Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Synthesis, Characterization, and Antitubercular Evaluation of Tetrahydrotetrazolo Quinazoline Derivatives

Author(s): N. Raghavendra Babu*, R. Subhakar Raju, Rajasekhar Reddy Alavala, G.S.N. Koteswara Rao, Prasanna Kumar Desu, J. Risy Namratha and V. Muralidharan

Volume 21, Issue 1, 2023

Published on: 19 September, 2022

Article ID: e270622206420 Pages: 13

DOI: 10.2174/2211352520666220627153144

Price: $65

Abstract

Background: Tuberculosis is a highly contagious disease that is one of the major causes of mortality worldwide and the leading infectious organism-related cause of death. Various tetrazole and quinazoline compounds have been successfully developed in the past for tuberculosis treatment. In this case, we planned to design the hybrid moieties by combining both tetrazole and quinazoline nuclei to create novel compounds with increased activity.

Methods: 6, 6-dimethyl-5, 6, 7, 9–tetrahydrotetrazolo [5, 1-b] Quinazolin-8(4H) -one derivatives were synthesized, characterized by using spectral data. The antitubercular activity of the synthesized compounds was tested against the H37RV strain of Mycobacterium tuberculosis. In order to identify the interactions with the target protein Mtb Pks13 Thioesterase domain in complex with an inhibitor, docking analysis of the final compounds was performed (Protein data bank ID: 5V41). To verify their drug-like potential, the synthesized compounds were subjected to Pharmacokinetic prediction experiments. Zebrafish larvae had been used to test the teratogenicity of the synthesized compounds.

Results: At 6.25 μg/mL, compounds F4 and F7 exhibited good efficacy against Mycobacterium tuberculosis strains. Docking studies aided in determining the most likely binding mode within the binding cavity of the concerned target protein.

Conclusion: Compounds containing p-fluorophenyl and p-nitrophenyl groups as substituents were found to have excellent anti-tubercular activity.

Keywords: Antitubercular, ADME, Tetrahydrotetrazolo[5, 1 –b] Quinazoline–8(4H)–one, docking, H37RV strain, teratogenicity, zebrafish larvae.

[1]
World Health Organization. Global Tuberculosis Report., 2021.
[2]
Babu, N.R.; Rao, G.K.; Alavala, R.R.; Soukya, P.L. Design, synthesis, molecular docking studies and antitubercular evaluation of hexahydroquinolin-2-yl benzamide derivatives. Asian J. Chem., 2021, 33(8), 1923-1928.
[http://dx.doi.org/10.14233/ajchem.2021.23364]
[3]
Merker, M.; Blin, C.; Mona, S.; Duforet-Frebourg, N.; Lecher, S.; Willery, E.; Blum, M.G.; Rüsch-Gerdes, S.; Mokrousov, I.; Aleksic, E.; Allix-Béguec, C.; Antierens, A.; Augustynowicz-Kopeć, E.; Ballif, M.; Barletta, F.; Beck, H.P.; Barry C.E., III; Bonnet, M.; Borroni, E.; Campos-Herrero, I.; Cirillo, D.; Cox, H.; Crowe, S.; Crudu, V.; Diel, R.; Drobniewski, F.; Fauville-Dufaux, M.; Gagneux, S.; Ghebremichael, S.; Hanekom, M.; Hoffner, S.; Jiao, W.W.; Kalon, S.; Kohl, T.A.; Kontsevaya, I.; Lillebæk, T.; Maeda, S.; Nikolayevskyy, V.; Rasmussen, M.; Rastogi, N.; Samper, S.; Sanchez-Padilla, E.; Savic, B.; Shamputa, I.C.; Shen, A.; Sng, L.H.; Stakenas, P.; Toit, K.; Varaine, F.; Vukovic, D.; Wahl, C.; Warren, R.; Supply, P.; Niemann, S.; Wirth, T. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat. Genet., 2015, 47(3), 242-249.
[http://dx.doi.org/10.1038/ng.3195] [PMID: 25599400]
[4]
Hameed, H.M.A.; Islam, M.M.; Chhotaray, C.; Wang, C.; Liu, Y.; Tan, Y.; Li, X.; Tan, S.; Delorme, V.; Yew, W.W.; Liu, J.; Zhang, T. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front. Cell. Infect. Microbiol., 2018, 8(8), 114.
[http://dx.doi.org/10.3389/fcimb.2018.00114] [PMID: 29755957]
[5]
Villaume, S.A.; Fu, J.; N’Go, I.; Liang, H.; Lou, H.; Kremer, L.; Pan, W.; Vincent, S.P. Natural and synthetic flavonoids as potent Mycobacterium tuberculosis UGM inhibitors. Chemistry, 2017, 23(43), 10423-10429.
[http://dx.doi.org/10.1002/chem.201701812] [PMID: 28497493]
[7]
Ahmed, F.H.; Mohamed, A.E.; Carr, P.D. Rv2074 is a novel F420 H2 –dependent biliverdin reductase in Mycobacterium tuberculosis. Protein Sci., 2016, 25(9), 1692-1709.
[8]
Kumar, A.; Balakrishna, A.M.; Nartey, W.; Manimekalai, M.S.S.; Grüber, G. Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol. Free Radic. Biol. Med., 2016, 97, 588-601.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.07.007] [PMID: 27417938]
[9]
Kasbekar, M.; Fischer, G.; Mott, B.T.; Yasgar, A.; Hyvönen, M.; Boshoff, H.I.; Abell, C.; Barry, C.E., III; Thomas, C.J. Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site. Proc. Natl. Acad. Sci. USA, 2016, 113(27), 7503-7508.
[http://dx.doi.org/10.1073/pnas.1600630113] [PMID: 27325754]
[10]
Gao, C.; Chang, L.; Xu, Z.; Yan, X.F.; Ding, C.; Zhao, F.; Wu, X.; Feng, L.S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem., 2019, 163, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001] [PMID: 30530192]
[11]
Xu, Z.; Gao, C.; Ren, Q.C.; Song, X.F.; Feng, L.S.; Lv, Z.S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2017, 139, 429-440.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.059] [PMID: 28818767]
[12]
Elavarasan, T.; Sivakumar, D.; Gopalakrishnan, M. Tetrazole-ciprofloxacin hybrids as antibacterial and anti-fungal agents. J. Pharm. Res., 2018, 12, 749-757.
[13]
Qian, A.; Zheng, Y.; Wang, R.; Wei, J.; Cui, Y.; Cao, X.; Yang, Y. Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad anti-fungal spectrum and high selectivity. Bioorg. Med. Chem. Lett., 2018, 28(3), 344-350.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.040] [PMID: 29289430]
[14]
Yeung, K.S.; Qiu, Z.; Yang, Z.; Zadjura, L.; D’Arienzo, C.J.; Browning, M.R.; Hansel, S.; Huang, X.S.; Eggers, B.J.; Riccardi, K.; Lin, P.F.; Meanwell, N.A.; Kadow, J.F. Inhibitors of HIV-1 attachment. Part 9: an assessment of oral prodrug approaches to improve the plasma exposure of a tetrazole-containing derivative. Bioorg. Med. Chem. Lett., 2013, 23(1), 209-212.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.125] [PMID: 23200244]
[15]
Lamie, P.F.; Philoppes, J.N.; Azouz, A.A.; Safwat, N.M. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxy-genase-2 enzyme: Design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 805-820.
[http://dx.doi.org/10.1080/14756366.2017.1326110] [PMID: 28587532]
[16]
Uchida, M.; Komatsu, M.; Morita, S.; Kanbe, T.; Yamasaki, K.; Nakagawa, K. Studies on gastric antiulcer active agents. III. Synthesis of 1-substituted 4-(5-tetrazolyl)thio-1-butanones and related compounds. Chem. Pharm. Bull. (Tokyo), 1989, 37(4), 958-961.
[http://dx.doi.org/10.1248/cpb.37.958] [PMID: 2766419]
[17]
Steiner, G.; Gries, J.; Lenke, D. Synthesis and antihypertensive activity of new 6-heteroaryl-3-hydrazinopyridazine derivatives. J. Med. Chem., 1981, 24(1), 59-63.
[http://dx.doi.org/10.1021/jm00133a013] [PMID: 7205877]
[18]
Kuneš, J.; Bažant, J.; Pour, M.; Waisser, K.; Slosárek, M.; Janota, J. Quinazoline derivatives with antitubercular activity. Farmaco, 2000, 55(11-12), 725-729.
[http://dx.doi.org/10.1016/S0014-827X(00)00100-2] [PMID: 11204949]
[19]
Ghorab, M.M.; Abdel-Gawad, S.M.; El-Gaby, M.S. Synthesis and evaluation of some new fluorinated hydroquinazoline derivatives as antifungal agents. Farmaco, 2000, 55(4), 249-255.
[http://dx.doi.org/10.1016/S0014-827X(00)00029-X] [PMID: 10966155]
[20]
Wdowiak, P.; Matysiak, J.; Kuszta, P.; Czarnek, K.; Niezabitowska, E.; Baj, T. Quinazoline derivatives as potential therapeutic agents in urinary bladder cancer therapy. Front Chem., 2021, 9, 765552.
[http://dx.doi.org/10.3389/fchem.2021.765552] [PMID: 34805097]
[21]
Modh, R.P.; De Clercq, E.; Pannecouque, C.; Chikhalia, K.H. Design, synthesis, antimicrobial activity and anti-HIV activity evaluation of novel hybrid quinazoline-triazine derivatives. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 100-108.
[http://dx.doi.org/10.3109/14756366.2012.755622] [PMID: 23327639]
[22]
Karan, R.; Agarwal, P.; Sinha, M.; Mahato, N. Recent advances on quinazoline derivatives: A potential bioactive scaffold in medicinal chemistry. Chem. Eng., 2021, 5(4), 73.
[http://dx.doi.org/10.3390/chemengineering5040073]
[23]
Alafeefy, A.M.; Kadi, A.A.; Al-Deeb, O.A.; El-Tahir, K.E.; Al-Jaber, N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem., 2010, 45(11), 4947-4952.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.067] [PMID: 20817329]
[24]
Fernández, G.A.; Castro, E.F.; Rosas, R.A.; Fidalgo, D.M.; Adler, N.S.; Battini, L.; España de Marco, M.J.; Fabiani, M.; Bruno, A.M.; Bollini, M.; Cavallaro, L.V. Design and optimization of quinazoline derivatives: New non-nucleoside inhibitors of bovine viral diarrhea virus. Front Chem., 2020, 8, 590235.
[http://dx.doi.org/10.3389/fchem.2020.590235] [PMID: 33425849]
[25]
Gatadi, S.; Lakshmi, T.V.; Nanduri, S. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur. J. Med. Chem., 2019, 170, 157-172.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.018] [PMID: 30884322]
[26]
Zeng, L.Y.; Cai, C. Iodine catalyzed one-pot multicomponent synthesis of a library of compounds containing tetrazolo[1,5-a]pyrimidine core. J. Comb. Chem., 2010, 12(1), 35-40.
[http://dx.doi.org/10.1021/cc9000983] [PMID: 19950908]
[27]
Dolzhenkoa, A.V. 5-Aminotetrazole as a building block for multicomponent reactions. Heterocycles, 2017, 94(10), 1819-1846.
[http://dx.doi.org/10.3987/REV-17-867]
[28]
Gein, V.L.; Prudnikova, A.N.; Kurbatova, A.A.; Dmitriev, M.V.; Novikova, V.V.; Rudakova, I.P.; Starikov, A.L. Three-Component reaction of dimedone with aromatic aldehydes and 5-aminotetrazole. Russ. J. Gen. Chem., 2019, 89(5), 881-885.
[http://dx.doi.org/10.1134/S1070363219050049]
[29]
Lourenco, M.C.; de Souza, M.V.; Pinheiro, A.C.; Ferreira, M.L.; Gonçalves, R.S.; Nogueira, T.C.M.; Peralta, M.A. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. ARKIVOC, 2007, 15(15), 181-191.
[http://dx.doi.org/10.3998/ark.5550190.0008.f18]
[30]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[31]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[32]
Panzica-Kelly, J.M.; Zhang, C.X.; Danberry, T.L.; Flood, A.; DeLan, J.W.; Brannen, K.C.; Augustine-Rauch, K.A. Morphological score assignment guidelines for the dechorionated zebrafish teratogenicity assay. Birth Defects Res. B Dev. Reprod. Toxicol., 2010, 89(5), 382-395.
[http://dx.doi.org/10.1002/bdrb.20260] [PMID: 20836125]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy