Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Poststroke Cognitive Impairment: A Longitudinal Follow-Up and Pre/Poststroke Mini-Mental State Examination Comparison

Author(s): Chien-Tai Hong, Hsun-Hua Lee, Chen-Chih Chung, Wei-Ting Chiu, Ting-Yi Lee, David Yen-Ting Chen, Li-Kai Huang, Chaur-Jong Hu and Lung Chan*

Volume 19, Issue 10, 2022

Published on: 31 October, 2022

Page: [716 - 723] Pages: 8

DOI: 10.2174/1567205019666220802151945

Price: $65

Abstract

Background: Poststroke cognitive impairment (PSCI) is a prevalent cause of disability in people with stroke. PSCI results from either lesion-dependent loss of cognitive function or augmentation of Alzheimer's pathology due to vascular insufficiency. The lack of prestroke cognitive assessments limits the clear understanding of the impact of PSCI on cognition.

Objective: The present study aims to make a direct comparison of longitudinal cognitive assessment results to clarify the impact of ischemic stroke on PSCI and assess the cognitive decline in PSCI compared to people with Alzheimer's disease (AD).

Methods: All study participants had their Mini-Mental State Examination (MMSE) at the chronic poststroke stage (≥6 months after stroke), which was compared with prestroke or acute poststroke (<6 months after stroke) MMSE to investigate the two aspects of PSCI. A group of patients with AD was used to reference the speed of neurodegenerative cognitive deterioration. Repeated measures analysis of variance was used to compare the longitudinal change of MMSE.

Results: MMSE score between acute and chronic poststroke revealed a 1.8 ± 6.49 decline per year (n=76), which was not significantly different from the AD patients who underwent cholinesterase inhibitors treatment (-1.11 ± 2.61, p=0.35, n=232). MMSE score between prestroke and chronic poststroke (n=33) revealed a significant decline (−6.52 ± 6.86, p < 0.001). In addition, their cognitive deterioration was significantly associated with sex, age, and stroke over the white matter or basal ganglia.

Conclusion: Ischemic stroke substantially affects cognition with an average six-point drop in MMSE. The rate of cognitive decline in PSCI was similar to AD, and those with white matter or basal ganglia infarct were at greater risk of PSCI.

Keywords: stroke, cognition, longitudinal, post-stroke cognitive impairment, cognitive decline, Alzheimer’s disease

[1]
GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(5): 439-58.
[http://dx.doi.org/10.1016/S1474-4422(19)30034-1] [PMID: 30871944]
[2]
Yang Y, Shi YZ, Zhang N, et al. The disability rate of 5-year post-stroke and its correlation factors: A national survey in China. PLoS One 2016; 11(11): e0165341.
[http://dx.doi.org/10.1371/journal.pone.0165341] [PMID: 27824877]
[3]
Sun JH, Tan L, Yu JT. Post-stroke cognitive impairment: Epidemiology, mechanisms and management. Ann Transl Med 2014; 2(8): 80.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2014.08.05] [PMID: 25333055]
[4]
Weaver NA, Kuijf HJ, Aben HP, et al. Strategic infarct locations for post-stroke cognitive impairment: A pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol 2021; 20(6): 448-59.
[http://dx.doi.org/10.1016/S1474-4422(21)00060-0] [PMID: 33901427]
[5]
Attems J, Jellinger K. Neuropathological correlates of cerebral multimorbidity. Curr Alzheimer Res 2013; 10(6): 569-77.
[http://dx.doi.org/10.2174/15672050113109990002] [PMID: 23627751]
[6]
Jellinger KA, Attems J. Challenges of multimorbidity of the aging brain: A critical update. J Neural Transm (Vienna) 2015; 122(4): 505-21.
[http://dx.doi.org/10.1007/s00702-014-1288-x] [PMID: 25091618]
[7]
Rahimi J, Kovacs GG. Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther 2014; 6(9): 82.
[http://dx.doi.org/10.1186/s13195-014-0082-1] [PMID: 25419243]
[8]
Spekker E, Tanaka M, Szabó Á, Vécsei L. Neurogenic inflammation: The participant in migraine and recent advancements in translational research. Biomedicines 2021; 10(1): 76.
[http://dx.doi.org/10.3390/biomedicines10010076] [PMID: 35052756]
[9]
Desmond DW, Moroney JT, Paik MC, et al. Frequency and clinical determinants of dementia after ischemic stroke. Neurology 2000; 54(5): 1124-31.
[http://dx.doi.org/10.1212/WNL.54.5.1124] [PMID: 10720286]
[10]
Török N, Tanaka M, Vécsei L. Searching for peripheral biomarkers in neurodegenerative diseases: The Tryptophan-Kynurenine metabolic pathway. Int J Mol Sci 2020; 21(24): 9338.
[http://dx.doi.org/10.3390/ijms21249338] [PMID: 33302404]
[11]
Chi NF, Chao SP, Huang LK, et al. Plasma amyloid beta and tau levels are predictors of post-stroke cognitive impairment: A longitudinal study. Front Neurol 2019; 10: 715.
[http://dx.doi.org/10.3389/fneur.2019.00715] [PMID: 31312178]
[12]
Chi NF, Chien LN, Ku HL, Hu CJ, Chiou HY. Alzheimer’s disease and risk of stroke: A population-based cohort study. Neurology 2013; 80(8): 705-11.
[http://dx.doi.org/10.1212/WNL.0b013e31828250af] [PMID: 23303851]
[13]
Honig LS, Tang MX, Albert S, et al. Stroke and the risk of Alzheimer’s disease. Arch Neurol 2003; 60(12): 1707-12.
[http://dx.doi.org/10.1001/archneur.60.12.1707] [PMID: 14676044]
[14]
Jellinger KA. The enigma of mixed dementia. Alzheimers Dement 2007; 3(1): 40-53.
[http://dx.doi.org/10.1016/j.jalz.2006.09.002] [PMID: 19595916]
[15]
Graber M, Garnier L, Mohr S, et al. Influence of pre-existing mild cognitive impairment and dementia on post-stroke mortality. Neuroepidemiology 2020; 54(6): 490-7.
[http://dx.doi.org/10.1159/000497614] [PMID: 31593950]
[16]
Taylor-Rowan M, Keir R, Cuthbertson G, et al. Pre-stroke frailty is independently associated with post-stroke cognition: A cross-ectional study. J Int Neuropsychol Soc 2019; 25(5): 501-6.
[http://dx.doi.org/10.1017/S1355617719000092] [PMID: 30821222]
[17]
Longley V, Peters S, Swarbrick C, Rhodes S, Bowen A. Does pre- existing cognitive impairment impact on amount of stroke rehabilitation received? An observational cohort study. Clin Rehabil 2019; 33(9): 1492-502.
[http://dx.doi.org/10.1177/0269215519843984] [PMID: 31020850]
[18]
McGovern A, Pendlebury ST, Mishra NK, Fan Y, Quinn TJ. Test accuracy of informant-based cognitive screening tests for diagnosis of dementia and multidomain cognitive impairment in stroke. Stroke 2016; 47(2): 329-35.
[http://dx.doi.org/10.1161/STROKEAHA.115.011218] [PMID: 26683423]
[19]
Moulin S, Leys D. Stroke occurring in patients with cognitive impairment or dementia. Arq Neuropsiquiatr 2017; 75(2): 117-21.
[http://dx.doi.org/10.1590/0004-282x20160187] [PMID: 28226082]
[20]
Burton L, Tyson SF. Screening for cognitive impairment after stroke: A systematic review of psychometric properties and clinical utility. J Rehabil Med 2015; 47(3): 193-203.
[http://dx.doi.org/10.2340/16501977-1930] [PMID: 25590458]
[21]
Vijayan M, Reddy PH. Stroke, vascular dementia, and Alzheimer’s disease: Molecular links. J Alzheimers Dis 2016; 54(2): 427-43.
[http://dx.doi.org/10.3233/JAD-160527] [PMID: 27567871]
[22]
Avan A, Hachinski V. Stroke and dementia, leading causes of neurological disability and death, potential for prevention. Alzheimers Dement 2021; 17(6): 1072-6.
[http://dx.doi.org/10.1002/alz.12340] [PMID: 34057294]
[23]
O’Brien JT, Thomas A. Vascular dementia. Lancet 2015; 386(10004): 1698-706.
[http://dx.doi.org/10.1016/S0140-6736(15)00463-8] [PMID: 26595643]
[24]
Gorelick PB. Risk factors for vascular dementia and Alzheimer’s disease. Stroke 2004; 35(11) (Suppl. 1): 2620-2.
[http://dx.doi.org/10.1161/01.STR.0000143318.70292.47] [PMID: 15375299]
[25]
Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol 2016; 131(5): 659-85.
[http://dx.doi.org/10.1007/s00401-016-1571-z] [PMID: 27062261]
[26]
Rabin JS, Yang HS, Schultz AP, et al. Vascular risk and β-amyloid are synergistically associated with cortical Tau. Ann Neurol 2019; 85(2): 272-9.
[http://dx.doi.org/10.1002/ana.25399] [PMID: 30565287]
[27]
Köbe T, Gonneaud J, Binette AP, et al. Association of vascular risk factors with β-amyloid peptide and tau burdens in cognitively unimpaired individuals and its interaction with vascular medication use. JAMA Netw Open 2020; 3(2): e1920780.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.20780] [PMID: 32031648]
[28]
Wennberg AM, Whitwell JL, Tosakulwong N, et al. The influence of tau, amyloid, alpha-synuclein, TDP-43, and vascular pathology in clinically normal elderly individuals. Neurobiol Aging 2019; 77: 26-36.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.008] [PMID: 30776649]
[29]
Cai W, Zhang K, Li P, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Res Rev 2017; 34: 77-87.
[http://dx.doi.org/10.1016/j.arr.2016.09.006] [PMID: 27697546]
[30]
Ahmad A, Patel V, Xiao J, Khan MM. The role of neurovascular system in neurodegenerative diseases. Mol Neurobiol 2020; 57(11): 4373-93.
[http://dx.doi.org/10.1007/s12035-020-02023-z] [PMID: 32725516]
[31]
Pluta R, Januszewski S, Czuczwar SJ. Neuroinflammation in post- ischemic neurodegeneration of the brain: Friend, foe, or both? Int J Mol Sci 2021; 22(9): 4405.
[http://dx.doi.org/10.3390/ijms22094405] [PMID: 33922467]
[32]
Zhou J, Yu JT, Wang HF, et al. Association between stroke and Alzheimer’s disease: Systematic review and meta-analysis. J Alzheimers Dis 2015; 43(2): 479-89.
[http://dx.doi.org/10.3233/JAD-140666] [PMID: 25096624]
[33]
Stone J, De La Torre JC. Alzheimer’s disease is associated with increased risk of haemorrhagic stroke. Evid Based Ment Health 2013; 16(3): 88-8.
[http://dx.doi.org/10.1136/eb-2013-101292] [PMID: 23704703]
[34]
Lim JS, Lee JJ, Woo CW. Post-stroke cognitive impairment: Pathophysiological insights into brain disconnectome from advanced neuroimaging analysis techniques. J Stroke 2021; 23(3): 297-311.
[http://dx.doi.org/10.5853/jos.2021.02376] [PMID: 34649376]
[35]
Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta 2016; 1862(5): 915-25.
[http://dx.doi.org/10.1016/j.bbadis.2016.01.015] [PMID: 26806700]
[36]
Lo JW, Crawford JD, Desmond DW, et al. Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups. Neurology 2019; 93(24): e2257-71.
[http://dx.doi.org/10.1212/WNL.0000000000008612] [PMID: 31712368]
[37]
Ivan CS, Seshadri S, Beiser A, et al. Dementia after stroke: The framingham study. Stroke 2004; 35(6): 1264-8.
[http://dx.doi.org/10.1161/01.STR.0000127810.92616.78] [PMID: 15118167]
[38]
Weinstein G, Preis SR, Beiser AS, et al. Cognitive performance after stroke-the framingham heart study. Int J Stroke 2014; 9: 48-54.
[http://dx.doi.org/10.1111/ijs.12275]
[39]
Ihle-Hansen H, Thommessen B, Wyller TB, et al. Incidence and subtypes of MCI and dementia 1 year after first-ever stroke in patients without pre-existing cognitive impairment. Dement Geriatr Cogn Disord 2011; 32(6): 401-7.
[http://dx.doi.org/10.1159/000335361] [PMID: 22311341]
[40]
Chen X, Duan L, Han Y, et al. Predictors for vascular cognitive impairment in stroke patients. BMC Neurol 2016; 16: 115.
[http://dx.doi.org/10.1186/s12883-016-0638-8] [PMID: 27461245]
[41]
Pendlebury ST, Rothwell PM. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: Analysis of the population-based Oxford Vascular Study. Lancet Neurol 2019; 18(3): 248-58.
[http://dx.doi.org/10.1016/S1474-4422(18)30442-3] [PMID: 30784556]
[42]
Jorm AF. The informant questionnaire on cognitive decline in the elderly (IQCODE): A review. Int Psychogeriatr 2004; 16(3): 275-93.
[http://dx.doi.org/10.1017/S1041610204000390] [PMID: 15559753]
[43]
Sheehan B. Assessment scales in dementia. Ther Adv Neurol Disord 2012; 5(6): 349-58.
[http://dx.doi.org/10.1177/1756285612455733] [PMID: 23139705]
[44]
Mijajlović MD, Pavlović A, Brainin M, et al. Post-stroke dementia - a comprehensive review. BMC Med 2017; 15(1): 11.
[http://dx.doi.org/10.1186/s12916-017-0779-7] [PMID: 28095900]
[45]
Alber J, Alladi S, Bae HJ, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimers Dement (N Y) 2019; 5: 107-17.
[http://dx.doi.org/10.1016/j.trci.2019.02.001] [PMID: 31011621]
[46]
Al-Qazzaz NK, Ali SH, Ahmad SA, Islam S, Mohamad K. Cognitive impairment and memory dysfunction after a stroke diagnosis: A post-stroke memory assessment. Neuropsychiatr Dis Treat 2014; 10: 1677-91.
[http://dx.doi.org/10.2147/NDT.S67184] [PMID: 25228808]
[47]
Tanaka M, Vécsei L. Editorial of special issue “crosstalk between depression, anxiety, and dementia: Comorbidity in behavioral neurology and neuropsychiatry. Biomedicines 2021; 9(5): 517.
[http://dx.doi.org/10.3390/biomedicines9050517] [PMID: 34066395]
[48]
Battaglia S. Neurobiological advances of learned fear in humans. Adv Clin Exp Med 2022; 31(3): 217-21.
[http://dx.doi.org/10.17219/acem/146756] [PMID: 35195964]
[49]
Battaglia S, Harrison BJ, Fullana MA. Does the human ventromedial prefrontal cortex support fear learning, fear extinction or both? A commentary on subregional contributions. Mol Psychiatry 2022; 27(2): 784-6.
[http://dx.doi.org/10.1038/s41380-021-01326-4] [PMID: 34667263]
[50]
Battaglia S, Garofalo S, di Pellegrino G. Context-dependent extinction of threat memories: Influences of healthy aging. Sci Rep 2018; 8(1): 12592.
[http://dx.doi.org/10.1038/s41598-018-31000-9] [PMID: 30135561]
[51]
Battaglia S, Fabius JH, Moravkova K, Fracasso A, Borgomaneri S. The neurobiological correlates of gaze perception in healthy individuals and neurologic patients. Biomedicines 2022; 10(3): 627.
[http://dx.doi.org/10.3390/biomedicines10030627] [PMID: 35327431]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy