Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Research Article

An In-Silico Approach to Identify Therapeutic Target and Markers Associated with Diabetic Nephropathy

In Press, (this is not the final "Version of Record"). Available online 20 May, 2024
Author(s): Bhuvnesh Rai, Pramod Kumar Maurya, Medha Srivastava, Prabhakar Mishra, Mehar Hasan Asif and Swasti Tiwari*
Published on: 20 May, 2024

Article ID: e100622205872

DOI: 10.2174/1573399819666220610191935

Price: $95

Abstract

Background: Renal disease in T2DM could arise independently of hyperglycemia, aka non diabetic kidney disease. Its prevalence ranges from 33% to 72.5% among T2DM patients. Specific molecular signatures that distinguish Diabetic Nephropathy from NDKD (FSGS) in T2DM might provide new targets for CKD management.

Methods: Five original GEO microarray DN and FSGS datasets were evaluated (GSE111154, GSE96804, GSE125779, GSE129973 and GSE121233). Each of the three groups (DN, FSGS, and Controls) had equal renal transcriptome data (n=32) included in the analysis to eliminate bias. The DEGs were identified using TAC4.0. Pathway analysis was performed on the discovered genes aligned to official gene symbols using Reactome, followed by functional gene enrichment analysis using Funrich, Enrichr. STRING and Network analyst investigated PPI, followed by Webgestalt's pathway erichment. Finally, using the Targetscan 7.0 and DIANA tools, filtered differential microRNAs downregulated in DN were evaluated for target identification.

Result: Between the three groups, DN, FSGS, and Control, a total of 194 DEGs with foldchange,> 2&<-2 and P-value0.01 were found in the renal transcriptome. In comparison to control, 45 genes were elevated, particularly in DN, whereas 43 were upregulated specifically in FSGS. DN datasets were compared to FSGS in a separate analysis. FABP4, EBF1, ADIRF, and ART4 were shown to be among the substantially up-regulated genes unique to DN in both analyses. The transcriptional regulation of white adipocytes was discovered by pathway analysis.

Conclusion: The molecular markers revealed might be employed as specific targets in the aetiology of DN, as well as in T2DM patients' therapeutic care.

Keywords: Renal transcriptome, diagnosis, kidney disease in diabetes, renal biopsy.

[1]
Remuzzi G, Schieppati A, Ruggenenti P. Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 2002; 346(15): 1145-51.
[http://dx.doi.org/10.1056/NEJMcp011773] [PMID: 11948275]
[2]
Ritz E, Rychlík I, Locatelli F, Halimi S. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. Am J Kidney Dis 1999; 34(5): 795-808.
[http://dx.doi.org/10.1016/S0272-6386(99)70035-1] [PMID: 10561134]
[3]
Nabi O, Boursier J, Lapidus N, et al. The burden of NAFLD in type 2 diabetic subjects from the general population: A Nationwide population-based follow-up study (NASHCO). Liver Int 2022; 42(3): 595-606.
[http://dx.doi.org/10.1111/liv.15171] [PMID: 35066992]
[4]
Xiong Y, Zhou L. The signaling of cellular senescence in diabetic nephropathy. Oxid Med Cell Longev 2019; 2019: 7495629.
[http://dx.doi.org/10.1155/2019/7495629] [PMID: 31687085]
[5]
Zhang Y, Ting RZ, Yang W, et al. Depression in Chinese patients with type 2 diabetes: Associations with hyperglycemia, hypoglycemia, and poor treatment adherence. J Diabetes 2015; 7(6): 800-8.
[http://dx.doi.org/10.1111/1753-0407.12238] [PMID: 25349949]
[6]
Brouwer S, van Zon SKR, Bültmann U, Riese H, Jeronimus BF. Personality as a resource for labor market participation among individuals with chronic health conditions. Int J Environ Res Public Health 2020; 17(17): E6240.
[http://dx.doi.org/10.3390/ijerph17176240] [PMID: 32867344]
[7]
Sadiq F, Kazmi UER. Comparison of social support, depression and anger in diabetic and cardiac patients. J Pak Med Assoc 2021; 71(7): 1814-7.
[PMID: 34410253]
[8]
Soni SS, Gowrishankar S, Kishan AG, Raman A. Non diabetic renal disease in type 2 diabetes mellitus. Nephrology (Carlton) 2006; 11(6): 533-7.
[http://dx.doi.org/10.1111/j.1440-1797.2006.00681.x] [PMID: 17199793]
[9]
Moger V, Kumar SK, Sakhuja V, et al. Rapidly progressive renal failure in type 2 diabetes in the tropical environment: A clinico-pathological study. Ren Fail 2005; 27(5): 595-600.
[http://dx.doi.org/10.1080/08860220500200205] [PMID: 16152999]
[10]
Prakash J, Lodha M, Singh SK, Vohra R, Raja R. Usha. Diabetic retinopathy is a poor predictor of type of nephropathy in proteinuric type 2 diabetic patients. J Assoc Physicians India 2007; 55: 412-6.
[PMID: 17879494]
[11]
Premalatha G, Vidhya K, Deepa R, Ravikumar R, Rema M, Mohan V. Prevalence of non-diabetic renal disease in type 2 diabetic patients in a diabetes centre in Southern India. J Assoc Physicians India 2002; 50: 1135-9.
[PMID: 12516695]
[12]
A Working Group of the International IgA Nephropathy Network and the Renal Pathology Society et al. The Oxford classification of IgA nephropathy: Pathology definitions, correlations, and reproducibility. Kidney Int 2009; 76: 546-56.
[13]
D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med 2011; 365(25): 2398-411.
[http://dx.doi.org/10.1056/NEJMra1106556] [PMID: 22187987]
[14]
Hricik DE, Chung-Park M, Sedor JR. Glomerulonephritis. N Engl J Med 1998; 339(13): 888-99.
[http://dx.doi.org/10.1056/NEJM199809243391306] [PMID: 9744974]
[15]
Anders H-J, Huber TB, Isermann B, Schiffer M. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 2018; 14(6): 361-77.
[http://dx.doi.org/10.1038/s41581-018-0001-y] [PMID: 29654297]
[16]
Doshi SM, Friedman AN. Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol 2017; 12(8): 1366-73.
[http://dx.doi.org/10.2215/CJN.11111016] [PMID: 28280116]
[17]
Rai B, Mishra P, Asif MH, Tiwari S. Identification of crucial degs and hub genes in focal segmental glomerulosclerosis: A bioinformatics study. Int J Appl Biol Pharm 2021; 12(12): 420-60.
[18]
Balakumar P, Arora MK, Reddy J, Anand-Srivastava MB. Pathophysiology of diabetic nephropathy: Involvement of multifaceted signalling mechanism. J Cardiovasc Pharmacol 2009; 54(2): 129-38.
[http://dx.doi.org/10.1097/FJC.0b013e3181ad2190] [PMID: 19528810]
[19]
Hu Y, Wang Q, Wang Z, Wang F, Guo X, Li G. Circulating microRNA profiles and the identification of miR-593 and miR-511 which directly target the PROP1 gene in children with combined pituitary hormone deficiency. Int J Mol Med 2015; 35(2): 358-66.
[http://dx.doi.org/10.3892/ijmm.2014.2016] [PMID: 25434367]
[20]
Han R, Hu S, Qin W, et al. C3a and suPAR drive versican V1 expression in tubular cells of focal segmental glomerulosclerosis. JCI Insight 2019; 4(13): e130986.
[http://dx.doi.org/10.1172/jci.insight.130986]
[21]
Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes 2011; 60(9): 2354-69.
[http://dx.doi.org/10.2337/db10-1181] [PMID: 21752957]
[22]
Menon R, Otto EA, Hoover P, et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight 2020; 5(6): e133267.
[http://dx.doi.org/10.1172/jci.insight.133267] [PMID: 32107344]
[23]
Tong J, Xie J, Ren H, et al. Comparison of glomerular transcriptome profiles of adult-onset steroid sensitive focal segmental glomerulosclerosis and minimal change disease. PLoS One 2015; 10(11): e0140453.
[http://dx.doi.org/10.1371/journal.pone.0140453] [PMID: 26536600]
[24]
Tao J, Mariani L, Eddy S, et al. JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int 2018; 94(4): 795-808.
[http://dx.doi.org/10.1016/j.kint.2018.05.022] [PMID: 30093081]
[25]
Li W, Sargsyan D, Wu R, et al. DNA methylome and transcriptome alterations in high glucose-induced diabetic nephropathy cellular model and identification of novel targets for treatment by tanshinone IIA. Chem Res Toxicol 2019; 32(10): 1977-88.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00117] [PMID: 31525975]
[26]
Mulder S, Hamidi H, Kretzler M, Ju W. An integrative systems biology approach for precision medicine in diabetic kidney disease. Diabetes Obes Metab 2018; 20 (Suppl. 3): 6-13.
[http://dx.doi.org/10.1111/dom.13416] [PMID: 30294956]
[27]
Srivastava M, Rai B. Molecular mechanisms of pathways in diabetic nephropathy development in patients with T2DM - A review. Int J Appl Biol Pharm 2021; 12: 380-92.
[28]
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47-7.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[29]
Whistler T, Chiang C-F, Lin J-M, Lonergan W, Reeves WC. The comparison of different pre- and post-analysis filters for determination of exon-level alternative splicing events using Affymetrix arrays. J Biomol Tech 2010; 21(1): 44-53.
[PMID: 20357982]
[30]
Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize microarray experiments: Application to sporulation time series. Pac Symp Biocomput 2000; 455-66.
[http://dx.doi.org/10.1142/9789814447331_0043] [PMID: 10902193]
[31]
Sidiropoulos K, Viteri G, Sevilla C, et al. Reactome enhanced pathway visualization. Bioinformatics 2017; 33(21): 3461-7.
[http://dx.doi.org/10.1093/bioinformatics/btx441] [PMID: 29077811]
[32]
Croft D, Mundo AF, Haw R, et al. The Reactome pathway knowledgebase. Nucleic Acids Res 2014; 42(Database issue): D472-7.
[http://dx.doi.org/10.1093/nar/gkt1102] [PMID: 24243840]
[33]
Pathan M, Keerthikumar S, Ang CS, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015; 15(15): 2597-601.
[http://dx.doi.org/10.1002/pmic.201400515] [PMID: 25921073]
[34]
Chen EY, Tan CM, Kou Y, et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013; 14(1): 128.
[http://dx.doi.org/10.1186/1471-2105-14-128] [PMID: 23586463]
[35]
Enrichr: A comprehensive gene set enrichment analysis web server 2016 update | Nucleic Acids Research | Oxford Academic. Available from: https://academic.oup.com/nar/article/44/W1/W90/2499357?login=true
[36]
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res 2019; 47(W1): W199-205.
[http://dx.doi.org/10.1093/nar/gkz401] [PMID: 31114916]
[37]
Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res 2017; 45(W1): W130-7.
[http://dx.doi.org/10.1093/nar/gkx356] [PMID: 28472511]
[38]
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: Current approaches and outstanding challenges. PLOS Comput Biol 2012; 8(2): e1002375.
[http://dx.doi.org/10.1371/journal.pcbi.1002375] [PMID: 22383865]
[39]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447-52.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[40]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[41]
Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[42]
Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-LncBase: Experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 2013; 41: D239-45.
[http://dx.doi.org/10.1093/nar/gks1246] [PMID: 23193281]
[44]
Fuseya S, Suzuki R, Okada R, et al. Mice lacking core 1-derived O-glycan in podocytes develop transient proteinuria, resulting in focal segmental glomerulosclerosis. Biochem Biophys Res Commun 2020; 523: 1007-13.
[45]
Serino G, Sallustio F, Cox SN, Pesce F, Schena FP. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol 2012; 23(5): 814-24.
[http://dx.doi.org/10.1681/ASN.2011060567] [PMID: 22362909]
[46]
Trojnar M, Patro-Małysza J, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Mosiewicz J. Associations between fatty acid-binding protein 4A proinflammatory adipokine and insulin resistance, gestational and type 2 diabetes mellitus. Cells 2019; 8(3): 227.
[http://dx.doi.org/10.3390/cells8030227] [PMID: 30857223]
[47]
Seo DH, Nam M, Jung M, et al. Serum levels of adipocyte fatty acid-binding protein are associated with rapid renal function decline in patients with type 2 diabetes mellitus and preserved renal function. Diabetes Metab J 2020; 44(6): 875-86.
[http://dx.doi.org/10.4093/dmj.2019.0221] [PMID: 32662255]
[48]
Circulating Levels of Adipocyte and Epidermal Fatty Acid-Binding Proteins in Relation to Nephropathy Staging and Macrovascular Complications in Type 2 Diabetic Patients | Diabetes Care. Available from: https://care.diabetesjournals.org/content/32/1/132
[49]
Toruner F, Altinova AE, Akturk M, et al. The relationship between adipocyte fatty acid binding protein-4, retinol binding protein-4 levels and early diabetic nephropathy in patients with type 2 diabetes. Diabetes Res Clin Pract 2011; 91(2): 203-7.
[http://dx.doi.org/10.1016/j.diabres.2010.11.011] [PMID: 21176857]
[50]
Cinti S. Between brown and white: Novel aspects of adipocyte differentiation. Ann Med 2011; 43(2): 104-15.
[http://dx.doi.org/10.3109/07853890.2010.535557] [PMID: 21254898]
[51]
He F, Shu Y, Wang X, et al. Intensive glucose control reduces the risk effect of TRIB3, SMARCD3, and ATF6 genetic variation on diabetic vascular complications. Front Pharmacol 2018; 9: 1422.
[http://dx.doi.org/10.3389/fphar.2018.01422] [PMID: 30618737]
[52]
MicroRNA-3148 acts as molecular switch promoting malignant transformation and adipocytic differentiation of immortalized human bone marrow stromal cells via direct targeting of the SMAD2/TGFβ pathway | Cell Death Discovery. Available from: https://www.nature.com/articles/s41420-020-00312-z
[53]
Schulte C, Westermann D, Blankenberg S, Zeller T. Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction. World J Cardiol 2015; 7(12): 843-60.
[http://dx.doi.org/10.4330/wjc.v7.i12.843] [PMID: 26730290]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy