Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Chemical Composition and Antioxidant, Anti-Inflammatory and Neuroprotective Properties of Hexane Extracts from the Roots of Centaurea acaulis and Centaurea pullata

Author(s): Lyna Benhamidat, Mohammed El Amine Dib*, Okkacha Bensaid, Assia Keniche, Ibtisem El ouar and Alain Muselli

Volume 20, Issue 5, 2022

Published on: 06 September, 2022

Article ID: e100622205831 Pages: 10

DOI: 10.2174/2211352520666220610113750

Price: $65

Abstract

Background: In herbal medicine, Centaurea is used in the treatment of many diseases such as dizziness, headaches, etc. It also reduces inflammatory pain and is used to treat liver diseases. The roots of Centaurea acaulis and Centaurea pullata have not yet been studied for biological properties.

Objective: The aim of this research was to evaluate the chemical composition and the antiinflammatory, antioxidant and neuroprotective properties of hexane extracts of Centaurea acaulis and Centaurea pullata roots, and their major component, aplotaxene.

Methods: The hexane extract was prepared by the maceration process and identified by GC and GCMS. Aplotaxene was isolated by flash chromatography. The antioxidant activity was assessed using 2,2- diphenyl 1-picrylhydrazyle DPPH, the β-carotene bleaching, and Ferric Reducing Antioxidant Power (FRAP) methods. The anti-inflammatory effect was assessed by egg albumin denaturation assay and the neuroprotective activity was assessed against acetyl cholinesterase (AChE) and Butyrylcholinesterase (BChE).

Results: The chemical composition of hexane extract of Centaurea pullata was mainly represented by non-terpenic compounds such as Aplotaxene (80.3%), while, hexane extract of Centaurea acaulis was characterized by high levels of Aplotaxene (56.9%), 9-oxabicyclo(6,1,0)nonane (9.2%), Caryophyllene oxide (8.3%) and Isocaryophyllene (6.0%). The hexane extracts of the two Centaurea showed very good antioxidant activities with all three methods. Aplotaxene has shown excellent antioxidant activity compared to Butylated hydroxytoluene (BHT) and ascorbic acid. Centaurea acaulis hexane extract showed very high anti-inflammatory activity with an IC50 of 0.76 mg/L in the egg albumin denaturation test compared to diclofenac (IC50 of 1.01 mg/L). The extract of Centaurea pullata and Aplotaxene showed an interesting anti-inflammatory activity with IC50s of 1.72 and 1.36 mg/L, but which remains lower than that of diclofenac sodium. The neuroprotective activity of Centurea pullata and Centaurea acaulis extracts, and Aplotaxene did not show inhibition against AChE, whereas they inhibited BChE with IC50 values of 92.3, 583, and 81.5 mg/L, respectively.

Conclusion: Further analysis is still needed to further demonstrate the biological efficacy of Centaurea acaulis and Centaurea pullata extracts and Aplotaxene.

Keywords: Aplotaxene, Centaurea acaulis, Centaurea pullata, antioxidant, anti-inflammatory, neuroprotective agents.

Graphical Abstract

[1]
Han, Z.; Tian, R.; Ren, P.; Zhou, W.; Wang, P.; Luo, M.; Jin, S.; Jiang, Q. Parkinson’s disease and Alzheimer’s disease: A Mendelian randomization study. BMC Med. Genet., 2018, 19(S1)(Suppl. 1), 215.
[http://dx.doi.org/10.1186/s12881-018-0721-7] [PMID: 30598082]
[2]
Ali-Shtayeh, M.S.; Jamous, R.M.; Abu-Zaitoun, S.Y.; Akkawi, R.J.; Kalbouneh, S.R.; Bernstein, N.; Dudai, N. Chemical profile and bioactive properties of the essential oil isolated from Clinopodium serpyllifolium (M. Bieb.) Kuntze growing in Palestine. Ind. Crops Prod., 2018, 124, 617-625.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.038]
[3]
Gogoi, R.; Loying, R.; Sarma, N.; Munda, S.; Pandey, S.K.; Lal, M. A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Ind. Crops Prod., 2018, 125, 131-139.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.052]
[4]
Abd Rashed, A.; Abd Rahman, A.Z.; Rathi, D.N.G. Essential oils as a potential Neuroprotective remedy for age-related neurodegenera-tive diseases: A review. Molecules, 2021, 26(4), 1107.
[http://dx.doi.org/10.3390/molecules26041107] [PMID: 33669787]
[5]
Movahhedin, N.; Zengin, G.; Bahadori, M.B.; Sarikurkcu, C.; Bahadori, S.; Dinparast, L. Ajuga chamaecistus subsp. scoparia (Boiss.) Rech. f.: A new source of phytochemicals for antidiabetic, skin-care, and neuroprotective uses. Ind. Crops Prod., 2016, 94, 89-96.
[http://dx.doi.org/10.1016/j.indcrop.2016.08.028]
[6]
Espinoza, L.C.; Silva-Abreu, M.; Calpena, A.C.; Rodríguez-Lagunas, M.J.; Fábrega, M.J.; Garduño-Ramírez, M.L.; Clares, B. Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomedicine, 2019, 19, 115-125.
[http://dx.doi.org/10.1016/j.nano.2019.03.017] [PMID: 31004811]
[7]
Bennani-Baiti, A.A.; Benbouzid, A.; Essakalli-Hossyni, L. Les cellulites cervico-faciales: l’impact de l’utilisation des anti-inflammatoires non stéroïdiens. À propos de 70 cas. Annales Françaises d’Oto-Rhino-Laryngologie et de Pathologie Cervico-Faciale., 2015, 132(4), 169-173.
[http://dx.doi.org/10.1016/j.aforl.2015.01.004]
[8]
Abramson, S.B.; Weaver, A.L. Current state of therapy for pain and inflammation. Arthritis Res. Ther., 2005, 7(4)(Suppl. 4), S1-S6.
[http://dx.doi.org/10.1186/ar1792] [PMID: 16168076]
[9]
Izuegbuna, O.; Otunola, G.; Bradley, G. Chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS One, 2019, 14(1), e0209682.
[http://dx.doi.org/10.1371/journal.pone.0209682] [PMID: 30695064]
[10]
Quezel, P.; Santa, S. Nouvelle flore de l’Algérie et des régions désertiques méridionale; National Center for Scientific Research: Paris, 1963.
[11]
Ozsoy, N.; Kultur, S.; Yilmaz-Ozden, T.; Ozbek Celik, B.; Can, A.; Melikoglu, G. Antioxidant, anti-inflammatory, acetylcholinesterase inhibitory and antimicrobial activities of Turkish endemic Centaurea Antiochia Var. J. Food Biochem., 2015, 39(6), 771-776.
[http://dx.doi.org/10.1111/jfbc.12143]
[12]
Erel, S.B.; Demir, S.; Nalbantsoy, A.; Ballar, P.; Khan, S.; Yavasoglu, N.U.K.; Karaalp, C. Bioactivity screening of five Centaurea species and in vivo anti-inflammatory activity of Cathoa. Pharm. Biol., 2014, 52(6), 775-781.
[http://dx.doi.org/10.3109/13880209.2013.868493] [PMID: 24405079]
[13]
Diba, M.A.; Paolini, J.; Bendahou, M.; Varesi, L.; Allali, H.; Desjobert, J.M.; Tabti, B.; Costa, J. Chemical composition of fatty acid and unsaponifiable fractions of leaves, stems and roots of Arbutus unedo and in vitro antimicrobial activity of unsaponifiable extracts. Nat. Prod. Commun., 2010, 5(7), 1085-1090.
[http://dx.doi.org/10.1177/1934578X1000500721] [PMID: 20734946]
[14]
Tabet Zatla, A.; Dib, M.A.; Djabou, N.; Tabti, B.; Meliani, N.; Costa, J.; Muselli, A. Chemical variability of essential oil of Daucus carota subsp. sativus from Algeria. J. Herbs Spices Med. Plants, 2017, 23(3), 216-230.
[http://dx.doi.org/10.1080/10496475.2017.1296053]
[15]
Jennings, W.; Shibamoto, T. Qualitative analysis of flavour and fragrance volatiles by glass-capillary gas chromatography, 1st ed; Jovanovich, H.B., Ed.; Academic Press: New York, 1980.
[16]
Konig, W.A.; Hochmuth, D.H.; Joulain, D. Terpenoids and Related Constituents of Essential oils. Library of Mass Finder 2.1, 1st ed; Institute of Organic Chemistry: Hamburg, 2001.
[17]
National Institute of Standards and Technology. NIST/EPA/NIH Mass Spectral Library, PC Version 1.7; Perkin-Elmer Corp.: Norwalk, CT, USA, 1999.
[18]
Mc Lafferty, F.W.; Stauffer, D.B. The Wiley/NBS Registry of Mass Spectra Data, 1st ed; Wiley-Interscience: New York, 1988.
[19]
Bouzabata, A.; Boussaha, F.; Casanova, J.; Tomi, F. Composition and chemical variability of leaf oil of Myrtus communis from north-eastern Algeria. Nat. Prod. Commun., 2010, 5(10), 1659-1662.
[http://dx.doi.org/10.1177/1934578X1000501029] [PMID: 21121268]
[20]
Blois, M.S. Antioxidant determination by the use of a stable free radical. Nature, 1958, 181(4617), 1199-2000.
[http://dx.doi.org/10.1038/1811199a0]
[21]
Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical variability, antioxidant and antifungal activities of essential oils and hydrosol extract of Calendula arvensis L. from Western Algeria. Chem. Biodivers., 2017, 14(5), e1600482.
[http://dx.doi.org/10.1002/cbdv.201600482] [PMID: 28109063]
[22]
Aidi Wannes, W.; Mhamdi, B.; Sriti, J.; Ben Jemia, M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol., 2010, 48(5), 1362-1370.
[http://dx.doi.org/10.1016/j.fct.2010.03.002] [PMID: 20211674]
[23]
Hatami, T.; Emami, S.A.; Miraghaee, S.S.; Mojarrab, M. Total phenolic contents and antioxidant activities of different extracts and fractions from the aerial parts of Artemisia biennis Willd. Iran. J. Pharm. Res., 2014, 13(2), 551-559.
[PMID: 25237350]
[24]
Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed., 2012, 2(1), 178-180.
[http://dx.doi.org/10.1016/S2221-1691(12)60154-3]
[25]
Bensaad, M.S.; Dassamiour, S.; Hambaba, L.; Bensouici, C.; Haba, H. In vitro assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of Centaurea Tougourensis Boiss. Reut. J. Pharm. Pharmacogn. Res., 2021, 9(6), 790-802.
[26]
Havlik, J.; Budesinsky, M.; Kloucek, P.; Kokoska, L.; Valterova, I.; Vasickova, S.; Zeleny, V. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil. Phytochemistry, 2009, 70(3), 414-418.
[http://dx.doi.org/10.1016/j.phytochem.2008.12.018] [PMID: 19195668]
[27]
Choi, J.Y.; Choi, E.H.; Jung, H.W.; Oh, J.S.; Lee, W.H.; Lee, J.G.; Son, J.K.; Kim, Y.; Lee, S.H. Melanogenesis inhibitory compounds from Saussureae Radix. Arch. Pharm. Res., 2008, 31(3), 294-299.
[http://dx.doi.org/10.1007/s12272-001-1154-0] [PMID: 18409040]
[28]
Bentamène, A.; Benayache, S.; Crèche, J.; Petit, G.; Bermejo-Barrera, J.; León, F.; Benayache, F. A new guaianolide and other sesquiterpene lactones from Centaurea acaulis L. (Asteraceae). Biochem. Syst. Ecol., 2005, 33(10), 1061-1065.
[http://dx.doi.org/10.1016/j.bse.2005.03.009]
[29]
Bicha, S.; Amrani, A.; Benaissa, O.; León, F.; Zama, D.; Brouard, I.; Benayache, S.; Bentamene, A.; Benayache, F. A flavonoid with high antioxidant effect from Centaurea acaulis L. Pharm. Lett., 2013, 5(6), 24-30.
[30]
Djeddi, S.; Karioti, A.; Sokovic, M.; Koukoulitsa, C.; Skaltsa, H. A novel sesquiterpene lactone from Centaurea pullata: Structure elucidation, antimicrobial activity, and prediction of pharmacokinetic properties. Bioorg. Med. Chem., 2008, 16(7), 3725-3731.
[http://dx.doi.org/10.1016/j.bmc.2008.01.056] [PMID: 18280170]
[31]
Frankel, E.N.; Meyer, A.S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric., 2000, 80(13), 1925-1941.
[http://dx.doi.org/10.1002/1097-0010(200010)80:13<1925:AID-JSFA714>3.0.CO;2-4]
[32]
Fialho, L.; Cunha-E-Silva, J.A.; Santa-Maria, A.F.; Madureira, F.A.; Iglesias, A.C. Comparative study of systemic early postoperative inflammatory response among elderly and non-elderly patients undergoing laparoscopic cholecystectomy. Rev. Col. Bras. Cir., 2018, 45(1), e1586.
[http://dx.doi.org/10.1590/0100-6991e-20181586] [PMID: 29590237]
[33]
Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol., 2019, 858, 172472.
[http://dx.doi.org/10.1016/j.ejphar.2019.172472] [PMID: 31228447]
[34]
Bi, W.; Bi, Y.; Gao, X.; Yan, X.; Zhang, Y.; Xue, P.; Bammert, C.E.; Legalley, T.D.; Michael Gibson, K.; Bi, L.; Wang, J.X. Anti-inflammatory, analgesic and antioxidant activities of novel kyotorphin-nitroxide hybrid molecules. Bioorg. Med. Chem. Lett., 2016, 26(8), 2005-2013.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.086] [PMID: 26961795]
[35]
Mitra, I.; Saha, A.; Roy, K. Exploring quantitative structure-activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol. Simul., 2010, 36(13), 1067-1079.
[http://dx.doi.org/10.1080/08927022.2010.503326]
[36]
Rex, J.R.S.; Muthukumar, N.M.S.A.; Selvakumar, P.M. Phytochem-icals as a potential source for anti-microbial, anti-oxidant and wound healing-a review. MOJ Bioorg. Org. Chem., 2018, 2(2), 61-70.
[37]
Rajkapoor, B.; Burkan, Z.E.; Senthilkumar, R. Oxidants and human diseases: Role of antioxidant medicinal plants-A review. Pharmacologyonline, 2010, 1, 1117-1131.
[38]
Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase acti-vity by bicyclic monoterpenoids. J. Agric. Food Chem., 2005, 53(5), 1765-1768.
[http://dx.doi.org/10.1021/jf040019b] [PMID: 15740071]
[39]
Loizzo, M.R.; Menichini, F.; Conforti, F.; Tundis, R.; Bonesi, M.; Saab, A.M.; Statti, G.A.; de Cindio, B.; Houghton, P.J.; Menichini, F. Chemical analysis, antioxidant, anti-inflammatory and anticholi-nesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chem., 2009, 117(1), 174-180.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.095]
[40]
Ballard, C.G.; Greig, N.H.; Guillozet-Bongaarts, A.L.; Enz, A.; Darvesh, S. Cholinesterases: Roles in the brain during health and disease. Curr. Alzheimer Res., 2005, 2(3), 307-318.
[http://dx.doi.org/10.2174/1567205054367838] [PMID: 15974896]
[41]
Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Statti, G.A.; Menichini, F.; Menichini, F. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 622-628.
[http://dx.doi.org/10.3109/14756360903389856] [PMID: 20429778]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy