Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Dermal Nano-Phytomedicines: A Tool Alluring Towards Plausible Treatment of Photoaging

Author(s): Ayushi Sharma, Kajal Arora, Kavita Chaurasia, Lubna Siddiqui, Honey Goel* and Sushama Talegaonkar*

Volume 19, Issue 4, 2023

Published on: 09 September, 2022

Page: [525 - 548] Pages: 24

DOI: 10.2174/1573413718666220615162532

Price: $65

Abstract

Ultraviolet (UV) radiation serves as a principal carter to dermatoheliosis, also professed as extrinsic aging or photoaging that encompasses premature skin vicissitudes secondary to damage instigated by chronic sun exposure. The present literature study embarks on the fundamental understanding of molecular/pathophysiological mechanisms and signals transduction pathways convoluted in the process of photoaging. Special impetus has also been laid on the morphological, biological and histological aspects highlighting the impact of age, gender, type of skin, intensity of radiation exposure and cellular biomarkers. Further, this review examines the state-of-the-art practices or experimental models (such as in vitro cell lines/in vivo animal models/ex vivo skin models) employed for the physicochemical and toxicological characterization of nanobiomaterials in photoaging research.

Efforts have been made to recapitulate the potential application of phytoprotectants-based monotherapies or approaches in the efficacious management of photoaging. Furthermore, the study aims to disseminate the recent advances (in terms of patented compositions, novel nanotechnologies and commercial nanoformulations (having diverse anti-aging and photo-protective product portfolio) available in the clinical settings or in the cosmaceutical sector for improvising the aesthetic performance) underlining the tremendous growth in the nutracosmaceutical sector.

The authors firmly believe that the current review shall not only capture the interest of readers towards the process of dermatoheliosis but could also rekindle the attention of the scientific community for inclusive assimilation of nanotechnology with nutraceuticals that may aid as a barrier against exogenous or endogenous toxic substances currently in practice to treat a variety of skin disorders.

Keywords: photoaging, dermatoheliosis, nanoformulations, skin cancer, nanophytomedicines

[1]
Lee, H.; Hong, Y.; Kim, M. Structural and functional changes and possible molecular mechanisms in aged skin. Int. J. Mol. Sci., 2021, 22(22), 12489.
[http://dx.doi.org/10.3390/ijms222212489] [PMID: 34830368]
[2]
Gilchrest, B.A. Skin aging and photoaging: An overview. J. Am. Acad. Dermatol., 1989, 21(3 Pt 2), 610-613.
[http://dx.doi.org/10.1016/S0190-9622(89)70227-9] [PMID: 2476468]
[3]
Shah, H.; Mahajan, R.S. Photoaging: New insights into its stimulators, complications, biochemical changes and therapeutic interventions. Biomed. Aging Pathol., 2013, 3, 161-169.
[http://dx.doi.org/10.1016/j.biomag.2013.05.003]
[4]
Zhang, S.; Duan, E. Fighting against skin aging: The way from bench to bedside. Cell Transplant., 2018, 27(5), 729-738.
[http://dx.doi.org/10.1177/0963689717725755] [PMID: 29692196]
[5]
Berneburg, M.; Plettenberg, H.; Krutmann, J. Photoaging of human skin. Photodermatol. Photoimmunol. Photomed., 2000, 16(6), 239-244.
[http://dx.doi.org/10.1034/j.1600-0781.2000.160601.x] [PMID: 11132125]
[6]
Huang, A.H.; Chien, A.L. Photoaging: A review of current literature. Curr. Dermatol. Rep., 2020, 9, 22-29.
[http://dx.doi.org/10.1007/s13671-020-00288-0]
[7]
Miyachi, Y. Photoaging from an oxidative standpoint. J. Dermatol. Sci., 1995, 9(2), 79-86.
[http://dx.doi.org/10.1016/0923-1811(94)00363-J] [PMID: 7772578]
[8]
Peres, P.S.; Terra, V.A.; Guarnier, F.A.; Cecchini, R.; Cecchini, A.L. Photoaging and chronological aging profile: Understanding oxidation of the skin. J. Photochem. Photobiol. B, 2011, 103(2), 93-97.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.01.019] [PMID: 21356598]
[9]
Sachs, D.L.; Varani, J.; Chubb, H.; Fligiel, S.E.G.; Cui, Y.; Calderone, K.; Helfrich, Y.; Fisher, G.J.; Voorhees, J.J. Atrophic and hypertrophic photoaging: Clinical, histologic, and molecular features of 2 distinct phenotypes of photoaged skin. J. Am. Acad. Dermatol., 2019, 81(2), 480-488.
[http://dx.doi.org/10.1016/j.jaad.2019.03.081] [PMID: 30954583]
[10]
Takeuchi, T.; Uitto, J.; Bernstein, E.F. A novel in vivo model for evaluating agents that protect against ultraviolet A-induced photoaging. J. Invest. Dermatol., 1998, 110(4), 343-347.
[http://dx.doi.org/10.1046/j.1523-1747.1998.00124.x] [PMID: 9540972]
[11]
Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol., 2002, 138(11), 1462-1470.
[http://dx.doi.org/10.1001/archderm.138.11.1462] [PMID: 12437452]
[12]
Huang, Y.; Li, Y.; Qu, Y.; Zheng, Y.; Ouyang, M.; Zhang, Y.; Lai, W.; Xu, Q. UVA-induced photoaging inhibits autophagic degradation by impairing lysosomal function in dermal fibroblasts. Biochem. Biophys. Res. Commun., 2019, 518(4), 611-618.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.103] [PMID: 31445710]
[13]
Helfrich, Y.R.; Sachs, D.L.; Voorhees, J.J. Overview of skin aging and photoaging. Dermatol. Nurs., 2008, 20(3), 177-183.
[PMID: 18649702]
[14]
Sklar, L.R.; Almutawa, F.; Lim, H.W.; Hamzavi, I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: A review. Photochem. Photobiol. Sci., 2013, 12(1), 54-64.
[http://dx.doi.org/10.1039/C2PP25152C] [PMID: 23111621]
[15]
Randhawa, M.; Seo, I.; Liebel, F.; Southall, M.D.; Kollias, N.; Ruvolo, E. Visible light induces melanogenesis in human skin through a photoadaptive response. PLoS One, 2015, 10(6), e0130949.
[http://dx.doi.org/10.1371/journal.pone.0130949] [PMID: 26121474]
[16]
Regazzetti, C.; Sormani, L.; Debayle, D.; Bernerd, F.; Tulic, M.K.; De Donatis, G.M.; Chignon-Sicard, B.; Rocchi, S.; Passeron, T. Melanocytes sense blue light and regulate pigmentation through Opsin-3. J. Invest. Dermatol., 2018, 138(1), 171-178.
[http://dx.doi.org/10.1016/j.jid.2017.07.833] [PMID: 28842328]
[17]
Schieke, S.M.; Schroeder, P.; Krutmann, J. Cutaneous effects of infrared radiation: From clinical observations to molecular response mechanisms. Photodermatol. Photoimmunol. Photomed., 2003, 19(5), 228-234.
[http://dx.doi.org/10.1034/j.1600-0781.2003.00054.x] [PMID: 14535893]
[18]
Schroeder, P.; Haendeler, J.; Krutmann, J. The role of near infrared radiation in photoaging of the skin. Exp. Gerontol., 2008, 43(7), 629-632.
[http://dx.doi.org/10.1016/j.exger.2008.04.010] [PMID: 18534799]
[19]
Shin, M.H.; Moon, Y.J.; Seo, J.E.; Lee, Y.; Kim, K.H.; Chung, J.H. Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression. Free Radic. Biol. Med., 2008, 44(4), 635-645.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.053] [PMID: 18036352]
[20]
Sander, C.S.; Chang, H.; Salzmann, S.; Müller, C.S.; Ekanayake-Mudiyanselage, S.; Elsner, P.; Thiele, J.J. Photoaging is associated with protein oxidation in human skin in vivo. J. Invest. Dermatol., 2002, 118(4), 618-625.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01708.x] [PMID: 11918707]
[21]
Harman, D. The free radical theory of aging. Antioxid. Redox Signal., 2003, 5(5), 557-561.
[http://dx.doi.org/10.1089/152308603770310202] [PMID: 14580310]
[22]
Harman, D. Free radical theory of aging: An update: Increasing the functional life span. Ann. N. Y. Acad. Sci., 2006, 1067, 10-21.
[http://dx.doi.org/10.1196/annals.1354.003] [PMID: 16803965]
[23]
Raut, S. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm. Sin. B, 2012, 2(1), 8-15.
[http://dx.doi.org/10.1016/j.apsb.2011.12.005]
[24]
Shin, M.H.; Rhie, G.E.; Kim, Y.K.; Park, C.H.; Cho, K.H.; Kim, K.H.; Eun, H.C.; Chung, J.H.H. H2O2 accumulation by catalase reduction changes MAP kinase signaling in aged human skin in vivo. J. Invest. Dermatol., 2005, 125(2), 221-229.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23823.x] [PMID: 16098030]
[25]
Han, K.H.; Choi, H.R.; Won, C.H.; Chung, J.H.; Cho, K.H.; Eun, H.C.; Kim, K.H. Alteration of the TGF-beta/SMAD pathway in intrinsically and UV-induced skin aging. Mech. Ageing Dev., 2005, 126(5), 560-567.
[http://dx.doi.org/10.1016/j.mad.2004.11.006] [PMID: 15811425]
[26]
Kondo, S. The roles of cytokines in photoaging. J. Dermatol. Sci., 2000, 1(S30), 6.
[http://dx.doi.org/10.1016/S0923-1811(99)00076-6]
[27]
Schwartz, E.; Sapadin, A.N.; Kligman, L.H. Ultraviolet B radiation increases steady-state mRNA levels for cytokines and integrins in hairless mouse skin: Modulation by topical tretinoin. Arch. Dermatol. Res., 1998, 290(3), 137-144.
[http://dx.doi.org/10.1007/s004030050279] [PMID: 9558489]
[28]
Adhami, V.M.; Afaq, F.; Ahmad, N. Suppression of ultraviolet B exposure-mediated activation of NF-kappaB in normal human keratinocytes by resveratrol. Neoplasia, 2003, 5(1), 74-82.
[http://dx.doi.org/10.1016/S1476-5586(03)80019-2] [PMID: 12659672]
[29]
Bond, M.; Baker, A.H.; Newby, A.C. Nuclear factor kappaB activity is essential for matrix metalloproteinase-1 and -3 upregulation in rabbit dermal fibroblasts. Biochem. Biophys. Res. Commun., 1999, 264(2), 561-567.
[http://dx.doi.org/10.1006/bbrc.1999.1551] [PMID: 10529402]
[30]
Corsini, E.; Sangha, N.; Feldman, S.R. Epidermal stratification reduces the effects of UVB (but not UVA) on keratinocyte cytokine production and cytotoxicity. Photodermatol. Photoimmunol. Photomed., 1997, 13(4), 147-152.
[http://dx.doi.org/10.1111/j.1600-0781.1997.tb00219.x] [PMID: 9453084]
[31]
Schiller, M.; Böhm, M.; Dennler, S.; Ehrchen, J.M.; Mauviel, A. Mitogen- and stress-activated protein kinase 1 is critical for interleukin-1-induced, CREB-mediated, c-fos gene expression in keratinocytes. Oncogene, 2006, 25(32), 4449-4457.
[http://dx.doi.org/10.1038/sj.onc.1209479] [PMID: 16532028]
[32]
Attisano, L.; Lee-Hoeflich, S.T. The Smads. Genome Biol., 2001, 2(8)
[http://dx.doi.org/10.1186/gb-2001-2-8-reviews3010]
[33]
Kang, S.; Fisher, G.J.; Voorhees, J.J. Photoaging: Pathogenesis, prevention, and treatment. Clin. Geriatr. Med., 2001, 17(4), 643-659. v-vi.
[http://dx.doi.org/10.1016/S0749-0690(05)70091-4] [PMID: 11535421]
[34]
Sachsenmaier, C.; Radler-Pohl, A.; Zinck, R.; Nordheim, A.; Herrlich, P.; Rahmsdorf, H.J. Involvement of growth factor receptors in the mammalian UVC response. Cell, 1994, 78(6), 963-972.
[http://dx.doi.org/10.1016/0092-8674(94)90272-0] [PMID: 7923365]
[35]
Poon, F.; Kang, S.; Chien, A.L. Mechanisms and treatments of photoaging. Photodermatol. Photoimmunol. Photomed., 2015, 31(2), 65-74.
[http://dx.doi.org/10.1111/phpp.12145] [PMID: 25351668]
[36]
Fernandez Figueras, M.T. From actinic keratosis to squamous cell carcinoma: Pathophysiology revisited. J. Eur. Acad. Dermatol. Venereol., 2017, 31(Suppl. 2), 5-7.
[http://dx.doi.org/10.1111/jdv.14151] [PMID: 28263020]
[37]
Oppel, T.; Korting, H.C. Actinic keratosis: The key event in the evolution from photoaged skin to squamous cell carcinoma. Therapy based on pathogenetic and clinical aspects. Skin Pharmacol. Physiol., 2004, 17(2), 67-76.
[http://dx.doi.org/10.1159/000076016] [PMID: 14976383]
[38]
Berhane, T.; Halliday, G.M.; Cooke, B.; Barnetson, R.S. Inflammation is associated with progression of actinic keratoses to squamous cell carcinomas in humans. Br. J. Dermatol., 2002, 146(5), 810-815.
[http://dx.doi.org/10.1046/j.1365-2133.2002.04720.x] [PMID: 12000377]
[39]
Kligman, L.H.; Kligman, A.M. Photoaging - retinoids, alpha hydroxy acids, and antioxidants. In: Dermatopharmacology of topical preparations; Gabard, B.; Surber, C.; Elsner, P.; Treffel, P., Eds.; Springer: Berlin, Heidelberg, 2000; pp. 383-400.
[http://dx.doi.org/10.1007/978-3-642-57145-9_23]
[40]
Shanbhag, S.; Nayak, A.; Narayan, R.; Nayak, U.Y. Anti-aging and sunscreens: Paradigm shift in cosmetics. Adv. Pharm. Bull., 2019, 9(3), 348-359.
[http://dx.doi.org/10.15171/apb.2019.042] [PMID: 31592127]
[41]
Chien, A.L.; Qi, J.; Grandhi, R.; Kim, N.; César, S.S.A.; Harris-Tryon, T.; Jang, M.S.; Olowoyeye, O.; Kuhn, D.; Leung, S.; Rainer, B.M.; Poon, F.; Suh, J.; Cheng, N.; Okoye, G.A.; Kang, S. Effect of age, gender, and sun exposure on ethnic skin photoaging: Evidence gathered using a new photonumeric scale. J. Natl. Med. Assoc., 2018, 110(2), 176-181.
[http://dx.doi.org/10.1016/j.jnma.2017.05.001] [PMID: 29580452]
[42]
Armstrong, B.K.; Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B, 2001, 63(1-3), 8-18.
[http://dx.doi.org/10.1016/S1011-1344(01)00198-1] [PMID: 11684447]
[43]
Ashcroft, G.S.; Greenwell-Wild, T.; Horan, M.A.; Wahl, S.M.; Ferguson, M.W. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol., 1999, 155(4), 1137-1146.
[http://dx.doi.org/10.1016/S0002-9440(10)65217-0] [PMID: 10514397]
[44]
Ashcroft, G.S.; Ashworth, J.J. Potential role of estrogens in wound healing. Am. J. Clin. Dermatol., 2003, 4(11), 737-743.
[http://dx.doi.org/10.2165/00128071-200304110-00002] [PMID: 14572296]
[45]
Zhong, Q.Y.; Lin, B.; Chen, Y.T.; Huang, Y.P.; Feng, W.P.; Wu, Y.; Long, G.H.; Zou, Y.N.; Liu, Y.; Lin, B.Q.; Sang, N.L.; Zhan, J.Y. Gender differences in UV-induced skin inflammation, skin carcinogenesis and systemic damage. Environ. Toxicol. Pharmacol., 2021, 81, 103512.
[http://dx.doi.org/10.1016/j.etap.2020.103512] [PMID: 33096234]
[46]
Korać, R.R.; Khambholja, K.M. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn. Rev., 2011, 5(10), 164-173.
[http://dx.doi.org/10.4103/0973-7847.91114] [PMID: 22279374]
[47]
Moriwaki, S.; Takahashi, Y. Photoaging and DNA repair. J. Dermatol. Sci., 2008, 50(3), 169-176.
[http://dx.doi.org/10.1016/j.jdermsci.2007.08.011] [PMID: 17920816]
[48]
Griffiths, C.E.; Wang, T.S.; Hamilton, T.A.; Voorhees, J.J.; Ellis, C.N. A photonumeric scale for the assessment of cutaneous photodamage. Arch. Dermatol., 1992, 128(3), 374-351.
[http://dx.doi.org/10.1001/archderm.1992.01680130061006]
[49]
Humbert, P.; Viennet, C.; Legagneux, K.; Grandmottet, F.; Robin, S.; Muret, P. In the shadow of the wrinkle: Experimental models. J. Cosmet. Dermatol., 2012, 11(1), 79-83.
[http://dx.doi.org/10.1111/j.1473-2165.2011.00601.x] [PMID: 22360339]
[50]
Zhang, J.A.; Yin, Z.; Ma, L.W.; Yin, Z.Q.; Hu, Y.Y.; Xu, Y.; Wu, D.; Permatasari, F.; Luo, D.; Zhou, B.R. The protective effect of baicalin against UVB irradiation induced photoaging: An in vitro and in vivo study. PLoS One, 2014, 9(6), e99703.
[http://dx.doi.org/10.1371/journal.pone.0099703] [PMID: 24949843]
[51]
Schoop, V.M.; Mirancea, N.; Fusenig, N.E. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J. Invest. Dermatol., 1999, 112(3), 343-353.
[http://dx.doi.org/10.1046/j.1523-1747.1999.00524.x] [PMID: 10084313]
[52]
Kim, H.N.; Gil, C.H.; Kim, Y.R.; Shin, H.K.; Choi, B.T. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice. Sci. Rep., 2016, 6, 31169.
[http://dx.doi.org/10.1038/srep31169] [PMID: 27484958]
[53]
Chen, S.; He, Z.; Xu, J. Application of adipose-derived stem cells in photoaging: Basic science and literature review. Stem Cell Res. Ther., 2020, 11(1), 491.
[http://dx.doi.org/10.1186/s13287-020-01994-z] [PMID: 33225962]
[54]
Fan, Y.; Jeong, J.H.; You, G.Y.; Park, J.U.; Choi, T.H.; Kim, S. An experimental model design for photoaging. J. Craniofac. Surg., 2015, 26(6), e467-e471.
[http://dx.doi.org/10.1097/SCS.0000000000001902] [PMID: 26267568]
[55]
Kligman, L.H. The ultraviolet-irradiated hairless mouse: A model for photoaging. J. Am. Acad. Dermatol., 1989, 21(3 Pt 2), 623-631.
[http://dx.doi.org/10.1016/S0190-9622(89)70229-2] [PMID: 2778126]
[56]
Liao, A.H.; Cai, Y.L.; Chuang, H.C.; Lee, C.Y.; Lin, Y.C.; Chiang, C.P. Application of ultrasound-mediated adapalene-coated lysozyme-shelled microbubbles in UVA-induced skin photoaging. PLoS One, 2020, 15(5), e0232617.
[http://dx.doi.org/10.1371/journal.pone.0232617] [PMID: 32438389]
[57]
Nakyai, W.; Saraphanchotiwitthaya, A.; Viennet, C.; Humbert, P.; Viyoch, J. An in vitro model for fibroblast photoaging comparing single and repeated UV-A irradiations. Photochem. Photobiol., 2017, 93(6), 1462-1471.
[http://dx.doi.org/10.1111/php.12801] [PMID: 28599356]
[58]
Saguie, B.O.; Martins, R.L.; Fonseca, A.S.D.; Romana-Souza, B.; Monte-Alto-Costa, A. An ex vivo model of human skin photoaging induced by UVA radiation compatible with summer exposure in Brazil. J. Photochem. Photobiol. B, 2021, 221, 112255.
[http://dx.doi.org/10.1016/j.jphotobiol.2021.112255] [PMID: 34271412]
[59]
Frade, M.A.; Andrade, T.A.; Aguiar, A.F.; Guedes, F.A.; Leite, M.N.; Passos, W.R.; Coelho, E.B.; Das, P.K Prolonged viability of human organotypic skin explant in culture method (hOSEC). An Bras Dermatol, 2015.
[60]
Tsao, C.T.; Leung, M.; Chang, J.Y.; Zhang, M. A simple material model to generate epidermal and dermal layers in vitro for skin regeneration. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(32), 5256-5264.
[http://dx.doi.org/10.1039/C4TB00614C] [PMID: 25147728]
[61]
Sanabria-de la Torre, R.; Fernández-González, A.; Quiñones-Vico, M.I.; Montero-Vilchez, T.; Arias-Santiago, S. Bioengineered skin intended as in vitro model for pharmacosmetics, skin disease study and environmental skin impact analysis. Biomedicines, 2020, 8(11), 464.
[http://dx.doi.org/10.3390/biomedicines8110464] [PMID: 33142704]
[62]
Rademacher, F.; Simanski, M.; Gläser, R.; Harder, J. Skin microbiota and human 3D skin models. Exp. Dermatol., 2018, 27(5), 489-494.
[http://dx.doi.org/10.1111/exd.13517] [PMID: 29464787]
[63]
Randall, M.J.; Jüngel, A.; Rimann, M.; Wuertz-Kozak, K. Advances in the Biofabrication of 3D Skin in vitro. Healthy and Pathological Models. Front. Bioeng. Biotechnol., 2018, 6, 154.
[http://dx.doi.org/10.3389/fbioe.2018.00154] [PMID: 30430109]
[64]
Arshad, R.; Fatima, I.; Sargazi, S.; Rahdar, A.; Karamzadeh-Jahromi, M.; Pandey, S.; Díez-Pascual, A.M.; Bilal, M. Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management. Nanomaterials (Basel), 2021, 11(12), 3330.
[http://dx.doi.org/10.3390/nano11123330] [PMID: 34947679]
[65]
Sabir, F.; Barani, M.; Rahdar, A.; Bilal, M.; Zafar, M.N.; Bungau, S.; Kyzas, G.Z. How to face skin cancer with nanomaterials: A review. Biointerface Res. Appl. Chem., 2021, 11(4), 11931-11955.
[http://dx.doi.org/10.33263/BRIAC114.1193111955]
[66]
Sargazi, S.; Fatima, I.; Hassan Kiani, M.; Mohammadzadeh, V.; Arshad, R.; Bilal, M.; Rahdar, A.; Díez-Pascual, A.M.; Behzadmehr, R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int. J. Biol. Macromol., 2022, 206, 115-147.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.137] [PMID: 35231532]
[67]
Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials (Basel), 2020, 10(5), 979.
[http://dx.doi.org/10.3390/nano10050979] [PMID: 32443655]
[68]
Souto, E.B.; Jäger, E.; Jäger, A.; Štěpánek, P.; Cano, A.; Viseras, C.; de Melo Barbosa, R.; Chorilli, M.; Zielińska, A.; Severino, P.; Naveros, B.C. Lipid nanomaterials for targeted delivery of dermocosmetic ingredients: Advances in photoprotection and skin anti-aging. Nanomaterials (Basel), 2022, 12(3), 377.
[http://dx.doi.org/10.3390/nano12030377] [PMID: 35159721]
[69]
Hou, X.; Qiu, X.; Wang, Y.; Song, S.; Cong, Y.; Hao, J. Application and efficacy of melatonin elastic liposomes in photoaging mice. Oxid. Med. Cell. Longev., 2022, 2022, 7135125.
[http://dx.doi.org/10.1155/2022/7135125] [PMID: 35300175]
[70]
Sharma, R.; Hazra, J.; Prajapati, P.K. Nanophytomedicines: A novel approach to improve drug delivery and pharmacokinetics of herbal medicine. Bio Bulletin., 2017, 3(1), 132-135.
[71]
Conte, R.; De Luca, I.; De Luise, A.; Petillo, O.; Calarco, A.; Peluso, G. New therapeutic potentials of nanosized phytomedicine. J. Nanosci. Nanotechnol., 2016, 16(8), 8176-8187.
[http://dx.doi.org/10.1166/jnn.2016.12809]
[72]
Shukla, R.; Thok, K. Nanophytomedicine market: Global opportunity analysis and industry forecast. In: Nanophytomedicine; , 2020; pp. 19-31.
[http://dx.doi.org/10.1007/978-981-15-4909-0_2]
[73]
Rai, V.K.; Gupta, G.D.; Pottoo, F.H.; Barkat, M.A. Potential of nano-structured drug delivery system for phytomedicine delivery. In: Nanophytomedicine; , 2020; pp. 89-111.
[http://dx.doi.org/10.1007/978-981-15-4909-0_6]
[74]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[75]
Cheng, Y.C.; Li, T.S.; Su, H.L.; Lee, P.C.; Wang, H.D. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules, 2020, 25(21), 5051.
[http://dx.doi.org/10.3390/molecules25215051] [PMID: 33143260]
[76]
Ahuja, A.; Gupta, J.; Gupta, R. Miracles of herbal phytomedicines in treatment of skin disorders: Natural healthcare perspective. Infect. Disord. Drug Targets, 2021, 21(3), 328-338.
[http://dx.doi.org/10.2174/1871526520666200622142710] [PMID: 32568024]
[77]
Bosch, R.; Philips, N.; Suárez-Pérez, J.A.; Juarranz, A.; Devmurari, A.; Chalensouk-Khaosaat, J.; González, S. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants, 2015, 4(2), 248-268.
[http://dx.doi.org/10.3390/antiox4020248] [PMID: 26783703]
[78]
Kayath, H.; Dhawan, S.; Nanda, S. In vitro estimation of photo-protective potential of rosehip seed oil and QbD based development of a nanoformulation. Curr. Nanomed., 2019, 9, 216-231.
[http://dx.doi.org/10.2174/2468187309666190126112141]
[79]
Gunjan, J.; Swarnlata, S. Topical delivery of Curcuma longa extract loaded nanosized ethosomes to combat facial wrinkles. J. Pharm. Drug Deliv. Res., 2014, 3, 1.
[http://dx.doi.org/10.4172/2325-9604.1000118]
[80]
Yeh, M.I.; Huang, H.C.; Liaw, J.H.; Huang, M.C.; Huang, K.F.; Hsu, F.L. Dermal delivery by niosomes of black tea extract as a sunscreen agent. Int. J. Dermatol., 2013, 52(2), 239-245.
[http://dx.doi.org/10.1111/j.1365-4632.2012.05587.x] [PMID: 22913389]
[81]
Shoviantari, F.; Erawati, T.; Soeratri, W. Coenzyme Q10 nanostructured lipid carriers as an inducer of the skin fibroblast cell and its irritability test in a mice model. J. Basic Clin. Physiol. Pharmacol., 2019, 30(6), 20190320.
[http://dx.doi.org/10.1515/jbcpp-2019-0320] [PMID: 31860468]
[82]
Yücel, Ç.; Şeker Karatoprak, G.; Değim, İ.T. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J. Microencapsul., 2019, 36(2), 180-191.
[http://dx.doi.org/10.1080/02652048.2019.1617363] [PMID: 31070486]
[83]
Singh, M.; Thakur, V.; Deshmukh, R.; Sharma, A.; Rathore, M.S.; Kumar, A.; Mishra, N. Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimer’s disease. J. Microencapsul., 2018, 35(2), 137-148.
[http://dx.doi.org/10.1080/02652048.2018.1441916] [PMID: 29448848]
[84]
Chaikul, P.; Khat-Udomkiri, N.; Iangthanarat, K.; Manosroi, J.; Manosroi, A. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome. Eur. J. Pharm. Sci., 2019, 131, 39-49.
[http://dx.doi.org/10.1016/j.ejps.2019.02.008] [PMID: 30735821]
[85]
Amer, R.I.; Ezzat, S.M.; Aborehab, N.M.; Ragab, M.F.; Mohamed, D.; Hashad, A.; Attia, D.; Salama, M.M.; El Bishbishy, M.H. Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomed. Pharmacother., 2021, 138, 111537.
[http://dx.doi.org/10.1016/j.biopha.2021.111537] [PMID: 34311535]
[86]
Iqbal, B.; Ali, J.; Ganguli, M.; Mishra, S.; Baboota, S. Silymarin-loaded nanostructured lipid carrier gel for the treatment of skin cancer. Nanomedicine (Lond.), 2019, 14(9), 1077-1093.
[http://dx.doi.org/10.2217/nnm-2018-0235] [PMID: 31050580]
[87]
Akhter, K.F.; Mumin, M.A.; Lui, E.M.K.; Charpentier, P.A. Transdermal nanotherapeutics: Panax quinquefolium polysaccharide nanoparticles attenuate UVB-induced skin cancer. Int. J. Biol. Macromol., 2021, 181, 221-231.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.122] [PMID: 33774070]
[88]
Nayak, K.; Katiyar, S.S.; Kushwah, V.; Jain, S. Coenzyme Q10 and retinaldehyde co-loaded nanostructured lipid carriers for efficacy evaluation in wrinkles. J. Drug Target., 2018, 26(4), 333-344.
[http://dx.doi.org/10.1080/1061186X.2017.1379527] [PMID: 28895754]
[89]
Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int. J. Pharm., 2019, 560, 78-91.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.067] [PMID: 30742987]
[90]
Monika, P.; Basavaraj, B.V.; Murthy, K.N.C.; Ahalya, N.; Gurudev, K. Nanocapsules of catechin rich extract for enhanced antioxidant potential and in vitro bioavailability myofibroblast progeny in wound biology and wound healing studies. J. Appl. Pharm. Sci., 2017, 7(01), 184-188.
[http://dx.doi.org/10.7324/JAPS.2017.70126]
[91]
Nisar, M.F.; Yousaf, M.; Saleem, M.; Khalid, H.; Niaz, K.; Yaqub, M.; Waqas, M.Y.; Ahmed, A.; Abaid-Ullah, M.; Chen, J.; Chen, C.; Rengasamy, K.R.R.; Wan, C.C. Development of iron sequester antioxidant quercetin ZnO nanoparticles with photoprotective effects on UV-A irradiated HaCaT cells. Oxid. Med. Cell. Longev., 2021, 2021, 6072631.
[http://dx.doi.org/10.1155/2021/6072631] [PMID: 34484566]
[92]
Adusumilli, N.C.; Mordorski, B.; Nosanchuk, J.; Friedman, J.M.; Friedman, A.J. Curcumin nanoparticles as a photoprotective adjuvant. Exp. Dermatol., 2021, 30(5), 705-709.
[http://dx.doi.org/10.1111/exd.14282] [PMID: 33450110]
[93]
Zhao, Z.; Liu, T.; Zhu, S.; Yang, Y.; Wang, Z.; Ma, H.; Wang, X.; Liu, T.; Guo, P.; Pi, J.; Qi, D.; Tian, B.; Liu, Z.; Li, N. Development and evaluation studies of Corylin loaded nanostructured lipid carriers gel for topical treatment of UV-induced skin aging. Exp. Gerontol., 2021, 153, 111499.
[http://dx.doi.org/10.1016/j.exger.2021.111499] [PMID: 34329721]
[94]
Saraf, S.; Kaur, C.D. Phytoconstituents as photoprotective novel cosmetic formulations. Pharmacogn. Rev., 2010, 4(7), 1-11.
[http://dx.doi.org/10.4103/0973-7847.65319] [PMID: 22228936]
[95]
Cefali, L.C.; Ataide, J.A.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Plant-based active photoprotectants for sunscreens. Int. J. Cosmet. Sci., 2016, 38(4), 346-353.
[http://dx.doi.org/10.1111/ics.12316] [PMID: 26919163]
[96]
Gupta, A.; Kaur, C.D.; Jangdey, M.; Saraf, S. Matrix metalloproteinase enzymes and their naturally derived inhibitors: Novel targets in photocarcinoma therapy. Ageing Res. Rev., 2014, 13, 65-74.
[http://dx.doi.org/10.1016/j.arr.2013.12.001] [PMID: 24355347]
[97]
Pandel, R.; Poljšak, B.; Godic, A.; Dahmane, R. Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol., 2013, 2013, 930164.
[http://dx.doi.org/10.1155/2013/930164] [PMID: 24159392]
[98]
Zanatta, C.F.; Mitjans, M.; Urgatondo, V.; Rocha-Filho, P.A.; Vinardell, M.P. Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines. Food Chem. Toxicol., 2010, 48(1), 70-75.
[http://dx.doi.org/10.1016/j.fct.2009.09.017] [PMID: 19766688]
[99]
Cavinato, M.; Waltenberger, B.; Baraldo, G.; Grade, C.V.C.; Stuppner, H.; Jansen-Dürr, P. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology, 2017, 18(4), 499-516.
[http://dx.doi.org/10.1007/s10522-017-9715-7] [PMID: 28702744]
[100]
Vandiver, A.R.; Hogan, S.R. Aging skin and non-surgical procedures: A basic science overview. Plast. Aesthet. Res., 2020, 7, 63.
[http://dx.doi.org/10.20517/2347-9264.2020.159]
[101]
Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermatoendocrinol, 2012, 4(3), 308-319.
[http://dx.doi.org/10.4161/derm.22804] [PMID: 23467476]
[102]
Radice, M.; Manfredini, S.; Ziosi, P.; Dissette, V.; Buso, P.; Fallacara, A.; Vertuani, S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia, 2016, 114, 144-162.
[http://dx.doi.org/10.1016/j.fitote.2016.09.003] [PMID: 27642040]
[103]
Rai, R.; Shanmuga, S.C.; Srinivas, C. Update on photoprotection. Indian J. Dermatol., 2012, 57(5), 335-342.
[http://dx.doi.org/10.4103/0019-5154.100472] [PMID: 23112351]
[104]
Antoniou, C.; Kosmadaki, M.G.; Stratigos, A.J.; Katsambas, A.D. Photoaging: Prevention and topical treatments. Am. J. Clin. Dermatol., 2010, 11(2), 95-102.
[http://dx.doi.org/10.2165/11530210-000000000-00000] [PMID: 20141230]
[105]
Skotarczak, K.; Osmola-Mańkowska, A.; Lodyga, M.; Polańska, A.; Mazur, M.; Adamski, Z. Photoprotection: Facts and controversies. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(1), 98-112.
[PMID: 25635982]
[106]
Lautenschlager, S.; Wulf, H.C.; Pittelkow, M.R. Photoprotection. Lancet, 2007, 370(9586), 528-537.
[http://dx.doi.org/10.1016/S0140-6736(07)60638-2] [PMID: 17693182]
[107]
Latha, M.S.; Martis, J.; Shobha, V.; Sham Shinde, R.; Bangera, S.; Krishnankutty, B.; Bellary, S.; Varughese, S.; Rao, P.; Naveen Kumar, B.R. Sunscreening agents: A review. J. Clin. Aesthet. Dermatol., 2013, 6(1), 16-26.
[PMID: 23320122]
[108]
Castillo, D.E.; Keri, J.E. Chemical peels in the treatment of acne: Patient selection and perspectives. Clin. Cosmet. Investig. Dermatol., 2018, 11, 365-372.
[http://dx.doi.org/10.2147/CCID.S137788] [PMID: 30038512]
[109]
Jiang, R.; Xu, X.; Sun, Z.; Wang, F.; Ma, R.; Feng, K.; Li, T.; Sun, L. Protective effects of ginseng proteins on photoaging of mouse fibroblasts induced by UVA. Photochem. Photobiol., 2020, 96(1), 113-123.
[http://dx.doi.org/10.1111/php.13156] [PMID: 31441061]
[110]
Choi, H.J.; Song, B.R.; Kim, J.E.; Bae, S.J.; Choi, Y.J.; Lee, S.J.; Gong, J.E.; Lee, H.S.; Lee, C.Y.; Kim, B.H.; Hwang, D.Y. Therapeutic effects of cold pressed perilla oil mainly consisting of linolenic acid, oleic acid and linoleic acid on UV-induced photoaging in NHDF cells and SKH-1 hairless mice. Molecules, 2020, 25(4), 989.
[http://dx.doi.org/10.3390/molecules25040989] [PMID: 32098445]
[111]
Komatsu, T.; Sasaki, S.; Manabe, Y.; Hirata, T.; Sugawara, T. Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS One, 2017, 12(2), e0171178.
[http://dx.doi.org/10.1371/journal.pone.0171178] [PMID: 28170435]
[112]
Choi, S.H.; Choi, S.I.; Jung, T.D.; Cho, B.Y.; Lee, J.H.; Kim, S.H.; Yoon, S.A.; Ham, Y.M.; Yoon, W.J.; Cho, J.H.; Lee, O.H. Anti-photoaging effect of Jeju Putgyul (Unripe Citrus) extracts on human dermal fibroblasts and ultraviolet B-induced hairless mouse skin. Int. J. Mol. Sci., 2017, 18(10), 2052.
[http://dx.doi.org/10.3390/ijms18102052] [PMID: 28946661]
[113]
Shimada, E.; Aida, K.; Sugawara, T.; Hirata, T. Inhibitory effect of topical maize glucosylceramide on skin photoaging in UVA-irradiated hairless mice. J. Oleo Sci., 2011, 60(6), 321-325.
[http://dx.doi.org/10.5650/jos.60.321] [PMID: 21606620]
[114]
Chang, Y.J.; Lee, D.U.; Nam, D.Y.; Cho, S.M.; Hong, S.; Nam, J.H.; Kim, W.K. Inhibitory effect of Salvia plebeia leaf extract on ultraviolet-induced photoaging-associated ion channels and enzymes. Exp. Ther. Med., 2017, 13(2), 567-575.
[http://dx.doi.org/10.3892/etm.2017.4025] [PMID: 28352332]
[115]
Zhou, F.; Huang, X.; Pan, Y.; Cao, D.; Liu, C.; Liu, Y.; Chen, A. Resveratrol protects HaCaT cells from ultraviolet B-induced photoaging via upregulation of HSP27 and modulation of mitochondrial caspase-dependent apoptotic pathway. Biochem. Biophys. Res. Commun., 2018, 499(3), 662-668.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.207] [PMID: 29604279]
[116]
Park, B.; Hwang, E.; Seo, S.A.; Cho, J.G.; Yang, J.E.; Yi, T.H. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1. Arch. Biochem. Biophys., 2018, 637, 31-39.
[http://dx.doi.org/10.1016/j.abb.2017.11.007] [PMID: 29154781]
[117]
Daré, R.G.; Nakamura, C.V.; Ximenes, V.F.; Lautenschlager, S.O.S. Tannic acid, a promising anti-photoaging agent: Evidences of its antioxidant and anti-wrinkle potentials, and its ability to prevent photodamage and MMP-1 expression in L929 fibroblasts exposed to UVB. Free Radic. Biol. Med., 2020, 160, 342-355.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.019] [PMID: 32858160]
[118]
Kim, J.A.; Lee, J.E.; Kim, J.H.; Lee, H.J.; Kang, N.J. Penta-1,2,3,4,6-O-Galloyl-β-D-glucose inhibits UV-B induced photoaging by targeting PAK1 and JNK1. Antioxidants, 2019, 8(11), 561.
[http://dx.doi.org/10.3390/antiox8110561] [PMID: 31731779]
[119]
Wen, W.; Chen, J.; Ding, L.; Luo, X.; Zheng, X.; Dai, Q.; Gu, Q.; Liu, C.; Liang, M.; Guo, X.; Liu, P.; Li, M. Astragaloside exerts anti-photoaging effects in UVB-induced premature senescence of rat dermal fibroblasts through enhanced autophagy. Arch. Biochem. Biophys., 2018, 657, 31-40.
[http://dx.doi.org/10.1016/j.abb.2018.09.007] [PMID: 30222953]
[120]
Feng, X.X.; Yu, X.T.; Li, W.J.; Kong, S.Z.; Liu, Y.H.; Zhang, X.; Xian, Y.F.; Zhang, X.J.; Su, Z.R.; Lin, Z.X. Effects of topical application of patchouli alcohol on the UV-induced skin photoaging in mice. Eur. J. Pharm. Sci., 2014, 63, 113-123.
[http://dx.doi.org/10.1016/j.ejps.2014.07.001] [PMID: 25033712]
[121]
Jeong, D.; Lee, J.; Jeong, S.G.; Hong, Y.H.; Yoo, S.; Han, S.Y.; Kim, J.H.; Kim, S.; Kim, J.S.; Chung, Y.S.; Kim, J.H.; Yi, Y.S.; Cho, J.Y. Artemisia asiatica ethanol extract exhibits anti-photoaging activity. J. Ethnopharmacol., 2018, 220, 57-66.
[http://dx.doi.org/10.1016/j.jep.2018.03.037] [PMID: 29609010]
[122]
Kang, W.; Choi, D.; Park, T. Dietary suberic acid protects against UVB induced skin photoaging in hairless mice. Nutrients, 2019, 11(12), 2948.
[http://dx.doi.org/10.3390/nu11122948] [PMID: 31817085]
[123]
Kang, W.; Choi, D.; Park, T. Decanal protects against UVB induced photoaging in human dermal fibroblasts via the cAMP Pathway. Nutrients, 2020, 12(5), 1214.
[http://dx.doi.org/10.3390/nu12051214] [PMID: 32344925]
[124]
Im, A.R.; Ji, K.Y.; Nam, K.W.; Chae, S. Protective effects of Sosihotang extract against ultraviolet B-induced skin photoageing in hairless mice. J. Pharm. Pharmacol., 2020, 72(9), 1278-1286.
[http://dx.doi.org/10.1111/jphp.13313] [PMID: 32618003]
[125]
Kim, H.K. Garlic supplementation ameliorates UV-induced photoaging in hairless mice by regulating antioxidative activity and MMPs expression. Molecules, 2016, 21(1), 70.
[http://dx.doi.org/10.3390/molecules21010070] [PMID: 26760989]
[126]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[127]
Singha, K.; Maity, S.; Pandit, P. UV Protection via Nanomaterials. In: Frontiers of Textile Materials; Shabbir, M.; Ahmed, S.; Sheikh, J.N., Eds.; Scrivener Publishing LLC, 2020.
[http://dx.doi.org/10.1002/9781119620396.ch7]
[128]
Neville, J.A.; Welch, E.; Leffell, D.J. Management of nonmelanoma skin cancer in 2007. Nat. Clin. Pract. Oncol., 2007, 4(8), 462-469.
[http://dx.doi.org/10.1038/ncponc0883] [PMID: 17657251]
[129]
Khullar, G. Nonmelanoma skin cancers: An Indian perspective. Indian J Dermatopathol. Diagn. Dermatol., 2014, 1(2), 55-62.
[http://dx.doi.org/10.4103/2349-6029.147282]
[130]
Lal, S.T.; Banipal, R.P.; Bhatti, D.J.; Yadav, H.P. Changing trends of skin cancer: A tertiary care hospital study in malwa region of punjab. J. Clin. Diagn. Res., 2016, 10(6), PC12-PC15.
[http://dx.doi.org/10.7860/JCDR/2016/18487.8051] [PMID: 27504344]
[131]
Koyuncuer, A. Histopathological evaluation of non-melanoma skin cancer. World J. Surg. Oncol., 2014, 12, 159.
[http://dx.doi.org/10.1186/1477-7819-12-159] [PMID: 24886534]
[132]
Huang, X.; Protheroe, M.D.; Al-Jumaily, A.M.; Paul, S.P.; Chalmers, A.N.; Wang, S.; Diwu, J.; Liu, W. Contribution of human hair in solar UV transmission in skin: Implications for melanoma development. Ann. Biomed. Eng., 2019, 47(12), 2372-2383.
[http://dx.doi.org/10.1007/s10439-019-02315-z] [PMID: 31290037]
[133]
Takauji, Y.; Morino, K.; Miki, K.; Hossain, M.; Ayusawa, D.; Fujii, M. Chyawanprash, a formulation of traditional Ayurvedic medicine, shows a protective effect on skin photoaging in hairless mice. J. Integr. Med., 2016, 14(6), 473-479.
[http://dx.doi.org/10.1016/S2095-4964(16)60272-8] [PMID: 27854199]
[134]
Lotus Herbal. Available from: https://www.lotusherbals.com/
[135]
Mama Earth. Available from: https://mamaearth.in/
[136]
Khadi pure. Available from: https://www.khadipure.com/
[137]
Innis free. Available from: https://us.innisfree.com/
[138]
Organic harvest. Available from: https://www.organicharvest.in/
[139]
Kama Ayurveda. Available from: www.kamaayurveda.com/
[140]
Alba botanica. Available from: https://www.albabotanica.com/
[141]
Oasis Beauty. Available from: www.oasisbeauty.com
[142]
Nourished Life. Available from: www.nourishedlife.com.au
[143]
Sole Organics. Available from: www.soleoorganics.com
[144]
Vaadi Herbals. Available from: www.vaadiherbals.com
[145]
Goddess Garden. Available from: http://www.goddessgarden.com
[146]
Nutrova. Available from: https://nutrova.com/
[147]
Wonderskin. Available from: https://wonderskin.in/
[148]
Zheng, Q.; Chen, S.W.; Santhanam, U.; Lyga, J.W. Compositions and methods for stimulating magp-1 to improve the appearance of skin. CA2799223A1, 2012.
[149]
Zhu, L.; Xiong, W.; Chen, M.; Cheng, K.; Zhai, Y.; Yan, S.; Ren, J.; Xiang, H.; Fang, C. Anti-aging chinese herbal medicine composition, preparation method and use thereof. CA2823422A, 2011.
[150]
Orza, A.I. Novel anti-wrinkle and anti-aging nano formulations and method of preparation using novel nano co-delivery system. U.S. Patent [US20170157005A1], 2017.
[151]
Bernoud, T.; Ramiandrasoa, P. Photoprotective composition. U.S. Patent [WO2014016349A1], 2014.
[152]
Hanson, J.E.; Antonacci, C. Natural sunscreen composition. U.S. Patent [US20130243709A1], 2013.
[153]
Thibodeau, A.; Lavoie, A.; Dionne, P.; Moigne, J.Y. Polysaccharides compositions comprising fucans and galactans and their use to reduce extravasation and inflammation. U.S. PATENT [US8426381B2], 2013.
[154]
Chavan, M.V.; Kunjupillai, B.; Vaidya, A.A. Composition photoprotectrice stable. Patent WO2012055678A1, 2012.
[155]
Majewski, G.P.; Shah, A.R.; Gormley, J.L.; Bojanowski, K. Antiwrinkle composition. U.S. Patent US7807625B2, 2010.
[156]
Hultsch, T.; Paul, C.; Sekkat, N.; Hirsch, S. Pharmaceutical composition comprising a macrolide t-cell immunomodulator and antiphotoaging agent. U.S. Patent 20080107613A1, 2008.
[157]
Horn, G. Photoprotectant composition for preventing sunburn and sun damage to the skin. U.S. Patent US20080014156A1, 2008.
[158]
Chaudhuri, R.; Lascu, Z.; Puccetti, G. Skin care composition. U.S. Patent US20070020203A1, 2007.
[159]
Henry, F.; Danoux, L.; Pauly, G. Cosmetic composition comprising an extract of the leaves of castanea sativa. Patent WO2005079741A1, 2005.
[160]
Jia, Q.; Burnett, B. Formulation of dual cycloxygenase (cox) and lipoxygenase (lox) inhibitors for mammal skin care. Patent WO2004089392A1, 2004.
[161]
Harbeck, M. Cream compositions for skin management. US20010001665A1, 2001.
[162]
Gubernick, J.; Marenus, K.D.; Pelle, E.; Declercq, L.; Maes, D.H. Novel antioxidant mixture. CA2279897A1, 1999.
[163]
Rigal, J.D.; Leveque, J.L.; Contamin, J.C.; Aubert, L. Photoprotective/cosmetic compositions comprising antioxidants and filamentous bacterial extracts. U.S. Patent US5618521A, 1994.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy