JC, Sakamoto-Hojo ET. Changes in expression profiles revealed by transcriptomic analysis in peripheral blood mononuclear cells of Alzheimer’s disease patients. J Alzheimers Dis 2018; 66(4): 1483-95.
[http://dx.doi.org/10.3233/JAD-170205] [PMID: 30400085]
[63]
Willmann G, Schäferhoff K, Fischer MD, et al. Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats. Invest Ophthalmol Vis Sci 2011; 52(10): 7529-37.
[http://dx.doi.org/10.1167/iovs.11-7838] [PMID: 21873684]
[64]
Zenchak JR, Palmateer B, Dorka N, et al. Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson’s disease mouse model. J Neurosci Res 2020; 98(3): 458-68.
[http://dx.doi.org/10.1002/jnr.24237] [PMID: 29577367]
[65]
Wang S, Ji D, Yang Q, et al. NEFLb impairs early nervous system development via regulation of neuron apoptosis in zebrafish. J Cell Physiol 2019; 234(7): 11208-18.
[http://dx.doi.org/10.1002/jcp.27771] [PMID: 30569449]
[66]
Emilsson L, Saetre P, Jazin E. Low mRNA levels of RGS4 splice variants in Alzheimer’s disease: Association between a rare haplotype and decreased mRNA expression. Synapse 2006; 59(3): 173-6.
[http://dx.doi.org/10.1002/syn.20226] [PMID: 16358332]
[67]
Shi Z, Zhang K, Zhou H, et al. Increased miR-34c mediates synaptic deficits by targeting synaptotagmin 1 through ROS-JNK-p53 pathway in Alzheimer’s disease. Aging Cell 2020; 19(3): e13125.
[http://dx.doi.org/10.1111/acel.13125] [PMID: 32092796]
[68]
Zhang Y, Yang X, Zhuang J, Zhang H, Gao C. β-Amyloid activates reactive astrocytes by enhancing glycolysis of astrocytes. Mol Biol Rep 2022; 49: 4699-707.
[http://dx.doi.org/10.1007/s11033-022-07319-y] [PMID: 35534584]
[69]
Blair LJ, Baker JD, Sabbagh JJ, Dickey CA. The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer’s disease. J Neurochem 2015; 133(1): 1-13.
[http://dx.doi.org/10.1111/jnc.13033] [PMID: 25628064]
[70]
Bailus BJ, Scheeler SM, Simons J, et al. Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels. Autophagy 2021; 17(12): 4119-40.
[http://dx.doi.org/10.1080/15548627.2021.1904489] [PMID: 34024231]
[71]
O’Leary JC III, Dharia S, Blair LJ, et al. A new anti-depressive strategy for the elderly: Ablation of FKBP5/FKBP51. PLoS One 2011; 6(9): e24840.
[http://dx.doi.org/10.1371/journal.pone.0024840] [PMID: 21935478]
[72]
Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 2005; 19(6): 1654-66.
[http://dx.doi.org/10.1210/me.2005-0071] [PMID: 15831525]
[73]
Blair LJ, Nordhues BA, Hill SE, et al. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 2013; 123(10): 4158-69.
[http://dx.doi.org/10.1172/JCI69003] [PMID: 23999428]
[74]
Qiu B, Zhong Z, Righter S, et al. FKBP51 modulates hippocampal size and function in post-translational regulation of Parkin. Cell Mol Life Sci 2022; 79(3): 175.
[http://dx.doi.org/10.1007/s00018-022-04167-8] [PMID: 35244772]
[75]
Slowik A, Merres J, Elfgen A, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener 2012; 7(1): 55.
[http://dx.doi.org/10.1186/1750-1326-7-55] [PMID: 23164356]
[76]
Wang X, Zhang Y, Wan X, et al. Responsive expression of MafF to β-amyloid-induced oxidative stress. Dis Markers 2020; 2020: 8861358.
[http://dx.doi.org/10.1155/2020/8861358] [PMID: 33488846]
[77]
O’Neill LA, Kaltschmidt C. NF-kappa B: A crucial transcription factor for glial and neuronal cell function. Trends Neurosci 1997; 20(6): 252-8.
[http://dx.doi.org/10.1016/S0166-2236(96)01035-1] [PMID: 9185306]
[78]
Oikawa K, Odero GL, Platt E, et al. NF-κB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus. BMC Neurosci 2012; 13(1): 45.
[http://dx.doi.org/10.1186/1471-2202-13-45] [PMID: 22553912]
[79]
Boersma MC, Dresselhaus EC, De Biase LM, Mihalas AB, Bergles DE, Meffert MK. A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis. J Neurosci 2011; 31(14): 5414-25.
[http://dx.doi.org/10.1523/JNEUROSCI.2456-10.2011] [PMID: 21471377]
[80]
Liu L, Wu Q, Zhong W, et al. Microarray analysis of differential gene expression in Alzheimer’s disease identifies potential biomarkers with diagnostic value. Med Sci Monit 2020; 26: e919249.
[http://dx.doi.org/10.12659/MSM.919249] [PMID: 31984950]
[81]
Palomino-Alonso M, Lachén-Montes M, González-Morales A, et al. Network-driven proteogenomics unveils an aging-related imbalance in the olfactory IκBα-NFκB p65 complex functionality in Tg2576 Alzheimer’s disease mouse model. Int J Mol Sci 2017; 18(11): E2260.
[http://dx.doi.org/10.3390/ijms18112260] [PMID: 29077059]
[82]
Horvath I, Jia X, Johansson P, et al. Pro-inflammatory S100A9 protein as a robust biomarker differentiating early stages of cognitive impairment in Alzheimer’s disease. ACS Chem Neurosci 2016; 7(1): 34-9.
[http://dx.doi.org/10.1021/acschemneuro.5b00265] [PMID: 26550994]
[83]
Kim HJ, Chang KA, Ha TY, et al. S100A9 knockout decreases the memory impairment and neuropathology in crossbreed mice of Tg2576 and S100A9 knockout mice model. PLoS One 2014; 9(2): e88924.
[http://dx.doi.org/10.1371/journal.pone.0088924] [PMID: 24586443]
[84]
Handley RR, Reid SJ, Brauning R, et al. Brain urea increase is an early Huntington’s disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proc Natl Acad Sci USA 2017; 114(52): E11293-302.
[http://dx.doi.org/10.1073/pnas.1711243115] [PMID: 29229845]
[85]
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res 2018; 265: 25-38.
[http://dx.doi.org/10.1016/j.psychres.2018.04.036] [PMID: 29680514]
[86]
Bender K, Nasrollahzadeh P, Timpert M, Liu B, Pott L, Kienitz MC. A role for RGS10 in beta-adrenergic modulation of G-protein-activated K+ (GIRK) channel current in rat atrial myocytes. J Physiol 2008; 586(8): 2049-60.
[http://dx.doi.org/10.1113/jphysiol.2007.148346] [PMID: 18276732]
[87]
Jęśko H, Wieczorek I, Wencel PL, Gąssowska-Dobrowolska M, Lukiw WJ, Strosznajder RP. Age-related transcriptional deregulation of genes coding synaptic proteins in Alzheimer’s disease murine model: Potential neuroprotective effect of fingolimod. Front Mol Neurosci 2021; 14: 660104.
[http://dx.doi.org/10.3389/fnmol.2021.660104] [PMID: 34305524]
[88]
Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 2018; 14(10): 577-89.
[http://dx.doi.org/10.1038/s41582-018-0058-z] [PMID: 30171200]
[89]
Ficulle E, Kananathan S, Airey D, et al. A human tau seeded neuronal cell model recapitulates molecular responses associated with Alzheimer’s disease. Sci Rep 2022; 12(1): 2673.
[http://dx.doi.org/10.1038/s41598-022-06411-4] [PMID: 35177665]
[90]
Fernandez-Martos CM, King AE, Atkinson RA, Woodhouse A, Vickers JC. Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer’s disease. Neurobiol Aging 2015; 36(10): 2757-67.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.07.003] [PMID: 26344875]
[91]
Sap KA, Guler AT, Bury A, Dekkers D, Demmers JAA, Reits EA. Identification of full-length wild-type and mutant huntingtin interacting proteins by crosslinking immunoprecipitation in mice brain cortex. J Huntingtons Dis 2021; 10(3): 335-47.
[http://dx.doi.org/10.3233/JHD-210476] [PMID: 34151850]
[92]
Liu S, Fan M, Xu JX, et al. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J Neuroinflammation 2022; 19(1): 35.
[http://dx.doi.org/10.1186/s12974-022-02393-2] [PMID: 35130907]
[93]
Kuzuya A, Zoltowska KM, Post KL, et al. Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol 2016; 14(1): 25.
[http://dx.doi.org/10.1186/s12915-016-0248-3] [PMID: 27036734]
[94]
Fathy YY, Hoogers SE, Berendse HW, et al. Differential insular cortex sub-regional atrophy in neurodegenerative diseases: A systematic review and meta-analysis. Brain Imaging Behav 2020; 14(6): 2799-816.
[http://dx.doi.org/10.1007/s11682-019-00099-3] [PMID: 31011951]
[95]
Chen WT, Lu A, Craessaerts K, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 2020; 182(4): 976-991.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.038] [PMID: 32702314]
[96]
Olah M, Menon V, Habib N, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun 2020; 11(1): 6129.
[http://dx.doi.org/10.1038/s41467-020-19737-2] [PMID: 33257666]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy