Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Herbal Therapeutics as Potential Prophylaxis for SARS-CoV-2 Infection

Author(s): Shipra Singhal, Abhishek Kumar, Deepti Katiyar and Vaishali M. Patil*

Volume 13, Issue 4, 2023

Published on: 21 October, 2022

Article ID: e130622205881 Pages: 11

DOI: 10.2174/2210315512666220613101120

Price: $65

Abstract

Introduction: The global pandemic COVID-19 and its uncontrolled spread and lack of effective therapeutics demand to investigate the herbal resources in search of novel, safe and potent therapeutics. Herbal medicines have proven the advantage of multi-target potential and thus can be investigated for virus-host interaction protein and viral protein targets.

Objectives: The manuscript aims to provide an outcome-based analysis of studies performed to evaluate herbal compounds as anti-COVID agents. The studies focus on the proposed mechanism of viral inhibition by herbal compounds.

Methods: The details on modern drug discovery approach for investigating potential antiviral agents include in silico screening, ADMET and molecular docking studies. It helps to establish the probable mechanism of viral inhibition as well as to establish pharmacophore. The reports explaining the role of herbal therapeutics/phytochemicals in antiviral drug development have been thoroughly searched.

Results: The study summarizes herbal therapeutics and phytochemicals based on their antiviral properties against various pathogenic viruses. Herbal compounds that have an interesting role in the development of therapeutics and herd immunity against SARS-CoV-2 are included and discussed.

Conclusion: The manuscript summarizes herbal resources and phytochemicals investigated as a potential therapeutic option for SARS-CoV-2 inhibition. It will be a useful resource for researchers interested in developing herbal therapeutics for the prevention and/or treatment of COVID-19.

Keywords: SARS-CoV-2, Herbal antiviral compounds, Host endogenous antiviral response, Herd immunity, COVID-19

[1]
Word Health Organization. Available from: https://www.who.int/ (Accessed on 10th November 2021).
[2]
Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res., 2020, 288, 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[3]
Patil, V.M.; Narkhede, R.R.; Masand, N.; Cheke, R.S.; Balasubramanian, K. Molecular insights into Resveratrol and its analogs as SARS-CoV-2 (COVID-19) protease inhibitors. Coronaviruses, 2021, 2, e130921189258.
[http://dx.doi.org/10.2174/2666796701999201218142828]
[4]
Shahid, A.; Selamoglu, M. Heterologus COVID-19 vaccines using alternate vaccine modalities as immune booster to overcome the social challenges and problems in the COVID-19 pandemic. Vaccines Vaccination Open Access, 2022, 7, 000152.
[5]
Narkhede, R.R.; Cheke, R.S.; Shinde, S.D.; Kuchake, V.G.; Mahajan, N.M.; Patil, V.M. Understanding the dynamics of COVID-19 outbreak: Structure, diagnosis, prevention and treatment. Anti-Inf. Agents, 2020, 19, e130621190363.
[6]
Ali, G.S.; Ozdemir, B.; Selamoglu, Z. A review of severe acute respiratory syndrome coronavirus 2 and pathological disorders in patients. J. Pharm. Care, 2021, 9, 141-147.
[http://dx.doi.org/10.18502/jpc.v9i3.7373]
[7]
Patil, V.M.; Verma, S.; Masand, N. Prospective mode of action of Ivermectin: SARS-CoV-2. Eur. J. Med. Chem. Reports, 2021, 4, 100018.
[8]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[9]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today, 2020, 25(4), 668-688.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[10]
Rehman, M.F.U.; Akhter, S.; Batool, A.I.; Selamoglu, Z.; Sevindik, M.; Eman, R.; Mustaqeem, M.; Akram, M.S.; Kanwal, F.; Lu, C.; Aslam, M. Effectiveness of natural antioxidants against SARS-CoV-2? Insights from the in silico world. Antibiotics (Basel), 2021, 10(8), 1011.
[http://dx.doi.org/10.3390/antibiotics10081011] [PMID: 34439061]
[11]
Khan, S.A.; Al-Balushi, K. Combating COVID-19: The role of drug repurposing and medicinal plants. J. Infect. Public Health, 2021, 14(4), 495-503.
[http://dx.doi.org/10.1016/j.jiph.2020.10.012] [PMID: 33743371]
[12]
Patil, V.M.; Das, S.; Balasubramanian, K. Quantum chemical and docking insights into bioavailability enhancement of curcumin by piperine in pepper. J. Phys. Chem. A, 2016, 120(20), 3643-3653.
[http://dx.doi.org/10.1021/acs.jpca.6b01434] [PMID: 27111639]
[13]
Negi, P.; Das, L.; Prakash, S.; Patil, V.M. Screening of phytochemicals from Curcuma longa for their inhibitory activity on SARS-CoV-2: An in-silico study. Antiinfect. Agents, 2021, 20(1), 28-46.
[14]
Negi, P.; Prakash, S.; Patil, V.M. Structure based drug design approach to identify potential SARS-CoV-2 polymerase inhibitors. Coronaviruses, 2021, 2, 507-515.
[http://dx.doi.org/10.2174/2666796701999201113114545]
[15]
Kapusta, K.; Kar, S.; Collins, J.T.; Franklin, L.M.; Kolodziejczyk, W.; Leszczynski, J.; Hill, G.A. Protein reliability analysis and virtual screening of natural inhibitors for SARS-CoV-2 main protease (Mpro) through docking, molecular mechanic & dynamic, and ADMET profil-ing. J. Biomol. Struct. Dyn., 2021, 39(17), 6810-6827.
[http://dx.doi.org/10.1080/07391102.2020.1806930] [PMID: 32795148]
[16]
PUBMED. Available from: https://pubmed.ncbi.nlm.gov/
[17]
National Institute of Health. COVID-19 Testing hits the road in West Virginia. Available from: https://www.nih.gov/coronavirus
[18]
National Library of Medicine. NCBI SARS-COVID-19 Resources. Available from: https://www.ncbi.nlm.nih.gov/sars-cov-2/
[19]
Scopus Preview.. elsevier B.V: Amsterdam Available from: https://www.scopus.com
[20]
Clarivate. Web of Science.. Available from: https://webofknowledge.com
[21]
Google Scholar. Available from: https://scholar.google.com
[22]
Gour, A.; Manhas, D.; Bag, S.; Gorain, B.; Nandi, U. Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS-CoV-2. Phytother. Res., 2021, 35(8), 4258-4283.
[http://dx.doi.org/10.1002/ptr.7092] [PMID: 33786876]
[23]
Li, Y.; Chu, F.; Li, P.; Johnson, N.; Li, T.; Wang, Y.; An, R.; Wu, D.; Chen, J.; Su, Z.; Gu, X.; Ding, X. Potential effect of Maxing Shigan decoction against coronavirus disease 2019 (COVID-19) revealed by network pharmacology and experimental verification. J. Ethnopharmacol., 2021, 271, 113854.
[http://dx.doi.org/10.1016/j.jep.2021.113854] [PMID: 33513419]
[24]
Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med., 2014, 4(1), 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[25]
Mohammadi Pour, P.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The signaling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front. Pharmacol., 2019, 10, 1207.
[http://dx.doi.org/10.3389/fphar.2019.01207] [PMID: 31787892]
[26]
AbrahamDogo, G.; Uchechukwu, O.; Umar, U.; Madaki, A.J.; Aguiyi, J.C. Molecular docking analyses of phytochemicals obtained from African antiviral herbal plants exhibit inhibitory activity against therapeutic targets of SARS-CoV-2. In: Res. Square; , 2020.
[27]
Chandel, V.; Raj, S.; Rathi, B.; Kumar, D. In silico identification of potent COVID-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach. Preprints, 2020, 2020, 030349.
[http://dx.doi.org/10.20944/preprints202003.0349.v1]
[28]
Gupta, M.K.; Vemula, S.; Donde, R.; Gouda, G.; Behera, L.; Vadde, R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J. Biomol. Struct. Dyn., 2021, 39(7), 2617-2627.
[PMID: 32238078]
[29]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential inhibitor of COVID-19 main protease (Mpro) from sever-al medicinal plant compounds by molecular docking study. Preprints, 2020, 2020, 030226.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[30]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284, 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[31]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[32]
Quimque, M.T.J.; Notarte, K.I.R.; Fernandez, R.A.T.; Mendoza, M.A.O.; Liman, R.A.D.; Lim, J.A.K.; Pilapil, L.A.E.; Ong, J.K.H.; Pastrana, A.M.; Khan, A.; Wei, D.D.; Macabeo, A.P.G. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication and post-translational infection mechanisms. J. Biomol. Struct. Dyn., 2020, 39, 4316-4333.
[http://dx.doi.org/10.1080/07391102.2020.1776639] [PMID: 32476574]
[33]
Rane, J.S.; Chatterjee, A.; Kumar, A.; Ray, S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. F1000 Res., 2020, 9, 1157.
[34]
Ubani, A.; Agwom, F.; Shehu, N.Y.; Luka, P.; Umera, A.; Umar, U.; Omale, S.; Nnadi, E.; Aguiyi, J.C. Molecular docking analysis of selected phytochemicals on two SARS-CoV-2 targets. F1000 Res., 2020, 9, 1157.
[http://dx.doi.org/10.12688/f1000research.25076.1]
[35]
Islam, R.; Parves, M.R.; Paul, A.S.; Uddin, N.; Rahman, M.S.; Mamun, A.A.; Hossain, M.N.; Ali, M.A.; Halim, M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(9), 3213-3224.
[PMID: 32340562]
[36]
Arya, R.; Das, A.; Prashar, V.; Kumar, M. Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs. Preprints, 2020.
[37]
Dong, H.J.; Wang, Z.H.; Meng, W.; Li, C.C.; Hu, Y.X.; Zhou, L.; Wang, X.J. The Natural compound homoharringtonine presents broad anti-viral activity in vitro and in vivo. Viruses, 2018, 10(11), 601.
[http://dx.doi.org/10.3390/v10110601] [PMID: 30388805]
[38]
Khanna, K.; Kohli, S.K.; Kaur, R.; Bhardwaj, A.; Bhardwaj, V.; Ohri, P.; Sharma, A.; Ahmad, A.; Bhardwaj, R.; Ahmad, P. Herbal immune-boosters: Substantial warriors of pandemic COVID-19 battle. Phytomedicine, 2021, 85, 153361.
[http://dx.doi.org/10.1016/j.phymed.2020.153361] [PMID: 33485605]
[39]
Fuzimoto, A.D.; Isidoro, C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? J. Tradit. Complement. Med., 2020, 10(4), 405-419.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.003] [PMID: 32691005]
[40]
Sharanya, C.S.; Sabu, A.; Haridas, M. Potent phytochemicals against COVID-19 infection from phyto-materials used as antivirals in complementary medicines: A review. Futur. J. Pharm. Sci., 2021, 7(1), 113.
[http://dx.doi.org/10.1186/s43094-021-00259-7] [PMID: 34095323]
[41]
Anand, A.V.; Balamuralikrishnan, B.; Kaviya, M.; Bharathi, K.; Parithathvi, A.; Arun, M.; Senthilkumar, N.; Velayuthaprabhu, S.; Sara-dhadevi, M.; Al-Dhabi, N.A.; Arasu, M.V.; Yatoo, M.I.; Tiwari, R.; Dhama, K. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules, 2021, 26(6), 1775.
[http://dx.doi.org/10.3390/molecules26061775] [PMID: 33809963]
[42]
Swain, S.S.; Panda, S.K.; Luyten, W. Phytochemicals against SARS-CoV as potential drug leads. Biomed. J., 2021, 44(1), 74-85.
[http://dx.doi.org/10.1016/j.bj.2020.12.002] [PMID: 33736953]
[43]
Borse, S.; Joshi, M.; Saggam, A.; Bhat, V.; Walia, S.; Marathe, A.; Sagar, S.; Chavan-Gautam, P.; Girme, A.; Hingorani, L.; Tillu, G. Ayurve-da botanicals in COVID-19 management: An in silico multi-target approach. PLoS One, 2021, 16(6), e0248479.
[http://dx.doi.org/10.1371/journal.pone.0248479] [PMID: 34115763]
[44]
Sahu, K.K.; Kumar, R. Role of 2-Deoxy-D-Glucose (2-DG) in COVID-19 disease: A potential game-changer. J. Family Med. Prim. Care, 2021, 10(10), 3548-3552.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1338_21] [PMID: 34934645]
[45]
Ghildiyal, R.; Prakash, V.; Chaudhary, V.K.; Gupta, V.; Gabrani, R. Phytochemicals as antiviral agents: Recent updates.Plant-derived Bioactives; Springer: Singapore, 2020, pp. 279-295.
[46]
Subudhi, B.B.; Chattopadhyay, S.; Mishra, P.; Kumar, A. Current strategies for inhibition of chikungunya infection. Viruses, 2018, 10(5), 235.
[http://dx.doi.org/10.3390/v10050235] [PMID: 29751486]
[47]
Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections-A review. Food Res. Int., 2015, 77, 221-235.
[http://dx.doi.org/10.1016/j.foodres.2015.06.021]
[48]
Lipson, S.M.; Karalis, G.; Karthikeyan, L.; Ozen, F.S.; Gordon, R.E.; Ponnala, S.; Bao, J.; Samarrai, W.; Wolfe, E. Mechanism of anti-rotavirus synergistic activity by epigallocatechin gallate and a proanthocyanidin-containing nutraceutical. Food Environ. Virol., 2017, 9(4), 434-443.
[http://dx.doi.org/10.1007/s12560-017-9299-z] [PMID: 28466464]
[49]
Jiang, S.; Hillyer, C.; Du, L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol., 2020, 41(5), 355-359.
[http://dx.doi.org/10.1016/j.it.2020.03.007] [PMID: 32249063]
[50]
Prabakaran, P.; Gan, J.; Feng, Y.; Zhu, Z.; Choudhry, V.; Xiao, X.; Ji, X.; Dimitrov, D.S. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem., 2006, 281(23), 15829-15836.
[http://dx.doi.org/10.1074/jbc.M600697200] [PMID: 16597622]
[51]
Adedeji, A.O.; Severson, W.; Jonsson, C.; Singh, K.; Weiss, S.R.; Sarafianos, S.G. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J. Virol., 2013, 87(14), 8017-8028.
[http://dx.doi.org/10.1128/JVI.00998-13] [PMID: 23678171]
[52]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil. Med. Res., 2020, 7, 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0]
[53]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses, 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[54]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[55]
Balkrishna, A.; Pokhrel, S.; Singh, H.; Joshi, M.; Mulay, V.P.; Haldar, S.; Varshney, A. Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized Zebrafish model. Drug Des. Devel. Ther., 2021, 15, 1111-1133.
[http://dx.doi.org/10.2147/DDDT.S292805] [PMID: 33737804]
[56]
Ashour, H.M.; Elkhatib, W.F.; Rahman, M.M.; Elshabrawy, H.A. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens, 2020, 9(3), 186.
[http://dx.doi.org/10.3390/pathogens9030186] [PMID: 32143502]
[57]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[58]
Cong, Y.; Ulasli, M.; Schepers, H.; Mauthe, M.; V’kovski, P.; Kriegenburg, F.; Thiel, V.; de Haan, C.A.M.; Reggiori, F. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J. Virol., 2020, 94(4), e01925-e01919.
[http://dx.doi.org/10.1128/JVI.01925-19] [PMID: 31776274]
[59]
McBride, R.; van Zyl, M.; Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8), 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[60]
Nelson, G.W.; Stohlman, S.A.; Tahara, S.M. High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J. Gen. Virol., 2000, 81(Pt 1), 181-188.
[PMID: 10640556]
[61]
Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; Yan, Y.; Zhang, C.; Shan, H.; Chen, S. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B, 2020, 10(7), 1228-1238.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[62]
Neuman, B.W.; Kiss, G.; Kunding, A.H.; Bhella, D.; Baksh, M.F.; Connelly, S.; Droese, B.; Klaus, J.P.; Makino, S.; Sawicki, S.G.; Siddell, S.G.; Stamou, D.G.; Wilson, I.A.; Kuhn, P.; Buchmeier, M.J. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol., 2011, 174(1), 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[63]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Muller, M.A.; Drosten, C.; Pohlmann, S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Cell, 2020, 181, 271-280.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[64]
Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol., 2011, 85(2), 873-882.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[65]
Elmezayen, A.D.; Al-Obaidi, A.; Şahin, A.T.; Yelekçi, K. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J. Biomol. Struct. Dyn., 2021, 39(8), 2980-2992.
[PMID: 32306862]
[66]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[67]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[68]
Lim, K.P.; Ng, L.F.; Liu, D.X. Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. J. Virol., 2000, 74(4), 1674-1685.
[http://dx.doi.org/10.1128/JVI.74.4.1674-1685.2000] [PMID: 10644337]
[69]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[70]
Wang, S.Q.; Du, Q.S.; Zhao, K.; Li, A.X.; Wei, D.Q.; Chou, K.C. Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids, 2007, 33(1), 129-135.
[http://dx.doi.org/10.1007/s00726-006-0403-1] [PMID: 16998715]
[71]
Toney, J.H.; Navas-Martín, S.; Weiss, S.R.; Koeller, A. Sabadinine: a potential non-peptide anti-severe acute-respiratory-syndrome agent identified using structure-aided design. J. Med. Chem., 2004, 47(5), 1079-1080.
[http://dx.doi.org/10.1021/jm034137m] [PMID: 14971887]
[72]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[73]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[74]
Lung, J.; Lin, Y.S.; Yang, Y.H.; Chou, Y.L.; Shu, L.H.; Cheng, Y.C.; Liu, H.T.; Wu, C.Y. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J. Med. Virol., 2020, 92(6), 693-697.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[75]
Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol., 2020, 92(5), 479-490.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[76]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[77]
Zhang, D.H.; Wu, K.L.; Zhang, X.; Deng, S.Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[78]
Cassidy, L.; Fernandez, F.; Johnson, J.B.; Naiker, M.; Owoola, A.G.; Broszczak, D.A. Oxidative stress in Alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med., 2020, 49, 102294.
[http://dx.doi.org/10.1016/j.ctim.2019.102294] [PMID: 32147039]
[79]
Khan, H.; Sureda, A.; Belwal, T.; Çetinkaya, S.; Süntar, İ.; Tejada, S.; Devkota, H.P.; Ullah, H.; Aschner, M. Polyphenols in the treatment of autoimmune diseases. Autoimmun. Rev., 2019, 18(7), 647-657.
[http://dx.doi.org/10.1016/j.autrev.2019.05.001] [PMID: 31059841]
[80]
Thiel, V.; Ivanov, K.A.; Putics, Á.; Hertzig, T.; Schelle, B.; Bayer, S.; Weißbrich, B.; Snijder, E.J.; Rabenau, H.; Doerr, H.W.; Gorbalenya, A.E.; Ziebuhr, J. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol., 2003, 84(Pt 9), 2305-2315.
[http://dx.doi.org/10.1099/vir.0.19424-0] [PMID: 12917450]
[81]
Bernini, A.; Spiga, O.; Venditti, V.; Prischi, F.; Bracci, L.; Huang, J.; Tanner, J.A.; Niccolai, N. Tertiary structure prediction of SARS corona-virus helicase. Biochem. Biophys. Res. Commun., 2006, 343(4), 1101-1104.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.069] [PMID: 16579970]
[82]
Hoffmann, M.; Eitner, K.; von Grotthuss, M.; Rychlewski, L.; Banachowicz, E.; Grabarkiewicz, T.; Szkoda, T.; Kolinski, A. Three dimen-sional model of severe acute respiratory syndrome coronavirus helicase ATPase catalytic domain and molecular design of severe acute res-piratory syndrome coronavirus helicase inhibitors. J. Comput. Aided Mol. Des., 2006, 20(5), 305-319.
[http://dx.doi.org/10.1007/s10822-006-9057-z] [PMID: 16972168]
[83]
Snijder, E.J.; Bredenbeek, P.J.; Dobbe, J.C.; Thiel, V.; Ziebuhr, J.; Poon, L.L.M.; Guan, Y.; Rozanov, M.; Spaan, W.J.M.; Gorbalenya, A.E. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol., 2003, 331(5), 991-1004.
[http://dx.doi.org/10.1016/S0022-2836(03)00865-9] [PMID: 12927536]
[84]
Keum, Y.S.; Jeong, Y.J. Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target. Biochem. Pharmacol., 2012, 84(10), 1351-1358.
[http://dx.doi.org/10.1016/j.bcp.2012.08.012] [PMID: 22935448]
[85]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[86]
Chakravarti, R.; Sing, R.; Ghosh, A.; Dey, J.; Sharma, D.; Velaytham, R.; Roy, S.; Ghosh, D. A review on potential of natural products in the management of COVID. RSC Advances, 2021, 11, 16711-16735.
[http://dx.doi.org/10.1039/D1RA00644D]
[87]
Huang, J.; Song, W.; Huang, H.; Sun, Q. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike pro-tein: From mechanistic studies to clinical trials for COVID-19. J. Clin. Med., 2020, 9(4), 1131.
[http://dx.doi.org/10.3390/jcm9041131] [PMID: 32326602]
[88]
Wu, C.H.; Yeh, S.H.; Tsay, Y.G.; Shieh, Y.H.; Kao, C.L.; Chen, Y.S.; Wang, S.H.; Kuo, T.J.; Chen, D.S.; Chen, P.J. Glycogen synthase ki-nase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. J. Biol. Chem., 2009, 284(8), 5229-5239.
[http://dx.doi.org/10.1074/jbc.M805747200] [PMID: 19106108]
[89]
Luo, H.; Chen, Q.; Chen, J.; Chen, K.; Shen, X.; Jiang, H. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett., 2005, 579(12), 2623-2628.
[http://dx.doi.org/10.1016/j.febslet.2005.03.080] [PMID: 15862300]
[90]
Bheenaveni, R.S. India’s indigenous idea of herd immunity: the solution for COVID-19? Tradit. Med. Res., 2020, 5, 182-187.
[91]
Luo, L.; Jiang, J.; Wang, C.; Fitzgerald, M.; Hu, W.; Zhou, Y.; Zhang, H.; Chen, S. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm. Sin. B, 2020, 10(7), 1192-1204.
[http://dx.doi.org/10.1016/j.apsb.2020.05.007] [PMID: 32834949]
[92]
Amber, R.; Adnan, M.; Tariq, A.; Mussarat, S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. J. Pharm. Pharmacol., 2017, 69(2), 109-122.
[http://dx.doi.org/10.1111/jphp.12669] [PMID: 27905101]
[93]
[94]
Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med., 2017, 7(4), 433-440.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.014] [PMID: 29034191]
[95]
Hamidpour, M.; Hamidpour, R.; Hamidpour, S.; Shahlari, M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J. Tradit. Complement. Med., 2014, 4(2), 82-88.
[http://dx.doi.org/10.4103/2225-4110.130373] [PMID: 24860730]
[96]
Lopresti, A.L. Salvia (Sage): A review of its potential cognitive-enhancing and protective effects. Drugs R D., 2017, 17(1), 53-64.
[http://dx.doi.org/10.1007/s40268-016-0157-5] [PMID: 27888449]
[97]
Dal Pra, V.; Bisol, L.B.; Detoni, S.; Denti, M.; Grando, J.; Pollo, C.; Pasquali, T.R.; Hofmann Júnio, A.E.; Mazzuti, M.A.; Macedo, S. Anti-inflammatory activity of fractionated extracts of Salvia officinalis L. J. Appl. Pharm. Sci., 2011, 7, 67-71.
[98]
Baricevic, D.; Sosa, S.; Della Loggia, R.; Tubaro, A.; Simonovska, B.; Krasna, A.; Zupancic, A. Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J. Ethnopharmacol., 2001, 75(2-3), 125-132.
[http://dx.doi.org/10.1016/S0378-8741(00)00396-2] [PMID: 11297842]
[99]
Juhás, S.; Cikos, S.; Czikková, S.; Veselá, J.; Il’ková, G.; Hájek, T.; Domaracká, K.; Domaracký, M.; Bujnáková, D.; Rehák, P.; Koppel, J. Effects of borneol and thymoquinone on TNBS-induced colitis in mice. Folia Biol. (Praha), 2008, 54(1), 1-7.
[PMID: 18226358]
[100]
Ninomiya, K.; Matsuda, H.; Shimoda, H.; Nishida, N.; Kasajima, N.; Yoshino, T.; Morikawa, T.; Yoshikawa, M. Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorg. Med. Chem. Lett., 2004, 14(8), 1943-1946.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.091] [PMID: 15050633]
[101]
Sá, C.M.; Ramos, A.A.; Azevedo, M.F.; Lima, C.F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Sage tea drinking improves lipid profile and antioxidant defences in humans. Int. J. Mol. Sci., 2009, 10(9), 3937-3950.
[http://dx.doi.org/10.3390/ijms10093937] [PMID: 19865527]
[102]
Pedro, D.; Ramos, A.; Lima, C.; Baltazar, F.; Pereira-Wilson, C. Modulation of DNA damage prevention and signaling pathways in diet in-duced colon cancer prevention. BMC Proc., 2010, 4, 53.
[http://dx.doi.org/10.1186/1753-6561-4-S2-P58]
[103]
Osman, N.N.; Abd El–Azime, A. Salvia officinalis L. (sage) ameliorates radiation-induced oxidative brain damage in rats. Arab J. Nucl. Sci. Appl., 2013, 46, 297-304.
[104]
Moss, M.; Rouse, M.; Moss, L. Aromas of Salvia species enhance everyday prospective memory performance in healthy young adults. Adv. Chem. Engineer. Sci., 2014, 4, 339-346.
[105]
Mittal, J.; Sharma, M.M.; Batra, A. Tinospora cordifolia: A multipurpose medicinal plant- A review. J. Med. Plants Studies, 2014, 2, 32-47.
[106]
Chowdhury, P. In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J. Biomol. Struct. Dyn., 2021, 39(17), 6792-6809.
[http://dx.doi.org/10.1080/07391102.2020.1803968] [PMID: 32762511]
[107]
Jena, S.; Munusami, P.; Mm, B.; Chanda, K. Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. Virusdisease, 2021, 32(1), 65-77.
[http://dx.doi.org/10.1007/s13337-021-00666-7] [PMID: 33778129]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy