Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Mini-Review Article

Gastrointestinal Changes and Alzheimer's Disease

Author(s): Mona Sohrabi, Bijayani Sahu, Harpreet Kaur, Wendie A. Hasler, Atish Prakash and Colin K. Combs*

Volume 19, Issue 5, 2022

Published on: 21 July, 2022

Page: [335 - 350] Pages: 16

DOI: 10.2174/1567205019666220617121255

Price: $65

Abstract

Background: There is a well-described mechanism of communication between the brain and gastrointestinal system in which both organs influence the function of the other. This bi-directional communication suggests that disease in either organ may affect function in the other.

Objective: To assess whether the evidence supports gastrointestinal system inflammatory or degenerative pathophysiology as a characteristic of Alzheimer's disease (AD).

Methods: A review of both rodent and human studies implicating gastrointestinal changes in AD was performed.

Results: Numerous studies indicate that AD changes are not unique to the brain but also occur at various levels of the gastrointestinal tract involving both immune and neuronal changes. In addition, it appears that numerous conditions and diseases affecting regions of the tract may communicate to the brain to influence disease.

Conclusion: Gastrointestinal changes represent an overlooked aspect of AD, representing a more system influence of this disease.

Keywords: Microbiome, Alzheimer, amyloid, intestine, enteric neuron, inflammation.

Next »
[1]
Aziz Q, Thompson DG. Brain-gut axis in health and disease. Gastroenterology 1998; 114(3): 559-78.
[http://dx.doi.org/10.1016/S0016-5085(98)70540-2] [PMID: 9496948]
[2]
Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009; 6(5): 306-14.
[http://dx.doi.org/10.1038/nrgastro.2009.35] [PMID: 19404271]
[3]
Waxenbaum JA, Varacallo M. Anatomy, autonomic nervous system. In: Treasure Island, FL: StatPearls Publishing 2019.
[4]
Dinan TG, Cryan JF. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017; 595(2): 489-503.
[http://dx.doi.org/10.1113/JP273106] [PMID: 27641441]
[5]
Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv Exp Med Biol 2014; 817: 39-71.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_3] [PMID: 24997029]
[6]
Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012; 10(11): 735-42.
[http://dx.doi.org/10.1038/nrmicro2876] [PMID: 23000955]
[7]
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9(11): 799-809.
[http://dx.doi.org/10.1038/nri2653] [PMID: 19855405]
[8]
Dickson K, Lehmann C. Inflammatory response to different toxins in experimental sepsis models. Int J Mol Sci 2019; 20(18): 4341.
[http://dx.doi.org/10.3390/ijms20184341] [PMID: 31491842]
[9]
Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw 2018; 18(4): e27.
[http://dx.doi.org/10.4110/in.2018.18.e27] [PMID: 30181915]
[10]
Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex-inking immunity and metabolism. Nat Rev Endocrinol 2012; 8(12): 743-54.
[http://dx.doi.org/10.1038/nrendo.2012.189] [PMID: 23169440]
[11]
Günther J, Seyfert HM. The first line of defence: Insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol 2018; 40(6): 555-65.
[http://dx.doi.org/10.1007/s00281-018-0701-1] [PMID: 30182191]
[12]
de Kivit S, Tobin MC, Forsyth CB, Keshavarzian A, Landay AL. Regulation of intestinal immune responses through TLR activation: Implications for pro- and prebiotics. Front Immunol 2014; 5: 60.
[http://dx.doi.org/10.3389/fimmu.2014.00060] [PMID: 24600450]
[13]
Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009; 31(3): 368-76.
[http://dx.doi.org/10.1016/j.immuni.2009.08.009] [PMID: 19766080]
[14]
Gonzalez-Santana A, Diaz Heijtz R. Bacterial peptidoglycans from microbiota in neurodevelopment and behavior. Trends Mol Med 2020; 26(8): 729-43.
[http://dx.doi.org/10.1016/j.molmed.2020.05.003] [PMID: 32507655]
[15]
Morais LH, Schreiber HL IV, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021; 19(4): 241-55.
[http://dx.doi.org/10.1038/s41579-020-00460-0] [PMID: 33093662]
[16]
Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 2018; 12: 49.
[http://dx.doi.org/10.3389/fnins.2018.00049] [PMID: 29467611]
[17]
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2020; 11(2): 135-57.
[http://dx.doi.org/10.1080/19490976.2019.1638722] [PMID: 31368397]
[18]
Oligschlaeger Y, Yadati T, Houben T, Condello Oliván CM, Shiri-Sverdlov R. Inflammatory bowel disease: A stressed “gut/feeling”. Cells 2019; 8(7): 659.
[http://dx.doi.org/10.3390/cells8070659] [PMID: 31262067]
[19]
Brzozowski B, Mazur-Bialy A, Pajdo R, et al. Mechanisms by which stress affects the experimental and clinical inflammatory bowel disease (IBD): Role of brain-gut axis. Curr Neuropharmacol 2016; 14(8): 892-900.
[http://dx.doi.org/10.2174/1570159X14666160404124127] [PMID: 27040468]
[20]
Jedema HP, Grace AA. Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J Neurosci 2004; 24(43): 9703-13.
[http://dx.doi.org/10.1523/JNEUROSCI.2830-04.2004] [PMID: 15509759]
[21]
Mawdsley JE, Rampton DS. Psychological stress in IBD: New insights into pathogenic and therapeutic implications. Gut 2005; 54(10): 1481-91.
[http://dx.doi.org/10.1136/gut.2005.064261] [PMID: 16162953]
[22]
Kujawska M, Jodynis-Liebert J. What is the evidence that Parkinson’s disease is a prion disorder, which originates in the gut? Int J Mol Sci 2018; 19(11): 3573.
[http://dx.doi.org/10.3390/ijms19113573] [PMID: 30424585]
[23]
McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics 2014; 133(5): 872-83.
[http://dx.doi.org/10.1542/peds.2013-3995] [PMID: 24777214]
[24]
Braak H, Rub U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm Suppl 2003; 110(5): 517-36.
[25]
Klingelhoefer L, Reichmann H. Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nat Rev Neurol 2015; 11(11): 625-36.
[http://dx.doi.org/10.1038/nrneurol.2015.197] [PMID: 26503923]
[26]
Cabal A, Alonso-Cortina V, Gonzalez-Vazquez LO, Naves FJ, Del Valle ME, Vega JA. β-Amyloid precursor protein (βAPP) in human gut with special reference to the enteric nervous system. Brain Res Bull 1995; 38(5): 417-23.
[http://dx.doi.org/10.1016/0361-9230(95)02006-D] [PMID: 8665264]
[27]
Joachim CL, Mori H, Selkoe DJ. Amyloid β-protein deposition in tissues other than brain in Alzheimer’s disease. Nature 1989; 341(6239): 226-30.
[http://dx.doi.org/10.1038/341226a0] [PMID: 2528696]
[28]
Puig KL, Lutz BM, Urquhart SA, et al. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. J Alzheimers Dis 2015; 44(4): 1263-78.
[http://dx.doi.org/10.3233/JAD-142259] [PMID: 25408221]
[29]
Semar S, Klotz M, Letiembre M, et al. Changes of the enteric nervous system in amyloid-β protein precursor transgenic mice correlate with disease progression. J Alzheimers Dis 2013; 36(1): 7-20.
[http://dx.doi.org/10.3233/JAD-120511] [PMID: 23531500]
[30]
2021 Alzheimer’s disease facts and figures. Alzheimers Dement 2021; 17(3): 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[31]
Page RC, Eke PI. Case definitions for use in population-based surveillance of periodontitis. J Periodontol 2007; 78(Suppl. 7S): 1387-99.
[http://dx.doi.org/10.1902/jop.2007.060264]
[32]
Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet 2005; 366(9499): 1809-20.
[http://dx.doi.org/10.1016/S0140-6736(05)67728-8] [PMID: 16298220]
[33]
Singhrao SK, Harding A, Poole S, Kesavalu L, Crean S. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/137357] [PMID: 26063967]
[34]
Tonsekar PP, Jiang SS, Yue G. Periodontal disease, tooth loss and dementia: Is there a link? A systematic review. Gerodontology 2017; 34(2): 151-63.
[http://dx.doi.org/10.1111/ger.12261] [PMID: 28168759]
[35]
Kamer AR, Craig RG, Pirraglia E, et al. TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol 2009; 216(1-2): 92-7.
[http://dx.doi.org/10.1016/j.jneuroim.2009.08.013] [PMID: 19767111]
[36]
Kamer AR, Dasanayake AP, Craig RG, Glodzik-Sobanska L, Bry M, de Leon MJ. Alzheimer’s disease and peripheral infections: The possible contribution from periodontal infections, model and hypothesis. J Alzheimers Dis 2008; 13(4): 437-49.
[http://dx.doi.org/10.3233/JAD-2008-13408] [PMID: 18487851]
[37]
Kamer AR, Pirraglia E, Tsui W, et al. Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol Aging 2015; 36(2): 627-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.038] [PMID: 25491073]
[38]
Kubota T, Maruyama S, Abe D, et al. Amyloid beta (A4) precursor protein expression in human periodontitis-affected gingival tissues. Arch Oral Biol 2014; 59(6): 586-94.
[http://dx.doi.org/10.1016/j.archoralbio.2014.03.004] [PMID: 24690593]
[39]
Chen CK, Wu YT, Chang YC. Association between chronic periodontitis and the risk of Alzheimer’s disease: A retrospective, population-based, matched-cohort study. Alzheimers Res Ther 2017; 9(1): 56.
[http://dx.doi.org/10.1186/s13195-017-0282-6] [PMID: 28784164]
[40]
Sung CE, Huang RY, Cheng WC, Kao TW, Chen WL. Association between periodontitis and cognitive impairment: Analysis of national health and nutrition examination survey (NHANES) III. J Clin Periodontol 2019; 46(8): 790-8.
[http://dx.doi.org/10.1111/jcpe.13155] [PMID: 31152592]
[41]
Onozuka M, Watanabe K, Nagasaki S, et al. Impairment of spatial memory and changes in astroglial responsiveness following loss of molar teeth in aged SAMP8 mice. Behav Brain Res 2000; 108(2): 145-55.
[http://dx.doi.org/10.1016/S0166-4328(99)00145-X] [PMID: 10701658]
[42]
Watanabe K, Ozono S, Nishiyama K, et al. The molarless condition in aged SAMP8 mice attenuates hippocampal Fos induction linked to water maze performance. Behav Brain Res 2002; 128(1): 19-25.
[http://dx.doi.org/10.1016/S0166-4328(01)00268-6] [PMID: 11755686]
[43]
Holmes C. Review: Systemic inflammation and Alzheimer’s disease. Neuropathol Appl Neurobiol 2013; 39(1): 51-68.
[http://dx.doi.org/10.1111/j.1365-2990.2012.01307.x] [PMID: 23046210]
[44]
Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007; 7(2): 161-7.
[http://dx.doi.org/10.1038/nri2015] [PMID: 17220915]
[45]
Pazos P, Leira Y, Domínguez C, Pías-Peleteiro JM, Blanco J, Aldrey JM. Association between periodontal disease and dementia: A literature review. Neurologia (English Edition) 2018; 33(9): 602-13.
[http://dx.doi.org/10.1016/j.nrleng.2016.07.007] [PMID: 27780615]
[46]
Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: Guidelines from the American Heart Association. J Am Dent Assoc 2008; 139(Suppl.): S3-S24.
[http://dx.doi.org/10.14219/jada.archive.2008.0346] [PMID: 18167394]
[47]
Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ. Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging 2004; 25(5): 619-27.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.12.021] [PMID: 15172740]
[48]
Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol 2002; 17(2): 113-8.
[http://dx.doi.org/10.1046/j.0902-0055.2001.00100.x] [PMID: 11929559]
[49]
Ganesh P, Karthikeyan R, Muthukumaraswamy A, Anand J. A potential role of periodontal inflammation in Alzheimer’s disease: A review. Oral Health Prev Dent 2017; 15(1): 7-12.
[PMID: 28232969]
[50]
Miklossy J. Alzheimerʼs disease-a spirochetosis? Neuroreport 1993; 4(7): 841-8.
[http://dx.doi.org/10.1097/00001756-199307000-00002] [PMID: 8369471]
[51]
Miklossy J, Kasas S, Zurn AD, McCall S, Yu S, McGeer PL. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation 2008; 5(1): 40.
[http://dx.doi.org/10.1186/1742-2094-5-40] [PMID: 18817547]
[52]
Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016; 87(22): 2324-32.
[http://dx.doi.org/10.1212/WNL.0000000000003391] [PMID: 27784770]
[53]
Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: A review. Front Aging Neurosci 2018; 10: 42.
[http://dx.doi.org/10.3389/fnagi.2018.00042] [PMID: 29520228]
[54]
Godbout JP, Chen J, Abraham J, et al. Exaggerated neuroinflammation and sickness behavior in aged mice after activation of the peripheral innate immune system. FASEB J 2005; 19(10): 1329-31.
[http://dx.doi.org/10.1096/fj.05-3776fje] [PMID: 15919760]
[55]
Forner L, Larsen T, Kilian M, Holmstrup P. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol 2006; 33(6): 401-7.
[http://dx.doi.org/10.1111/j.1600-051X.2006.00924.x] [PMID: 16677328]
[56]
Lucas VS, Gafan G, Dewhurst S, Roberts GJ. Prevalence, intensity and nature of bacteraemia after toothbrushing. J Dent 2008; 36(7): 481-7.
[http://dx.doi.org/10.1016/j.jdent.2008.03.005] [PMID: 18448227]
[57]
Hafezi-Moghadam A, Thomas KL, Wagner DD. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Physiol Cell Physiol 2007; 292(4): C1256-62.
[http://dx.doi.org/10.1152/ajpcell.00563.2005] [PMID: 16870825]
[58]
Mishra M, Ranjan R, Abhinay A. Can oral microbial infections be a risk factor for neurodegeneration? A review of the literature. Neurol India 2018; 66(2): 344-51.
[http://dx.doi.org/10.4103/0028-3886.227315] [PMID: 29547153]
[59]
Singhrao SK, Chukkapalli S, Poole S, Velsko I, Crean SJ, Kesavalu L. Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE –/– mice brains. J Oral Microbiol 2017; 9(1): 1270602.
[http://dx.doi.org/10.1080/20002297.2016.1270602] [PMID: 28326151]
[60]
Habgood MD, Bye N, Dziegielewska KM, et al. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 2007; 25(1): 231-8.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05275.x] [PMID: 17241284]
[61]
Banks WA, Farr SA, Morley JE. Entry of blood-borne cytokines into the central nervous system: Effects on cognitive processes. Neuroimmunomodulation 2002-2003; 10(6): 319-27.
[http://dx.doi.org/10.1159/000071472] [PMID: 12907838]
[62]
Engelhart MJ, Geerlings MI, Meijer J, et al. Inflammatory proteins in plasma and the risk of dementia: The rotterdam study. Arch Neurol 2004; 61(5): 668-72.
[http://dx.doi.org/10.1001/archneur.61.5.668] [PMID: 15148142]
[63]
Perry VH. The influence of systemic inflammation on inflammation in the brain: Implications for chronic neurodegenerative disease. Brain Behav Immun 2004; 18(5): 407-13.
[http://dx.doi.org/10.1016/j.bbi.2004.01.004] [PMID: 15265532]
[64]
Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik-Sobanska L, Leon MJ. Inflammation and Alzheimer’s disease: Possible role of periodontal diseases. Alzheimers Dement 2008; 4(4): 242-50.
[http://dx.doi.org/10.1016/j.jalz.2007.08.004] [PMID: 18631974]
[65]
Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 2012; 7(1): 42-59.
[http://dx.doi.org/10.1007/s11481-011-9287-2] [PMID: 21728035]
[66]
Park KM, Bowers WJ. Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal 2010; 22(7): 977-83.
[http://dx.doi.org/10.1016/j.cellsig.2010.01.010] [PMID: 20096353]
[67]
Duong T, Nikolaeva M, Acton PJ. C-reactive protein-like immunoreactivity in the neurofibrillary tangles of Alzheimer’s disease. Brain Res 1997; 749(1): 152-6.
[http://dx.doi.org/10.1016/S0006-8993(96)01359-5] [PMID: 9070642]
[68]
Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K. Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord 2000; 14(Suppl.): S47-53.
[http://dx.doi.org/10.1097/00002093-200000001-00008] [PMID: 10850730]
[69]
McGeer PL, Rogers J, McGeer EG. Inflammation, anti-inflammatory agents and Alzheimer disease: The last 12 years. J Alzheimers Dis 2006; 9(s3)(Suppl.): 271-6.
[http://dx.doi.org/10.3233/JAD-2006-9S330] [PMID: 16914866]
[70]
Ilievski V, Zuchowska PK, Green SJ, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One 2018; 13(10): e0204941.
[http://dx.doi.org/10.1371/journal.pone.0204941] [PMID: 30281647]
[71]
Ding Y, Ren J, Yu H, Yu W, Zhou Y. Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice. Immun Ageing 2018; 15: 6.
[http://dx.doi.org/10.1186/s12979-017-0110-7]
[72]
Ishida N, Ishihara Y, Ishida K, et al. Periodontitis induced by bacterial infection exacerbates features of Alzheimer’s disease in transgenic mice. NPJ Aging Mech Dis 2017; 3(1): 15.
[http://dx.doi.org/10.1038/s41514-017-0015-x] [PMID: 29134111]
[73]
Naorungroj S, Schoenbach VJ, Wruck L, et al. Tooth loss, periodontal disease, and cognitive decline in the Atherosclerosis Risk in Communities (ARIC) study. Community Dent Oral Epidemiol 2015; 43(1): 47-57.
[http://dx.doi.org/10.1111/cdoe.12128] [PMID: 25363061]
[74]
Tucker KL, Maras J, Champagne C, et al. A regional food-frequency questionnaire for the US Mississippi Delta. Public Health Nutr 2005; 8(1): 87-96.
[http://dx.doi.org/10.1079/PHN2004663] [PMID: 15705249]
[75]
Yu YH, Kuo HK, Lai YL. The association between serum folate levels and periodontal disease in older adults: Data from the National Health and Nutrition Examination Survey 2001/02. J Am Geriatr Soc 2007; 55(1): 108-13.
[http://dx.doi.org/10.1111/j.1532-5415.2006.01020.x] [PMID: 17233693]
[76]
Lexomboon D, Trulsson M, Wårdh I, Parker MG. Chewing ability and tooth loss: Association with cognitive impairment in an elderly population study. J Am Geriatr Soc 2012; 60(10): 1951-6.
[http://dx.doi.org/10.1111/j.1532-5415.2012.04154.x] [PMID: 23035667]
[77]
Yeung CK, Fu KH, Yuen KY, et al. Helicobacter pylori and associated duodenal ulcer. Arch Dis Child 1990; 65(11): 1212-6.
[http://dx.doi.org/10.1136/adc.65.11.1212] [PMID: 2248531]
[78]
Tatsuta M, Ishikawa H, Iishi H, Okuda S, Yokota Y. Reduction of gastric ulcer recurrence after suppression of Helicobacter pylori by cefixime. Gut 1990; 31(9): 973-6.
[http://dx.doi.org/10.1136/gut.31.9.973] [PMID: 2210464]
[79]
Rauws EAJ, Tytgat GNJ. Cure of duodenal ulcer associated with eradication of Helicobacter pylori. Lancet 1990; 335(8700): 1233-5.
[http://dx.doi.org/10.1016/0140-6736(90)91301-P] [PMID: 1971318]
[80]
Doulberis M, Kotronis G, Gialamprinou D, et al. Alzheimer’s disease and gastrointestinal microbiota; impact of Helicobacter pylori infection involvement. Int J Neurosci 2020; 1-13.
[PMID: 32125206]
[81]
Álvarez-Arellano L, Maldonado-Bernal C. Helicobacter pylori and neurological diseases: Married by the laws of inflammation. World J Gastrointest Pathophysiol 2014; 5(4): 400-4.
[http://dx.doi.org/10.4291/wjgp.v5.i4.400] [PMID: 25400983]
[82]
Budzyński J, Kłopocka M. Brain-gut axis in the pathogenesis of Helicobacter pylori infection. World J Gastroenterol 2014; 20(18): 5212-25.
[http://dx.doi.org/10.3748/wjg.v20.i18.5212] [PMID: 24833851]
[83]
Bercik P, Verdú EF, Foster JA, et al. Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of Helicobacter pylori infection. Am J Physiol Regul Integr Comp Physiol 2009; 296(3): R587-94.
[http://dx.doi.org/10.1152/ajpregu.90752.2008] [PMID: 19129375]
[84]
Burns M, Amaya A, Bodi C, et al. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice. PLoS One 2017; 12(3): e0173108.
[http://dx.doi.org/10.1371/journal.pone.0173108] [PMID: 28355210]
[85]
Albaret G, Sifré E, Floch P, et al. Alzheimer’s disease and Helicobacter pylori infection: Inflammation from stomach to brain? J Alzheimers Dis 2020; 73(2): 801-9.
[http://dx.doi.org/10.3233/JAD-190496] [PMID: 31868664]
[86]
Contaldi F, Capuano F, Fulgione A, et al. The hypothesis that Helicobacter pylori predisposes to Alzheimer’s disease is biologically plausible. Sci Rep 2017; 7(1): 7817.
[http://dx.doi.org/10.1038/s41598-017-07532-x] [PMID: 28798312]
[87]
Wang XL, Zeng J, Yang Y, et al. Helicobacter pylori filtrate induces Alzheimer-like tau hyperphosphorylation by activating glycogen synthase kinase-3β. J Alzheimers Dis 2014; 43(1): 153-65.
[http://dx.doi.org/10.3233/JAD-140198] [PMID: 25079798]
[88]
Zhou H, Guo Y, Li X, Liuyang ZY, Shentu YP, Jing XP, et al. Long-term Helicobacter pylori infection does not induce tauopathy and memory impairment in SD rats. J Huazhong Univ Sci Technolog Med Sci 2017; 37(6): 823-7.
[http://dx.doi.org/10.1007/s11596-017-1813-x]
[89]
Kountouras J, Boziki M, Gavalas E, et al. Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J Neurol 2009; 256(5): 758-67.
[http://dx.doi.org/10.1007/s00415-009-5011-z] [PMID: 19240960]
[90]
Jeong Y, Shin S, Park J, et al. MK-0677, a ghrelin agonist, alleviates amyloid beta-related pathology in 5XFAD mice, an animal model of Alzheimer’s disease. Int J Mol Sci 2018; 19(6): 1800.
[http://dx.doi.org/10.3390/ijms19061800] [PMID: 29912176]
[91]
Cao X, Zhu M, He Y, Chu W, Du Y, Du H. Increased serum acylated ghrelin levels in patients with mild cognitive impairment. J Alzheimers Dis 2017; 61(2): 545-52.
[http://dx.doi.org/10.3233/JAD-170721] [PMID: 29226871]
[92]
Galloway S, Pallebage-Gamarallage MMS, Takechi R, et al. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance. Lipids Health Dis 2008; 7(1): 15.
[http://dx.doi.org/10.1186/1476-511X-7-15] [PMID: 18426603]
[93]
Galloway S, Jian L, Johnsen R, Chew S, Mamo J. β-Amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding. J Nutr Biochem 2007; 18(4): 279-84.
[http://dx.doi.org/10.1016/j.jnutbio.2006.07.003] [PMID: 16962759]
[94]
Galloway S, Takechi R, Nesbit M, Pallebage-Gamarallage MM, Lam V, Mamo JCL. The differential effects of fatty acids on enterocytic abundance of amyloid-beta. Lipids Health Dis 2019; 18(1): 209.
[http://dx.doi.org/10.1186/s12944-019-1162-9] [PMID: 31796080]
[95]
Galloway S, Takechi R, Pallebage-Gamarallage MMS, Dhaliwal SS, Mamo JCL. Amyloid-β colocalizes with apolipoprotein B in absorptive cells of the small intestine. Lipids Health Dis 2009; 8(1): 46.
[http://dx.doi.org/10.1186/1476-511X-8-46] [PMID: 19845970]
[96]
Shankle WR, Landing BH, Ang SM, Chui H, Villarreal-Engelhardt G, Zarow C. Studies of the enteric nervous system in Alzheimer disease and other dementias of the elderly: Enteric neurons in Alzheimer disease. Mod Pathol 1993; 6(1): 10-4.
[97]
Sun Y, Sommerville NR, Liu JYH, et al. Intra‐gastrointestinal amyloid‐β1–42 oligomers perturb enteric function and induce Alzheimer’s disease pathology. J Physiol 2020; 598(19): 4209-23.
[http://dx.doi.org/10.1113/JP279919] [PMID: 32617993]
[98]
Han X, Tang S, Dong L, et al. Loss of nitrergic and cholinergic neurons in the enteric nervous system of APP/PS1 transgenic mouse model. Neurosci Lett 2017; 642: 59-65.
[http://dx.doi.org/10.1016/j.neulet.2017.01.061] [PMID: 28137646]
[99]
Kremerskothen J, Plaas C, Büther K, et al. Characterization of KIBRA, a novel WW domain-containing protein. Biochem Biophys Res Commun 2003; 300(4): 862-7.
[http://dx.doi.org/10.1016/S0006-291X(02)02945-5] [PMID: 12559952]
[100]
Johannsen S, Duning K, Pavenstädt H, Kremerskothen J, Boeckers TM. Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA. Neuroscience 2008; 155(4): 1165-73.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.054] [PMID: 18672031]
[101]
Corneveaux JJ, Liang WS, Reiman EM, et al. Evidence for an association between KIBRA and late-onset Alzheimer’s disease. Neurobiol Aging 2010; 31(6): 901-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.07.014] [PMID: 18789830]
[102]
Feng J, Dong L, Zhang J, et al. Unique expression pattern of KIBRA in the enteric nervous system of APP/PS1 mice. Neurosci Lett 2018; 675: 41-7.
[http://dx.doi.org/10.1016/j.neulet.2018.03.014] [PMID: 29526515]
[103]
Manocha GD, Floden AM, Miller NM, et al. Temporal progression of Alzheimer’s disease in brains and intestines of transgenic mice. Neurobiol Aging 2019; 81: 166-76.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.05.025] [PMID: 31284126]
[104]
Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol 2014; 14(5): 329-42.
[http://dx.doi.org/10.1038/nri3661] [PMID: 24751956]
[105]
Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011; 140(6): 1785-1794.e4.
[http://dx.doi.org/10.1053/j.gastro.2011.01.055] [PMID: 21530745]
[106]
Taleban S, Colombel JF, Mohler MJ, Fain MJ. Inflammatory bowel disease and the elderly: A review. J Crohn’s Colitis 2015; 9(6): 507-15.
[http://dx.doi.org/10.1093/ecco-jcc/jjv059] [PMID: 25870198]
[107]
Attree EA, Dancey CP, Keeling D, Wilson C. Cognitive function in people with chronic illness: Inflammatory bowel disease and irritable bowel syndrome. Appl Neuropsychol 2003; 10(2): 96-104.
[http://dx.doi.org/10.1207/S15324826AN1002_05] [PMID: 12788684]
[108]
Kurina LM, Goldacre MJ, Yeates D, Gill LE. Depression and anxiety in people with inflammatory bowel disease. J Epidemiol Community Health 2001; 55(10): 716-20.
[http://dx.doi.org/10.1136/jech.55.10.716] [PMID: 11553654]
[109]
Petruo VA, Zeißig S, Schmelz R, Hampe J, Beste C. Specific neurophysiological mechanisms underlie cognitive inflexibility in inflammatory bowel disease. Sci Rep 2017; 7(1): 13943.
[http://dx.doi.org/10.1038/s41598-017-14345-5] [PMID: 29066846]
[110]
Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium [DSS]-induced colitis in mice. Current Protocols in Immunology 2014; 104: 15.25.1-15.25.14.
[111]
Ng SC, Benjamin JL, McCarthy NE, et al. Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohnʼs disease. Inflamm Bowel Dis 2011; 17(10): 2027-37.
[http://dx.doi.org/10.1002/ibd.21590] [PMID: 21910165]
[112]
Ślebioda TJ, Kmieć Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediators Inflamm 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/325129] [PMID: 25045210]
[113]
Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009; 73(10): 768-74.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95] [PMID: 19738171]
[114]
Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA 2008; 105(44): 17151-6.
[http://dx.doi.org/10.1073/pnas.0806682105] [PMID: 18955701]
[115]
Sohrabi M, Pecoraro HL, Combs CK. Gut inflammation induced by dextran sulfate sodium exacerbates Amyloid-β plaque deposition in the AppNL–G–F mouse model of Alzheimer’s disease. J Alzheimers Dis 2021; 79(3): 1235-55.
[http://dx.doi.org/10.3233/JAD-201099] [PMID: 33427741]
[116]
Jang S-E, Lim S-M, Jeong J-J, et al. Gastrointestinal inflammation by gut microbiota disturbance induces memory impairment in mice. Mucosal Immunol 2018; 11(2): 369-79.
[http://dx.doi.org/10.1038/mi.2017.49] [PMID: 28612842]
[117]
Zonis S, Pechnick RN, Ljubimov VA, et al. Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflammation 2015; 12(1): 65.
[http://dx.doi.org/10.1186/s12974-015-0281-0] [PMID: 25889852]
[118]
Emge JR, Huynh K, Miller EN, et al. Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2016; 310(11): G989-98.
[http://dx.doi.org/10.1152/ajpgi.00086.2016] [PMID: 27056723]
[119]
Wang SL, Shao BZ, Zhao SB, et al. Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death Dis 2019; 10(6): 391.
[http://dx.doi.org/10.1038/s41419-019-1634-x] [PMID: 31564717]
[120]
Sgambato D, Miranda A, Ranaldo R, Federico A, Romano M. The role of stress in inflammatory bowel diseases. Curr Pharm Des 2017; 23(27): 3997-4002.
[http://dx.doi.org/10.2174/1381612823666170228123357] [PMID: 28245757]
[121]
Bernstein CN, Singh S, Graff LA, Walker JR, Miller N, Cheang M. A prospective population-based study of triggers of symptomatic flares in IBD. Am J Gastroenterol 2010; 105(9): 1994-2002.
[http://dx.doi.org/10.1038/ajg.2010.140] [PMID: 20372115]
[122]
Zhang B, Wang HE, Bai YM, et al. Inflammatory bowel disease is associated with higher dementia risk: A nationwide longitudinal study. Gut 2021; 70(1): 85-91.
[http://dx.doi.org/10.1136/gutjnl-2020-320789] [PMID: 32576641]
[123]
Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—A Critical Review. Mol Neurobiol 2019; 56(3): 1841-51.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[124]
Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement 2018; 14(12): 1602-14.
[http://dx.doi.org/10.1016/j.jalz.2018.06.3040] [PMID: 30314800]
[125]
Soscia SJ, Kirby JE, Washicosky KJ, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5(3): e9505.
[http://dx.doi.org/10.1371/journal.pone.0009505] [PMID: 20209079]
[126]
Kumar DKV, Choi SH, Washicosky KJ, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016; 8(340): 340ra72.
[http://dx.doi.org/10.1126/scitranslmed.aaf1059] [PMID: 27225182]
[127]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[PMID: 25830558]
[128]
Turner PV. The role of the gut microbiota on animal model reproducibility. Animal Model Exp Med 2018; 1(2): 109-15.
[http://dx.doi.org/10.1002/ame2.12022] [PMID: 30891555]
[129]
Sweeney TE, Morton JM. The human gut microbiome: A review of the effect of obesity and surgically induced weight loss. JAMA Surg 2013; 148(6): 563-9.
[http://dx.doi.org/10.1001/jamasurg.2013.5] [PMID: 23571517]
[130]
Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut 2004; 53(1): 1-4.
[http://dx.doi.org/10.1136/gut.53.1.1] [PMID: 14684564]
[131]
Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med 2019; 216(1): 20-40.
[http://dx.doi.org/10.1084/jem.20180448] [PMID: 30322864]
[132]
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015; 26: 26191.
[PMID: 25651997]
[133]
Erny D, Hrabě de Angelis AL, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[134]
Elahy M, Jackaman C, Mamo JC, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing 2015; 12: 2.
[http://dx.doi.org/10.1186/s12979-015-0029-9]
[135]
Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis 2017; 58(1): 1-15.
[http://dx.doi.org/10.3233/JAD-161141] [PMID: 28372330]
[136]
dos Santos Guilherme M, Zevallos VF, Pesi A, et al. Dietary wheat amylase trypsin inhibitors impact Alzheimer’s disease pathology in 5xFAD model mice. Int J Mol Sci 2020; 21(17): 6288.
[http://dx.doi.org/10.3390/ijms21176288] [PMID: 32878020]
[137]
Kaur H, Nagamoto-Combs K, Golovko S, Golovko MY, Klug MG, Combs CK. Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease. Neurobiol Aging 2020; 92: 114-34.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.04.009] [PMID: 32417748]
[138]
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci 2017; 74(16): 2959-77.
[http://dx.doi.org/10.1007/s00018-017-2509-x] [PMID: 28352996]
[139]
Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 2009; 7(12): 887-94.
[http://dx.doi.org/10.1038/nrmicro2245] [PMID: 19898491]
[140]
Wilkins LJ, Monga M, Miller AW. Defining dysbiosis for a cluster of chronic diseases. Sci Rep 2019; 9(1): 12918.
[http://dx.doi.org/10.1038/s41598-019-49452-y] [PMID: 31501492]
[141]
dos Santos Guilherme M, Todorov H, Osterhof C, et al. Impact of acute and chronic amyloid-β peptide exposure on gut microbial commensals in the mouse. Front Microbiol 2020; 11: 1008.
[http://dx.doi.org/10.3389/fmicb.2020.01008] [PMID: 32508799]
[142]
Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 2017; 56(2): 775-88.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[143]
Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7(1): 41802.
[http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[144]
Shen L, Liu L, Ji HF. Alzheimer’s Disease Histological and Behavioral Manifestations in Transgenic Mice Correlate with Specific Gut Microbiome State. J Alzheimers Dis 2017; 56(1): 385-90.
[http://dx.doi.org/10.3233/JAD-160884] [PMID: 27911317]
[145]
Zhang L, Wang Y, Xiayu X, et al. Altered Gut Microbiota in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2017; 60(4): 1241-57.
[http://dx.doi.org/10.3233/JAD-170020] [PMID: 29036812]
[146]
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[147]
Rogers GB, Keating DJ, Young RL, Wong M-L, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol Psychiatry 2016; 21(6): 738-48.
[http://dx.doi.org/10.1038/mp.2016.50] [PMID: 27090305]
[148]
Novotný M, Klimova B, Valis M. Microbiome and Cognitive Impairment: Can Any Diets Influence Learning Processes in a Positive Way? Front Aging Neurosci 2019; 11: 170.
[http://dx.doi.org/10.3389/fnagi.2019.00170] [PMID: 31316375]
[149]
Walker KA, Gottesman RF, Wu A, et al. Systemic inflammation during midlife and cognitive change over 20 years: The ARIC Study. Neurology 2019; 92(11): e1256-67.
[PMID: 30760633]
[150]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[151]
Liu P, Wu L, Peng G, et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun 2019; 80: 633-43.
[http://dx.doi.org/10.1016/j.bbi.2019.05.008] [PMID: 31063846]
[152]
Zhuang ZQ, Shen LL, Li WW, et al. Gut Microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 2018; 63(4): 1337-46.
[http://dx.doi.org/10.3233/JAD-180176] [PMID: 29758946]
[153]
Cox LM, Schafer MJ, Sohn J, et al. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci Rep 2019; 9(1): 17904.
[http://dx.doi.org/10.1038/s41598-019-54187-x] [PMID: 31784610]
[154]
Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558(Pt 1): 263-75.
[http://dx.doi.org/10.1113/jphysiol.2004.063388]
[155]
Lu J, Synowiec S, Lu L, et al. Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PLoS One 2018; 13(8): e0201829.
[http://dx.doi.org/10.1371/journal.pone.0201829] [PMID: 30075011]
[156]
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility 2011; 23(3): 255-264.e119.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01620.x]
[157]
Minter MR, Zhang C, Leone V, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 2016; 6(1): 30028.
[http://dx.doi.org/10.1038/srep30028] [PMID: 27443609]
[158]
Honarpisheh P, Reynolds CR, Blasco Conesa MP, et al. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci 2020; 21(5): 1711.
[http://dx.doi.org/10.3390/ijms21051711] [PMID: 32138161]
[159]
Cherny I, Rockah L, Levy-Nissenbaum O, Gophna U, Ron EZ, Gazit E. The formation of Escherichia coli curli amyloid fibrils is mediated by prion-like peptide repeats. J Mol Biol 2005; 352(2): 245-52.
[http://dx.doi.org/10.1016/j.jmb.2005.07.028] [PMID: 16083908]
[160]
Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 2015; 45(2): 349-62.
[http://dx.doi.org/10.3233/JAD-142841] [PMID: 25589730]
[161]
Zhao Y, Jaber V, Lukiw WJ. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): Detection of Lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol 2017; 7: 318.
[http://dx.doi.org/10.3389/fcimb.2017.00318] [PMID: 28744452]
[162]
Lukiw WJ. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease. Front Microbiol 2016; 7: 1544.
[http://dx.doi.org/10.3389/fmicb.2016.01544] [PMID: 27725817]
[163]
Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J Nat Sci 2015; 1(7): 1. [AD]. [7].
[PMID: 26097896]
[164]
Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer’s disease (AD). Front Aging Neurosci 2015; 7: 9.
[http://dx.doi.org/10.3389/fnagi.2015.00009] [PMID: 25713531]
[165]
Bulgart HR, Neczypor EW, Wold LE, Mackos AR. Microbial involvement in Alzheimer disease development and progression. Mol Neurodegener 2020; 15(1): 42.
[http://dx.doi.org/10.1186/s13024-020-00378-4] [PMID: 32709243]
[166]
Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2018; 18(1): 83-90.
[http://dx.doi.org/10.1080/14737175.2018.1400909] [PMID: 29095058]
[167]
Vogt NM, Romano KA, Darst BF, et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res Ther 2018; 10(1): 124.
[http://dx.doi.org/10.1186/s13195-018-0451-2] [PMID: 30579367]
[168]
Gao Q, Wang Y, Wang X, et al. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: A potential therapeutic approach for Alzheimer’s disease. Aging (Albany NY) 2019; 11(19): 8642-63.
[http://dx.doi.org/10.18632/aging.102352] [PMID: 31612864]
[169]
Quinn M, McMillin M, Galindo C, Frampton G, Pae HY, DeMorrow S. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig Liver Dis 2014; 46(6): 527-34.
[http://dx.doi.org/10.1016/j.dld.2014.01.159] [PMID: 24629820]
[170]
Kiriyama Y, Nochi H. The biosynthesis, signaling, and neurological functions of bile acids. Biomolecules 2019; 9(6): 232.
[http://dx.doi.org/10.3390/biom9060232] [PMID: 31208099]
[171]
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30(3): 332-8.
[http://dx.doi.org/10.1097/MOG.0000000000000057] [PMID: 24625896]
[172]
MahmoudianDehkordi S, Arnold M, Nho K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome. Alzheimers Dement 2019; 15(1): 76-92.
[http://dx.doi.org/10.1016/j.jalz.2018.07.217] [PMID: 30337151]
[173]
Baloni P, Funk CC, Yan J, et al. Metabolic network analysis reveals altered bile acid synthesis and metabolism in Alzheimer’s Disease. Cell Rep Med 2020; 1(8): 100138.
[http://dx.doi.org/10.1016/j.xcrm.2020.100138] [PMID: 33294859]
[174]
Loeb MB, Molloy DW, Smieja M, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc 2004; 52(3): 381-7.
[http://dx.doi.org/10.1111/j.1532-5415.2004.52109.x] [PMID: 14962152]
[175]
Iqbal UH, Zeng E, Pasinetti GM. The Use of Antimicrobial and Antiviral Drugs in Alzheimer’s Disease. Int J Mol Sci 2020; 21(14): 4920.
[http://dx.doi.org/10.3390/ijms21144920] [PMID: 32664669]
[176]
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer’s disease. Brain 2019; 142(10): awz244.
[http://dx.doi.org/10.1093/brain/awz244] [PMID: 31532495]
[177]
Wozniak MA, Itzhaki RF. Antiviral agents in Alzheimer’s disease: Hope for the future? Ther Adv Neurol Disord 2010; 3(3): 141-52.
[http://dx.doi.org/10.1177/1756285610370069] [PMID: 21179606]
[178]
Bonfili L, Cecarini V, Berardi S, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 2017; 7(1): 2426.
[http://dx.doi.org/10.1038/s41598-017-02587-2] [PMID: 28546539]
[179]
Kaur H, Golovko S, Golovko MY, Singh S, Darland DC, Combs CK. Effects of probiotic supplementation on short chain fatty acids in the AppNL-G-F mouse model of Alzheimer’s Disease1. J Alzheimers Dis 2020; 76(3): 1083-102.
[http://dx.doi.org/10.3233/JAD-200436] [PMID: 32623399]
[180]
Athari Nik Azm S, Djazayeri A, Safa M, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid [1-42] injected rats. Appl Physiol Nutr Metab 2018; 43(7): 718-26.
[181]
Kaur H, Nookala S, Singh S, Mukundan S, Nagamoto-Combs K, Combs CK. Sex-Dependent effects of intestinal microbiome manipulation in a mouse model of Alzheimer’s Disease. Cells 2021; 10(9): 2370.
[http://dx.doi.org/10.3390/cells10092370] [PMID: 34572019]
[182]
Chen D, Yang X, Yang J, et al. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in rodent models by targeting the Microbiota-Gut-Brain Axis. Front Aging Neurosci 2017; 9: 403.
[http://dx.doi.org/10.3389/fnagi.2017.00403] [PMID: 29276488]
[183]
Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019; 9(1): 189.
[http://dx.doi.org/10.1038/s41398-019-0525-3] [PMID: 31383855]
[184]
Imbimbo BP, Lozupone M, Watling M, Panza F. Discontinued disease-modifying therapies for Alzheimer’s disease: Status and future perspectives. Expert Opin Investig Drugs 2020; 29(9): 919-33.
[http://dx.doi.org/10.1080/13543784.2020.1795127] [PMID: 32657175]
[185]
Hazan S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: A case report. J Int Med Res 2020; 48(6): 0300060520925930.
[http://dx.doi.org/10.1177/0300060520925930] [PMID: 32600151]
[186]
Kobayashi Y, Kuhara T, Oki M, Xiao JZ. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: A randomised, double-blind, placebo-controlled trial. Benef Microbes 2019; 10(5): 511-20.
[http://dx.doi.org/10.3920/BM2018.0170] [PMID: 31090457]
[187]
Pistollato F, Iglesias RC, Ruiz R, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacol Res 2018; 131: 32-43.
[http://dx.doi.org/10.1016/j.phrs.2018.03.012] [PMID: 29555333]
[188]
Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front Aging Neurosci 2016; 8: 256.
[http://dx.doi.org/10.3389/fnagi.2016.00256] [PMID: 27891089]
[189]
Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 2013; 6(1): 39-51.
[http://dx.doi.org/10.1177/1756283X12459294] [PMID: 23320049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy