Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Therapeutic Potentials of Black Seeds (Nigella sativa) in the Management of COVID-19 -A Review of Clinical and In-silico Studies

Author(s): Naina Mohamed Pakkir Maideen, Rajkapoor Balasubramanian*, Mirunalini Gobinath, Mohamed Rafiullah and Sudha Muthusamy

Volume 21, Issue 1, 2023

Published on: 26 September, 2022

Article ID: e020822207222 Pages: 10

DOI: 10.2174/2211352520666220802150156

Price: $65

Abstract

Background: Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and patients with COVID-19 are managed mainly using repurposed conventional drugs, which target the viral entry and viral replication of SARS CoV-2 along with standard care and supportive therapy.

Objective: This review article focuses on the potential benefits of black seeds (Nigella sativa) observed in clinical and in silico molecular docking studies of COVID-19.

Methods: The literature was searched using databases such as LitCOVID, Web of Science, Google Scholar, bioRxiv, medRxiv, Science Direct, EBSCO, Scopus, EMBASE, and reference lists to identify published manuscripts or preprints related to the prevention or treatment of COVID-19 with black seeds (N. sativa) or their phytoconstituents.

Results: Various clinical studies and in silico molecular docking studies determined that black seeds (N. sativa) and their bioactive phytoconstituents have potential activity against SARS CoV-2 infection.

Conclusion: Patients with COVID-19 could be managed using black seeds (N. sativa) along with supportive care, which would speed up the recovery and decrease the mortality rate. More randomized controlled clinical trials would further establish the safety and efficacy of N. sativa in COVID-19 patients.

Keywords: SARS-CoV-2, COVID-19, Nigella sativa, black seeds, thymoquinone, nigellidine, nigellone, α-hederin.

Graphical Abstract

[1]
Coronavirus, W.H.O., Available from: https://covid19.who.int/ [Accessed 21 Dec 2021].
[2]
Dimonaco, N.J.; Salavati, M.; Shih, B.B. Computational analysis of SARS-CoV-2 and SARS-like coronavirus diversity in human, bat and pangolin populations. Viruses, 2020, 13(1), 49.
[http://dx.doi.org/10.3390/v13010049] [PMID: 33396801]
[3]
Low, Z.Y.; Yip, A.J.W.; Sharma, A.; Lal, S.K. SARS coronavirus outbreaks past and present-a comparative analysis of SARS-CoV-2 and its predecessors. Virus Genes, 2021, 57(4), 307-317.
[http://dx.doi.org/10.1007/s11262-021-01846-9] [PMID: 34061288]
[4]
Benzigar, M.R.; Bhattacharjee, R.; Baharfar, M.; Liu, G. Current methods for diagnosis of human coronaviruses: pros and cons. Anal. Bioanal. Chem., 2021, 413(9), 2311-2330.
[http://dx.doi.org/10.1007/s00216-020-03046-0] [PMID: 33219449]
[5]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[6]
Whittaker, G.R.; Daniel, S.; Millet, J.K. Coronavirus entry: How we arrived at SARS-CoV-2. Curr. Opin. Virol., 2021, 47, 113-120.
[http://dx.doi.org/10.1016/j.coviro.2021.02.006] [PMID: 33744490]
[7]
Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[8]
Gacche, R.N.; Gacche, R.A.; Chen, J.; Li, H.; Li, G. Predictors of morbidity and mortality in COVID-19. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1684-1707.
[http://dx.doi.org/10.26355/eurrev_202102_24880] [PMID: 33629339]
[9]
Lio, D.; Scola, L.; Giarratana, R.M.; Candore, G.; Colonna-Romano, G.; Caruso, C.; Balistreri, C.R. SARS CoV2 infection _The longevity study perspectives. Ageing Res. Rev., 2021, 67101299.
[http://dx.doi.org/10.1016/j.arr.2021.101299] [PMID: 33607290]
[10]
Ambrocio-Ortiz, E.; Pérez-Rubio, G.; Del Ángel-Pablo, A.D.; Buendía-Roldán, I.; Chávez-Galán, L.; Hernández-Zenteno, R.J.; Ramírez-Venegas, A.; Rojas-Serrano, J.; Mejía, M.; Pérez-Padilla, R.; Guadarrama-Pérez, C.; Falfán-Valencia, R. Angiotensin-Converting Enzyme 2 (ACE2) in the context of respiratory diseases and its importance in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Pharmaceuticals (Basel), 2021, 14(8), 805.
[http://dx.doi.org/10.3390/ph14080805] [PMID: 34451902]
[11]
Samprathi, M.; Jayashree, M. Biomarkers in COVID-19: An up-to-date review. Front Pediatr., 2021, 8, 607647.
[http://dx.doi.org/10.3389/fped.2020.607647] [PMID: 33859967]
[12]
Shi, C.; Wang, L.; Ye, J.; Gu, Z.; Wang, S.; Xia, J.; Xie, Y.; Li, Q.; Xu, R.; Lin, N. Predictors of mortality in patients with coronavirus disease 2019: A systematic review and meta-analysis. BMC Infect. Dis., 2021, 21(1), 663.
[http://dx.doi.org/10.1186/s12879-021-06369-0] [PMID: 34238232]
[13]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[14]
Trbojević-Akmačić, I.; Petrović, T.; Lauc, G. SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Glycoconj. J., 2021, 38(5), 611-623.
[http://dx.doi.org/10.1007/s10719-021-10021-z] [PMID: 34542788]
[15]
Shajahan, A.; Archer-Hartmann, S.; Supekar, N.T.; Gleinich, A.S.; Heiss, C.; Azadi, P. Comprehensive characterization of N- and O-glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme. Glycobiology, 2021, 31(4), 410-424.
[http://dx.doi.org/10.1093/glycob/cwaa101] [PMID: 33135055]
[16]
Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Domen, J.; Horn, S.R.A.; Van den Bruel, A. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst. Rev., 2021, 2(2), CD013665.
[http://dx.doi.org/10.1002/14651858.CD013665.pub2] [PMID: 33620086]
[17]
Nehme, M.; Braillard, O.; Alcoba, G.; Aebischer Perone, S.; Courvoisier, D.; Chappuis, F.; Guessous, I. COVICARE TEAM. COVID-19 symptoms: longitudinal evolution and persistence in outpatient settings. Ann. Intern. Med., 2021, 174(5), 723-725.
[http://dx.doi.org/10.7326/M20-5926] [PMID: 33284676]
[18]
Quer, G.; Radin, J.M.; Gadaleta, M.; Baca-Motes, K.; Ariniello, L.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med., 2021, 27(1), 73-77.
[http://dx.doi.org/10.1038/s41591-020-1123-x] [PMID: 33122860]
[19]
Liu, X.; Yue, X.; Liu, F.; Wei, L.; Chu, Y.; Bao, H.; Dong, Y.; Cheng, W.; Yang, L. Analysis of clinical features and early warning signs in patients with severe COVID-19: A retrospective cohort study. PLoS One, 2020, 15(6), e0235459.
[http://dx.doi.org/10.1371/journal.pone.0235459] [PMID: 32589691]
[20]
Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and multi-organ response. Curr. Probl. Cardiol., 2020, 45(8), 100618.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100618] [PMID: 32439197]
[21]
Ho, F.K.; Celis-Morales, C.A.; Gray, S.R.; Katikireddi, S.V.; Niedzwiedz, C.L.; Hastie, C.; Ferguson, L.D.; Berry, C.; Mackay, D.F.; Gill, J.M.; Pell, J.P.; Sattar, N.; Welsh, P. Modifiable and non-modifiable risk factors for COVID-19, and comparison to risk factors for influenza and pneumonia: Results from a UK Biobank prospective cohort study. BMJ Open, 2020, 10(11), e040402.
[http://dx.doi.org/10.1136/bmjopen-2020-040402] [PMID: 33444201]
[22]
Li, S.; Hua, X. Modifiable lifestyle factors and severe COVID-19 risk: A Mendelian randomisation study. BMC Med. Genomics, 2021, 14(1), 38.
[http://dx.doi.org/10.1186/s12920-021-00887-1] [PMID: 33536004]
[23]
Carretta, D.M.; Silva, A.M.; D’Agostino, D.; Topi, S.; Lovero, R.; Charitos, I.A.; Wegierska, A.E.; Montagnani, M.; Santacroce, L. Cardiac involvement in COVID-19 patients: A contemporary review. Infect. Dis. Rep., 2021, 13(2), 494-517.
[http://dx.doi.org/10.3390/idr13020048] [PMID: 34206074]
[24]
Cheng, S.; Zhao, Y.; Wang, F.; Chen, Y.; Kaminga, A.C.; Xu, H. Comorbidities’ potential impacts on severe and non-severe patients with COVID-19: A systematic review and meta-analysis. Medicine (Baltimore), 2021, 100(12), e24971.
[http://dx.doi.org/10.1097/MD.0000000000024971] [PMID: 33761654]
[25]
Omran, D.; Al Soda, M.; Bahbah, E.; Esmat, G.; Shousha, H.; Elgebaly, A.; Abdel Ghaffar, M.; Alsheikh, M.; El Sayed, E.; Afify, S.; Abdel Hafez, S.; Elkelany, K.; Eltayar, A.; Ali, O.; Kamal, L.; Heiba, A. Predictors of severity and development of critical illness of Egyptian COVID-19 patients: A multicenter study. PLoS One, 2021, 16(9), e0256203.
[http://dx.doi.org/10.1371/journal.pone.0256203] [PMID: 34555027]
[26]
Cho, S.I.; Yoon, S.; Lee, H.J. Impact of comorbidity burden on mortality in patients with COVID-19 using the Korean health insurance database. Sci. Rep., 2021, 11(1), 6375.
[http://dx.doi.org/10.1038/s41598-021-85813-2] [PMID: 33737679]
[27]
Hanson, KE; Caliendo, AM; Arias, CA; Hayden, MK; Englund, JA; Lee, MJ; Loeb, M; Patel, R; El Alayli, A; Altayar, O; Patel, P The infectious diseases society of America Guidelines on the diagnosis of COVID-19: Molecular diagnostic testing. Clin. Infect. Dis., 2021.
[http://dx.doi.org/10.1093/cid/ciaa760]
[28]
Shah, V.; Keniya, R.; Shridharani, A.; Punjabi, M.; Shah, J.; Mehendale, N. Diagnosis of COVID-19 using CT scan images and deep learning techniques. Emerg. Radiol., 2021, 28(3), 497-505.
[http://dx.doi.org/10.1007/s10140-020-01886-y] [PMID: 33523309]
[29]
Delli Pizzi, A.; Chiarelli, A.M.; Chiacchiaretta, P.; Valdesi, C.; Croce, P.; Mastrodicasa, D.; Villani, M.; Trebeschi, S.; Serafini, F.L.; Rosa, C.; Cocco, G.; Luberti, R.; Conte, S.; Mazzamurro, L.; Mereu, M.; Patea, R.L.; Panara, V.; Marinari, S.; Vecchiet, J.; Caulo, M. Radiomics-based machine learning differentiates “ground-glass” opacities due to COVID-19 from acute non-COVID-19 lung disease. Sci. Rep., 2021, 11(1), 17237.
[http://dx.doi.org/10.1038/s41598-021-96755-0] [PMID: 34446812]
[30]
Miao, C.; Jin, M.; Miao, L.; Yang, X.; Huang, P.; Xiong, H.; Huang, P.; Zhao, Q.; Du, J.; Hong, J. Early chest computed tomography to diagnose COVID-19 from suspected patients: A multicenter retrospective study. Am. J. Emerg. Med., 2021, 44, 346-351.
[http://dx.doi.org/10.1016/j.ajem.2020.04.051] [PMID: 32327245]
[31]
Jafari, R; Jonaidi-Jafari, N; Maghsoudi, H; Dehghanpoor, F; Schoepf, UJ; Ulversoy, KA; Saburi, A “Pulmonary target sign” as a diagnostic feature in chest computed tomography of COVID-19. World J. Radiol., 2021, 13(7), 233-242.
[32]
Grassi, R.; Belfiore, M.P.; Montanelli, A.; Patelli, G.; Urraro, F.; Giacobbe, G.; Fusco, R.; Granata, V.; Petrillo, A.; Sacco, P.; Mazzei, M.A.; Feragalli, B.; Reginelli, A.; Cappabianca, S. COVID-19 pneumonia: Computer-aided quantification of healthy lung parenchyma, emphysema, ground glass and consolidation on chest computed tomography (CT). Radiol. Med. (Torino), 2021, 126(4), 553-560.
[http://dx.doi.org/10.1007/s11547-020-01305-9] [PMID: 33206301]
[33]
Das, B.; Bhatia, S.Y.; Pal, P.M. Evaluation of the role of routine laboratory biomarkers in COVID-19 patients: Perspective from a tertiary care hospital in India. Indian J. Clin. Biochem., 2021, 36(4), 473-484.
[http://dx.doi.org/10.1007/s12291-021-00978-x] [PMID: 33907355]
[34]
Lombardi, C.; Roca, E.; Bigni, B.; Bertozzi, B.; Ferrandina, C.; Franzin, A.; Vivaldi, O.; Cottini, M.; D’Alessio, A.; Del Poggio, P.; Conte, G.M.; Berti, A. Immune and cellular damage biomarkers to predict COVID-19 mortality in hospitalized patients. Curr. Res. Immunol., 2021, 2, 155-162.
[http://dx.doi.org/10.1016/j.crimmu.2021.09.001] [PMID: 34545350]
[35]
Mohan, A.; Padmini, S.N.; Brunda, M.S.; Shekhar, A.; Matthew, P.; Lingeshwaran, G.R. Role of biomarkers in predicting prognosis of Coronavirus disease 2019 (COVID-19): A retrospective cross-sectional study: Perspective of a tertiary care hospital in India. World J. Adv. Res. Rev., 2021, 11(01), 81-90.
[http://dx.doi.org/10.30574/wjarr.2021.11.1.0300]
[36]
Maideen, N.M.P. Recent updates in the pharmacological management of COVID-19. Lett. Appl. Nano. Bio. Sci., 2021, 10(1), 1969-1980.
[http://dx.doi.org/10.33263/LIANBS101.19691980]
[37]
Maideen, N.M.P. Adjuvant therapies of COVID-19 - A literature review. Coronaviruses, 2021, 2(10), e170821190562.
[http://dx.doi.org/10.2174/2666796702666210121144902]
[38]
Colafrancesco, S.; Scrivo, R.; Barbati, C.; Conti, F.; Priori, R. Targeting the immune system for pulmonary inflammation and cardiovascular complications in COVID-19 patients. Front. Immunol., 2020, 11, 1439.
[http://dx.doi.org/10.3389/fimmu.2020.01439] [PMID: 32655577]
[39]
Khatchadourian, C.; Sisliyan, C.; Nguyen, K.; Poladian, N.; Tian, Q.; Tamjidi, F.; Luong, B.; Singh, M.; Robison, J.; Venketaraman, V. Hyperlipidemia and obesity’s role in immune dysregulation underlying the severity of COVID-19 infection. Clin. Pract., 2021, 11(4), 694-707.
[http://dx.doi.org/10.3390/clinpract11040085] [PMID: 34698139]
[40]
Gangadharan, C.; Ahluwalia, R.; Sigamani, A. Diabetes and COVID-19: Role of insulin resistance as a risk factor for COVID-19 severity. World J. Diabetes, 2021, 12(9), 1550-1562.
[http://dx.doi.org/10.4239/wjd.v12.i9.1550] [PMID: 34630907]
[41]
Maideen, N.M.P. Prophetic Medicine-Nigella sativa (Black cumin seeds) - Potential herb for COVID-19? J. Pharmacopuncture, 2020, 23(2), 62-70.
[http://dx.doi.org/10.3831/KPI.2020.23.010] [PMID: 32685234]
[42]
Mukhtar, H.; Qureshi, A.S.; Anwar, F.; Mumtaz, M.W.; Marcu, M. Nigella sativa L. seed and seed oil: Potential sources of high-value components for development of functional foods and nutraceuticals/pharmaceuticals. J. Essent. Oil Res., 2019, 31(3), 171-183.
[http://dx.doi.org/10.1080/10412905.2018.1562388]
[43]
Maideen, N.M.P.; Balasubramanian, R.; Ramanathan, S. Nigella sativa (Black Seeds), A potential herb for the pharmacotherapeutic management of hypertension - A review. Curr. Cardiol. Rev., 2021, 17(4), e230421187786.
[http://dx.doi.org/10.2174/1573403X16666201110125906] [PMID: 33172379]
[44]
Maideen, N.M.P. Antidiabetic activity of Nigella sativa (Black Seeds) and its active constituent (Thymoquinone): A Review of human and experimental animal studies. chonnam med. j., 2021, 57(3), 169-175.
[http://dx.doi.org/10.4068/cmj.2021.57.3.169] [PMID: 34621636]
[45]
Subratti, A.; Lalgee, L.J.; Jalsa, N.K. Efficient extraction of black cumin (Nigella sativa L.) seed oil containing thymol, using liquefied dimethyl ether (DME). J. Food Process. Preserv., 2019, 43(4), e13913.
[http://dx.doi.org/10.1111/jfpp.13913]
[46]
Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J. Herb. Med., 2021, 25, 100404.
[http://dx.doi.org/10.1016/j.hermed.2020.100404] [PMID: 32983848]
[47]
Hossain, M.S.; Sharfaraz, A.; Dutta, A.; Ahsan, A.; Masud, M.A.; Ahmed, I.A.; Goh, B.H.; Urbi, Z.; Sarker, M.M.R.; Ming, L.C. A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomed. Pharmacother., 2021, 143112182.
[http://dx.doi.org/10.1016/j.biopha.2021.112182] [PMID: 34649338]
[48]
Salehi, B.; Quispe, C.; Imran, M.; Ul-Haq, I.; Živković, J.; Abu-Reidah, I.M.; Sen, S.; Taheri, Y.; Acharya, K.; Azadi, H.; Del Mar Contreras, M.; Segura-Carretero, A.; Mnayer, D.; Sethi, G.; Martorell, M.; Abdull Razis, A.F.; Sunusi, U.; Kamal, R.M.; Rasul Suleria, H.A.; Sharifi-Rad, J. Nigella plants - traditional uses, bioactive phytoconstituents, preclinical and clinical studies. Front. Pharmacol., 2021, 12, 625386.
[http://dx.doi.org/10.3389/fphar.2021.625386] [PMID: 33981219]
[49]
Ashraf, S.; Ashraf, S.; Ashraf, M.; Imran, M.A.; Kalsoom, L.; Siddiqui, U.N.; Farooq, I.; Habib, Z.; Ashraf, S.; Ghufran, M.; Akram, M.K. Honey and Nigella sativa against COVID-19 in Pakistan (HNS-COVID-PK): A multi-center placebo-controlled randomized clinical trial. MedRxiv, , 2020.10.30.20217364.
[http://dx.doi.org/10.1101/2020.10.30.20217364]
[50]
Koshak, A.E.; Koshak, E.A.; Mobeireek, A.F.; Badawi, M.A.; Wali, S.O.; Malibary, H.M.; Atwah, A.F. Nigella sativa supplementation accelerates recovery from Mild COVID-19: First randomized Controlled Clinical Trial (RCT). OSF Preprints, 2020.
[http://dx.doi.org/10.31219/osf.io/urb6f]
[51]
Koshak, A.E.; Koshak, E.A.; Mobeireek, A.F.; Badawi, M.A.; Wali, S.O.; Malibary, H.M.; Atwah, A.F.; Alhamdan, M.M.; Almalki, R.A.; Madani, T.A. Nigella sativa for the treatment of COVID-19: An open-label randomized controlled clinical trial. Complement. Ther. Med., 2021, 61, 102769.
[http://dx.doi.org/10.1016/j.ctim.2021.102769] [PMID: 34407441]
[52]
Al-Haidari, K.A.; Faiq, T.; Ghareeb, O. Clinical trial of black seeds against covid-19 in Kirkuk city/Iraq. Indian J. Forensic Med. Toxicol., 2021, 15(3), 3393-3399.
[53]
Fetian, I.R.; Fitian, I.D.; Villiger, L.; Darwish, M. Response to Nigella sativa in patients with confirmed and suspected COVID-19; Healthbook TIMES, 2021.
[http://dx.doi.org/10.36000/hbT.2021.01.001]
[54]
El Sayed, S.M.; Aboonq, M.S.; El Rashedy, A.G.; Aljehani, Y.T.; Abou El-Magd, R.M.; Okashah, A.M.; El-Anzi, M.E.; Alharbi, M.B.; El-Tahlawi, R.; Nabo, M.M.H.; Yousef, R.S.; Elshazley, M.; Abu-Elnaga, M.; Mahmoud, H.S.; El-Alaf, H.; Abdelrahman, A.I.; Abdel-Gawad, A.R.; Soliman, T.M. Promising preventive and therapeutic effects of TaibUVID nutritional supplements for COVID-19 pandemic: Towards better public prophylaxis and treatment (A retrospective study). Am. J. Blood Res., 2020, 10(5), 266-282.
[PMID: 33224571]
[55]
El Sayed, S.M.; Bahashwan, S.A.; Aboonq, M.S.; Baghdadi, H.; Elshazley, M.; Okashah, A.M. Adjuvant TaibUVID nutritional supplements proved promising for novel safe COVID-19 public prophylaxis and treatment: Enhancing immunity and decreasing morbidity period for better outcomes (A retrospective study). Int J Med Dev Ctries, 2020, 4(8), 1-15.
[http://dx.doi.org/10.24911/IJMDC.51-154385540]
[56]
El Sayed, S.M.; Aboonq, M.S.; Aljehani, Y.T.; Hassan, M.A.; Abou El-Magd, R.M.; Abdelrahman, A.I.; El-Tahlawi, R.; Nabo, M.M.H.; Yousef, R.S.; Mahmoud, A.A.; Elsayed, Y.Y.; Abu-Elnaga, M.; Soliman, T.M.; Abdel-Gawad, A.R.; Elshazley, M.; Baghdadi, H.; El-Sawy, S.; Mahmoud, H.S.; El-Anzi, M.E.; Alharbi, M.B. TaibUVID nutritional supplements help rapid cure of COVID-19 infection and rapid reversion to negative nasopharyngeal swab PCR: For better public prophylaxis and treatment of COVID-19 pandemic. Am. J. Blood Res., 2020, 10(6), 397-406.
[PMID: 33489449]
[57]
Dutt, J.; Ganatra, B.; Suthar, N.; Malek, M.; Shukla, B.; Shukla, K.; Shukla, K.; Pandit, S.; Rachchh, M.; Gokani, R.; Bhalani, M. A randomized and comparative study to assess safety and efficacy of supplemental treatment of a herbal formulation - Aayudh Advance comprising essential oils in patients with corona virus 2019 (COVID-19). Contemp. Clin. Trials Commun., 2021, 22, 100755.
[http://dx.doi.org/10.1016/j.conctc.2021.100755] [PMID: 33728385]
[58]
AL-HAIDARI, KA.; FAIQ, TN.; GHAREEB, OA. Preventive value of black seed in people at risk of infection with COVID-19. Pak. J. Med. Health Sci., 2021, 15(1), 384-387.
[59]
Ashraf, S.; Ashraf, S.; Akmal, R.; Ashraf, M.; Kalsoom, L.; Maqsood, A.; Imran, M.A.; Farooq, I.; Ashraf, S.; Siddiqui, U.N.; Ghufran, M.; Akram, M.K.; Majeed, N.; Rafique, S.; Habib, Z.; Shahab, M.S.; Akmal, A.; Shaukat, Z.; Abdin, Z.U.; Khaqan, A.; Arshad, S.; Rehman Virk, M.A.; Gul, M.; Awais, A.B.; Hassan, M.; Khalid, N.; Iqbal, Q.U.A.; Ahmad, T.; Akram, M.; Muhammad, A.; Khalil, M.; Aslam, A.; Umer, M.; Sherazi, S.S.H.; Safdar, Z.; Ahmad, S.; Bilal, M.; Zahid, M.N.; Koshak, A.E.; Hilal, A.; Malik, A.A.; Iqbal, U.; Baig, A.A.; Alahmadi, Y.M.; Humayun, A.; Malik, A.; Ahmad, A.; Ashraf, M.; Saboor, Q.A.; Izhar, M.; Muhammad, A.; Hayat, K.; Amjad, G.; Kousar, M.; Hafeez, U.; Mughal, T.; Muzafar, T.; Zulfiqar, S.; Alam, S.S.; Anwar, M.I.; Malik, A.; Mahmud, T.; Arshad, A.; Nawaz, K.; Yousaf, M.I.K. Prophylactic potential of honey and Nigella sativa L. against hospital and community-based SARS-CoV-2 spread: A structured summary of a study protocol for a randomised controlled trial. Trials, 2021, 22(1), 618.
[http://dx.doi.org/10.1186/s13063-021-05510-3] [PMID: 34526081]
[60]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[61]
Bouchentouf, S.; Noureddine, M. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 Novel Coronavirus (COVID-19): Molecular Docking Study. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12055716.v1]
[62]
Ahmad, S.; Abbasi, H.W.; Shahid, S.; Gul, S.; Abbasi, S.W. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. J. Biomol. Struct. Dyn., 2021, 39(12), 4225-4233.
[http://dx.doi.org/10.1080/07391102.2020.1775129] [PMID: 32462996]
[63]
Shaikh, Y.I.; Shaikh, V.S.; Ahmed, K.; Nazeruddin, G.M.; Pathan, H.M. The revelation of various compounds found in Nigella sativa L. (Black Cumin) and their possibility to inhibit COVID-19 infection based on the molecular docking and physical properties. Eng. Sci., 2020, 11, 31-35.
[http://dx.doi.org/10.30919/es8d1127]
[64]
Jakhmola Mani, R.; Sehgal, N.; Dogra, N.; Saxena, S.; Pande Katare, D. Deciphering underlying mechanism of Sars-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: In-silico study. J. Biomol. Struct. Dyn., 2022, 40(6), 2417-2429.
[http://dx.doi.org/10.1080/07391102.2020.1839560] [PMID: 33111624]
[65]
Sultan Mohideen, A.K. Molecular docking analysis of phytochemical thymoquinone as a therapeutic agent on SARS-Cov-2 envelope protein. Biointerface Res. Appl. Chem., 2021, 11(1), 8389-8401.
[http://dx.doi.org/10.33263/BRIAC111.83898401]
[66]
Kadil, Y.; Mouhcine, M.; Filali, H. In silico investigation of the SARS CoV2 protease with thymoquinone, the major constituent of Nigella sativa. Curr. Drug Discov. Technol., 2021, 18(4), 570-573.
[http://dx.doi.org/10.2174/1570163817666200712164406] [PMID: 32652915]
[67]
Sekiou, O.; Bouziane, I.; Bouslama, Z.; Djemel, A. In-silico identification of potent inhibitors of COVID-19 main protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) from natural products: Quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxy-chloroquine against COVID-19 main protease active site and ACE2. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12181404.v1]
[68]
Xu, H.; Liu, B.; Xiao, Z.; Zhou, M.; Ge, L.; Jia, F.; Liu, Y.; Jin, H.; Zhu, X.; Gao, J.; Akhtar, J.; Xiang, B.; Tan, K.; Wang, G. Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells. Infect. Dis. Ther., 2021, 10(1), 483-494.
[http://dx.doi.org/10.1007/s40121-021-00400-2] [PMID: 33532909]
[69]
Maiti, S.; Banerjee, A.; Nazmeen, A.; Kanwar, M.; Das, S. Active-site molecular docking of Nigellidine with nucleocapsid-NSP2-MPro of COVID-19 and to human IL1R-IL6R and strong antioxidant role of Nigella-sativa in experimental rats. J. Drug Target., 2020, 30(5), 511-521.
[http://dx.doi.org/10.1080/1061186X.2020.1817040] [PMID: 32875925]
[70]
Duru, C.E.; Duru, I.A.; Adegboyega, A.E. In silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. Bull. Natl. Res. Cent., 2021, 45(1), 57.
[http://dx.doi.org/10.1186/s42269-021-00517-x] [PMID: 33727782]
[71]
Pandey, P.; Khan, F.; Mazumder, A.; Rana, A.K.; Srivastava, Y. Inhibitory potential of dietary phytocompounds of Nigella sativa against key targets of Novel Coronavirus (COVID-19). Indian J Pharm Educ Res., 2021, 55(1), 190-197.
[http://dx.doi.org/10.5530/ijper.55.1.21]
[72]
Mehmood, A.; Khan, S.; Khan, S.; Ahmed, S.; Ali, A.; Xue, M.; Ali, L.; Hamza, M.; Munir, A.; Ur Rehman, S.; Mehmood Khan, A.; Hussain Shah, A.; Bai, Q. In silico analysis of quranic and prophetic medicinals plants for the treatment of infectious viral diseases including corona virus. Saudi J. Biol. Sci., 2021, 28(5), 3137-3151.
[http://dx.doi.org/10.1016/j.sjbs.2021.02.058] [PMID: 33642896]
[73]
Siddiqui, S.; Upadhyay, S.; Ahmad, R.; Gupta, A.; Srivastava, A.; Trivedi, A.; Husain, I.; Ahmad, B.; Ahamed, M.; Khan, M.A. Virtual screening of phytoconstituents from miracle herb Nigella sativa targeting nucleocapsid protein and papain-like protease of SARS-CoV-2 for COVID-19 treatment. J. Biomol. Struct. Dyn., 2022, 40(9), 3928-3948.
[http://dx.doi.org/10.1080/07391102.2020.1852117] [PMID: 33289456]
[74]
Seadawy, M.G.; Gad, A.F.; Elhoseny, M.F. In vitro: natural compounds (Thymol, carvacrol, hesperidine, and thymoquinone) against Sars-Cov2 strain isolated from egyptian patients. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.11.07.367649]
[75]
Cecchini, R.; Cecchini, A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses, 2020, 143, 110102.
[http://dx.doi.org/10.1016/j.mehy.2020.110102] [PMID: 32721799]
[76]
Maideen, N.M. Miracle herb to Cure HIV- black seeds (Nigella sativa): a review. Int J Med Rev., 2021, 8(3), 116-121.
[77]
Barakat, E.M.; El Wakeel, L.M.; Hagag, R.S. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J. Gastroenterol., 2013, 19(16), 2529-2536.
[http://dx.doi.org/10.3748/wjg.v19.i16.2529] [PMID: 23674855]
[78]
Abdel-Moneim, A.; Morsy, B.M.; Mahmoud, A.M.; Abo-Seif, M.A.; Zanaty, M.I. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt. EXCLI J., 2013, 12, 943-955.
[PMID: 27298610]
[79]
Sheir, Z.; Badra, G.; Salama, O.; Gomaa, A.I.; Saber, W. Effect of combination of some natural products and chloroquine on HCV Infection in Egyptian patients: Pilot study. J. Liver, 2013, 2(1), 116.
[http://dx.doi.org/10.4172/2167-0889.1000116]
[80]
Mahdavi, R.; Namazi, N.; Alizadeh, M.; Farajnia, S. Nigella sativa oil with a calorie-restricted diet can improve biomarkers of systemic inflammation in obese women: A randomized double-blind, placebo-controlled clinical trial. J. Clin. Lipidol., 2016, 10(5), 1203-1211.
[http://dx.doi.org/10.1016/j.jacl.2015.11.019] [PMID: 27678438]
[81]
Hadi, V.; Kheirouri, S.; Alizadeh, M.; Khabbazi, A.; Hosseini, H. Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Avicenna J. Phytomed., 2016, 6(1), 34-43.
[PMID: 27247920]
[82]
Kaatabi, H.; Bamosa, A.O.; Badar, A.; Al-Elq, A.; Abou-Hozaifa, B.; Lebda, F.; Al-Khadra, A.; Al-Almaie, S. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: Placebo controlled participant blinded clinical trial. PLoS One, 2015, 10(2), e0113486.
[http://dx.doi.org/10.1371/journal.pone.0113486] [PMID: 25706772]
[83]
Namazi, N.; Mahdavi, R.; Alizadeh, M.; Farajnia, S. Oxidative stress responses to Nigella sativa oil concurrent with a low‐calorie diet in obese women: A randomized, double‐blind controlled clinical trial. Phytother. Res., 2015, 29(11), 1722-1728.
[http://dx.doi.org/10.1002/ptr.5417] [PMID: 26179113]
[84]
Mostafa, R.M.; Moustafa, Y.M.; Mirghani, Z.; AlKusayer, G.M.; Moustafa, K.M. Antioxidant effect of garlic (Allium sativum) and black seeds (Nigella sativa) in healthy postmenopausal women. SAGE Open Med., 2013, 12, 050312113517501.
[http://dx.doi.org/10.1177/2050312113517501] [PMID: 26770698]
[85]
Lebda, F.M.; Bamosa, A.O.; Kaatabi, H.; Al Elq, A.; Al-Sultan, A. Effect of Nigella sativa on hemodynamics, hemoglobin, and blood coagulation in patients with type 2 diabetes. Egypt J. Haematol., 2012, 37(2), 73-80.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy