Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Fats of Pigs of Different Breeds and Chemical Composition in the Diet of Animals

Author(s): Vitaly A. Bekenev*, Sergey N. Mager, Anatoly A. Arishin, Olga G. Merzlyakova, Elena V. Kashtanova, Yana V. Polonskaya, Victor G. Chegodaev, Valentina I. Frolova, Izolda V. Bolshakova, Yulia V. Frolova and Yuri V. Ites

Volume 13, Issue 3, 2023

Published on: 19 September, 2022

Article ID: e100622205821 Pages: 12

DOI: 10.2174/2210315512666220610103331

Price: $65

Abstract

Background: The studies were carried out on quails, in the feed of which fat of various compositions was added.

Objective: To establish the effect of adding fat from pigs of different breeds and vegetable oil to quail feed on their growth, productivity, and characteristics of lipid metabolism.

Methods: Three groups of 60 chickens each were fed with vegetable oil (control) and fat of two pig breeds sharply differing in the chemical composition of fat - Kemerovo (К) and Pietrain (P) up to 23 weeks of age (3.0 - 3.5% of the mass of the diet). At 8 and 23 weeks of age, 10 individuals from each group underwent biochemical blood tests.

Results: The most rapid growth was observed in quails fed with K-breed fat. The level of total cholesterol (TC) during the period of the experiment in quails significantly decreased, including those receiving vegetable oil - by 1.49 times, fat of the K breed - by 1.58 times, fat breed P - 1.32 times. The atherogenic index (AI) turned out to be significantly higher (Р<0.01) in quails that received fat of the P breed, containing a high level of TС and rich in PUFA (0.93 conventional units against 0.69 in birds that received fat of the K breed and 0.57 - in the control group).

Conclusion: The obtained data indicate that fat of breed K is more useful for animal nutrition and maybe a priority in human nutrition.

Keywords: Pig fat, quail, growth rate, atherogenic index, cholesterol, peroxidation.

Graphical Abstract

[1]
German, J.B.; Dillard, C.J. Saturated fats: What dietary intake? Am. J. Clin. Nutr., 2004, 80(3), 550-559.
[http://dx.doi.org/10.1093/ajcn/80.3.550] [PMID: 15321792]
[2]
Christophersen, O.A.; Haug, A. Animal products, diseases and drugs: A plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis., 2011, 10, 16.
[http://dx.doi.org/10.1186/1476-511X-10-16] [PMID: 21247506]
[3]
Cashman, K.D.; Hayes, A. Red meat’s role in addressing ‘nutrients of public health concern’. Meat Sci., 2017, 132, 196-203.
[http://dx.doi.org/10.1016/j.meatsci.2017.04.011] [PMID: 28483341]
[4]
Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; Khaw, K.T.; Mozaffarian, D.; Danesh, J.; Di Angelantonio, E. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med., 2014, 160(6), 398-406.
[http://dx.doi.org/10.7326/M13-1788] [PMID: 24723079]
[5]
Lippi, G.; Mattiuzzi, C.; Sanchis-Gomar, F. Red meat consumption and ischemic heart disease. A systematic literature review. Meat Sci., 2015, 108, 32-36.
[http://dx.doi.org/10.1016/j.meatsci.2015.05.019] [PMID: 26017245]
[6]
Ito, F.; Ito, T. High-Density Lipoprotein (HDL) triglyceride and oxidized HDL: New lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease. Antioxidants, 2020, 9(5), 362.
[http://dx.doi.org/10.3390/antiox9050362] [PMID: 32357465]
[7]
Wade, A.T.; Courtney, R.; Davis, K.A.; Dyer, J.M.; Hodgson, R.J. Woodman, H.A.; Keage, D.; Karen, J. Murphy. A mediterranean diet with fresh, lean pork improves processing speed and mood: Cognitive findings from the medpork randomised controlled trial. Nutrients, 2019, 11(7), 1521.
[http://dx.doi.org/10.3390/nu11071521]
[8]
Murphy, K.J.; Thomson, R.L.; Coates, A.M.; Buckley, J.D.; Howe, P.R.C. Effects of eating fresh lean pork on cardiometabolic health parameters. Nutrients, 2012, 4(7), 711-723.
[http://dx.doi.org/10.3390/nu4070711] [PMID: 22852059]
[9]
Strike, S.C.; Carlisle, A.; Gibson, E.L.; Dyall, S.C. A high omega-3 fatty acid multinutrient supplement benefits cognition and mobility in older women: A randomized, double-blind, placebo-controlled pilot study. J. Gerontol. A Biol. Sci. Med. Sci., 2016, 71(2), 236-242.
[http://dx.doi.org/10.1093/gerona/glv109] [PMID: 26265727]
[10]
Paula Manuela de Castro Cardoso Pereira. Ana Filipa dos Reis Baltazar Vicente. Meat nutritional composition and nutritive role in the human diet. Meat Sci., 2013, 93(3), 586-592.
[http://dx.doi.org/10.1016/j.meatsci.2012.09.018] [PMID: 23273468]
[11]
Lee, Y.T.; Lin, H.Y.; Chan, Y.W.; Li, K.H.; To, O.T.; Yan, B.P.; Liu, T.; Li, G.; Wong, W.T.; Keung, W.; Tse, G. Mouse models of atherosclerosis: A historical perspective and recent advances. Lipids Health Dis., 2017, 16(1), 12.
[http://dx.doi.org/10.1186/s12944-016-0402-5] [PMID: 28095860]
[12]
Tizard, M.; Hallerman, E.; Fahrenkrug, S.; Newell-McGloughlin, M.; Gibson, J.; de Loos, F.; Wagner, S.; Laible, G.; Han, J.Y.; D’Occhio, M.; Kelly, L.; Lowenthal, J.; Gobius, K.; Silva, P.; Cooper, C.; Doran, T. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security. Transgenic Res., 2016, 25(5), 575-595.
[http://dx.doi.org/10.1007/s11248-016-9965-1] [PMID: 27246007]
[13]
Bekenev, V.A.; Garcia, A.; Arishin, A.A.; Ragino, Y.I.; Chernukha, I.M.; Polonskaya, Y.V. Features of lipid metabolism in pigs of different breeds with different qualities of meat. Curr. Sci., 2017, 113(6), 1704-1710.
[14]
Razmaitė V.; Juška, R.; Leikus, R.; Jatkauskienė V. Pork quality of two lithuanian breeds: Effects of breed, gender and feeding regimen. Animals (Basel), 2021, 11(4), 1103.
[http://dx.doi.org/10.3390/ani11041103] [PMID: 33921472]
[15]
Wang, Y.; Thakali, K.; Morse, P.; Shelby, S.; Chen, J.; Apple, J.; Huang, Y. Comparison of growth performance and meat quality traits of commercial cross-bred pigs versus the large black pig breed. Animals (Basel), 2021, 11(1), 200.
[http://dx.doi.org/10.3390/ani11010200] [PMID: 33467586]
[16]
Cámara, L.; Berrocoso, J.D.; Coma, J.; López-Bote, C.J.; Mateos, G.G. Growth performance and carcass quality of crossbreds pigs from two Pietrain sire lines fed isoproteic diets varying in energy concentration. Meat Sci., 2016, 114, 69-74.
[http://dx.doi.org/10.1016/j.meatsci.2015.12.013] [PMID: 26741851]
[17]
Suzuki, K.; Shibata, T.; Kadowaki, H.; Abe, H.; Toyoshima, T. Meat quality comparison of Berkshire, Duroc and crossbred pigs sired by Berkshire and Duroc. Meat Sci., 2003, 64(1), 35-42.
[http://dx.doi.org/10.1016/S0309-1740(02)00134-1] [PMID: 22062660]
[18]
Müller, E.; Moser, G.; Bartenschilager, H.; Geldermann, H. Trait values of growth, carcass and meat quality in Wild Boar, Meishan and Pietrain pigs as well as their crossbred generations. J. Anim. Breed. Genet., 2008, 117(3), 189-202.
[http://dx.doi.org/10.1046/j.1439-0388.2000.00239.x]
[19]
Bessa, R.J.B.; Hughes, R.A.; Jeronimo, E.; Moreira, O.C.; Prates, J.A.M.; Doran, O. Effect of pig breed and dietary protein level on selected fatty acids and stearoyl-coenzyme A desaturase protein expression in longissimus muscle and subcutaneous fat. J. Anim. Sci., 2013, 91(9), 4540-4546.
[http://dx.doi.org/10.2527/jas.2012-5963] [PMID: 23881676]
[20]
Sellier, P.; Maignel, L.; Bidanel, J.P. Genetic parameters for tissue and fatty acid composition of backfat, perirenal fat and longissimus muscle in Large White and Landrace pigs. Animal, 2010, 4(4), 497-504.
[http://dx.doi.org/10.1017/S1751731109991261] [PMID: 22444036]
[21]
Zhang, J.; Chai, J.; Luo, Z.; He, H.; Chen, L.; Liu, X.; Zhou, Q. Meat and nutritional quality comparison of purebred and crossbred pigs. Anim. Sci. J., 2018, 89(1), 202-210.
[http://dx.doi.org/10.1111/asj.12878] [PMID: 28856768]
[22]
Swanepoel, M.; Leslie, A.J.; Hoffman, L.C. Comparative analyses of the chemical and sensory parameters and consumer preference of a semi-dried smoked meat product (cabanossi) produced with warthog (Phacochoerus africanus) and domestic pork meat. Meat Sci., 2016, 114, 103-113.
[http://dx.doi.org/10.1016/j.meatsci.2015.12.002] [PMID: 26771142]
[23]
Zhang, Y.; Zhang, J.; Gong, H.; Cui, L.; Zhang, W.; Ma, J.; Chen, C.; Ai, H.; Xiao, S.; Huang, L.; Yang, B. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations. Meat Sci., 2019, 150, 47-55.
[http://dx.doi.org/10.1016/j.meatsci.2018.12.008] [PMID: 30584983]
[24]
Zheng, M.; Huang, Y.; Ji, J.; Xiao, S.; Ma, J.; Huang, L. Effects of breeds, tissues and genders on purine contents in pork and the relationships between purine content and other meat quality traits. Meat Sci., 2018, 143, 81-86.
[http://dx.doi.org/10.1016/j.meatsci.2018.04.022] [PMID: 29715664]
[25]
Almeida, J.; Bressan, M.C.; Santos-Silva, J.; Moreira, O.; Bettencourt, C.; Gama, L.T. Physicochemical characteristics and sensory attributes of meat from heavy-weight Iberian and F1 Large White Ч Landrace pigs finished intensively or in free-range conditions. J. Anim. Sci., 2018, 96(7), 2734-2746.
[http://dx.doi.org/10.1093/jas/sky181]
[26]
Kryshtop, E.A. Indicators of quality and safety of meat pork.Veterinary of the Kuban; , 2010, pp. 14-16.
[27]
Kukushkin, I.Yu. Productivity and biological characteristics of pigs of Yorkshire, Landrace and Duroc breeds of Canadian selection in the conditions of the Lower Volga region. In: Volgograd; , 2011; p. 21.
[28]
Bekenev, V.A.; Arishin, A.A.; Mager, S.N. Lipid profile of pig tissues contrasting meat production. Nat. Prod. J., 2021, 11, 1.
[http://dx.doi.org/10.2174/2210315509666191203124902]
[29]
Fisinin, V.I.; Imangulov, Sh.A.; Egorov, I.A. Recommendations for feeding poultry. Russian Acad. Agri. Sci., 2003, 142
[30]
Methods of conducting scientific and industrial research on feeding agricultural poultry. RAAS; ISTC "Plemptitsa"; GNU VNITIP; Under total. ed. Fisinin VI and Imangulov ShA. Sergiev Posad, 2000, 33.
[31]
Ragino, Yu.I.; Berezovskaya, E.V.; Nikitin, Y.P.R.F. A method for evaluating the antioxidant potential of low-density lipoprotein. Patent no. 2216738, 2001.
[32]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[33]
Surai, P.F. Selenium Nutrition and Health; Nottingham University Press: Nottingham, 2006.
[34]
Haug, A.; Eich-Greatorex, S.; Bernhoft, A.; Wold, J.P.; Hetland, H.; Christophersen, O.A.; Sogn, T. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers. Lipids Health Dis., 2007, 6, 29.
[http://dx.doi.org/10.1186/1476-511X-6-29] [PMID: 17967172]
[35]
Haug, A.; Eich-Greatorex, S.; Bernhoft, A.; Hetland, H.; Sogn, T. Selenium bioavailability in chicken fed selenium-fertilized wheat. Acta Agric Scand. Section A, 2008, 58, 65-70.
[http://dx.doi.org/10.1080/09064700802213537]
[36]
Zhang, S.; Knight, T.J.; Stalder, K.J.; Goodwin, R.N.; Lonergan, S.M.; Beitz, D.C. Effects of breed, sex, and halothane genotype on fatty acid composition of pork longissimus muscle. J. Anim. Sci., 2007, 85(3), 583-591.
[http://dx.doi.org/10.2527/jas.2006-239] [PMID: 17060410]
[37]
Harris, K.B.; Pond, W.G.; Mersmann, H.J.; Smith, E.O.; Cross, H.R.; Savell, J.W. Evaluation of fat sources on cholesterol and lipoproteins using pigs selected for high or low serum cholesterol. Meat Sci., 2004, 66(1), 55-61.
[http://dx.doi.org/10.1016/S0309-1740(03)00012-3] [PMID: 22063931]
[38]
de Tonnac, A.; Guillevic, M.; Mourot, J. Fatty acid composition of several muscles and adipose tissues of pigs fed n-3 PUFA rich diets. Meat Sci., 2018, 140, 1-8.
[http://dx.doi.org/10.1016/j.meatsci.2017.11.023] [PMID: 29477879]
[39]
Ivanovic, J.; Pantic, S.; Dokmanovic, M.; Glamoclija, N.; Markovic, R.; Janjic, J.; Baltic, M.Z. Effect of conjugated linoleic acids in pig nutrition on quality of meat. Procedia Food Sci., 2015, 5, 105-108.
[http://dx.doi.org/10.1016/j.profoo.2015.09.029]
[40]
Liu, P.; Chen, C.; Kerr, B.J.; Weber, T.E.; Johnston, L.J.; Shurson, G.C. Influence of thermally oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum cholesterol and triglycerides in young pigs. J. Anim. Sci., 2014, 92(7), 2960-2970.
[http://dx.doi.org/10.2527/jas.2012-5709] [PMID: 24879755]
[41]
Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med., 2010, 7(3), e1000252.
[http://dx.doi.org/10.1371/journal.pmed.1000252] [PMID: 20351774]
[42]
Hu, F.B.; Manson, J.E.; Willett, W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr., 2001, 20(1), 5-19.
[http://dx.doi.org/10.1080/07315724.2001.10719008] [PMID: 11293467]
[43]
Ascherio, A. Epidemiologic studies on dietary fats and coronary heart disease. Am. J. Med., 2002, 113(Suppl. 9B), 9S-12S.
[http://dx.doi.org/10.1016/S0002-9343(01)00986-X] [PMID: 12566133]
[44]
de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; Anand, S.S. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ, 2015, 351, h3978. [Free PMC article.]
[http://dx.doi.org/10.1136/bmj.h3978] [PMID: 26268692]
[45]
Virtanen, J.K.; Mursu, J.; Tuomainen, T.P.; Voutilainen, S. Dietary fatty acids and risk of coronary heart disease in men: The Kuopio Ischemic heart disease risk factor study. Arterioscler. Thromb. Vasc. Biol., 2014, 34(12), 2679-2687.
[http://dx.doi.org/10.1161/ATVBAHA.114.304082] [PMID: 25256234]
[46]
Elwood, P. The myth of fat-reduced milk and dairy foods. NFU Cymru; , 2015. Available from: https://www.nfu-cymru.org.uk/milk-health-website-piece/
[47]
Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; Lennie, T.A.; Levi, M.; Mazzone, T.; Pennathur, S. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 2011, 123(20), 2292-2333.
[http://dx.doi.org/10.1161/CIR.0b013e3182160726] [PMID: 21502576]
[48]
Ebbesson, S.O.; Voruganti, V.S.; Higgins, P.B.; Fabsitz, R.R.; Ebbesson, L.O.; Laston, S.; Harris, W.S.; Kennish, J.; Umans, B.D.; Wang, H.; Devereux, R.B.; Okin, P.M.; Weissman, N.J.; MacCluer, J.W.; Umans, J.G.; Howard, B.V. Fatty acids linked to cardiovascular mortality are associated with risk factors. Int. J. Circumpolar Health, 2015, 74, 28055-28067.
[http://dx.doi.org/10.3402/ijch.v74.28055] [PMID: 26274054]
[49]
Harvey, K.A.; Walker, C.L.; Pavlina, T.M.; Xu, Z.; Zaloga, G.P.; Siddiqui, R.A. Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin. Nutr., 2010, 29(4), 492-500.
[http://dx.doi.org/10.1016/j.clnu.2009.10.008] [PMID: 19926177]
[50]
Shen, H.; Eguchi, K.; Kono, N.; Fujiu, K.; Matsumoto, S.; Shibata, M.; Oishi-Tanaka, Y.; Komuro, I.; Arai, H.; Nagai, R.; Manabe, I. Saturated fatty acid palmitate aggravates neointima formation by promoting smooth muscle phenotypic modulation. Arterioscler. Thromb. Vasc. Biol., 2013, 33(11), 2596-2607.
[http://dx.doi.org/10.1161/ATVBAHA.113.302099] [PMID: 23968977]
[51]
Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: A prospective cohort study. J. Am. Coll. Cardiol., 2015, 66(14), 1538-1548.
[http://dx.doi.org/10.1016/j.jacc.2015.07.055] [PMID: 26429077]
[52]
Shramko, V.S.; Yana, V. Polonskaya, Elena V. Kashtanova, Ekaterina M. Stakhneva and Yuliya I. Ragino. The short overview on the relevance of fatty acids for human cardiovascular disorders. Biomolecules, 2020, 10, 1127.
[http://dx.doi.org/10.3390/biom10081127]
[53]
Bradbury, K.E.; Skeaff, C.M.; Green, T.J.; Gray, A.R.; Crowe, F.L. The serum fatty acids myristic acid and linoleic acid are better predictors of serum cholesterol concentrations when measured as molecular percentages rather than as absolute concentrations. Am. J. Clin. Nutr., 2010, 91(2), 398-405.
[http://dx.doi.org/10.3945/ajcn.2009.28159] [PMID: 19955401]
[54]
Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary linoleic acid and risk of coronary heart disease: A systematic review and meta-analysis of prospective cohort studies. Circulation, 2014, 130(18), 1568-1578.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010236] [PMID: 25161045]
[55]
Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr., 2010, 91(1), 46-63.
[http://dx.doi.org/10.3945/ajcn.2009.27661] [PMID: 19939984]
[56]
Biochemical processes underlying free radical oxidation, mechanisms of antiradical protection, assessment of their effectiveness in cancer patients. Congr. on Endoscopic Surgery, 2004, 347-348.
[57]
Voeĭkov, V.L. Bio-physico-chemical aspects of aging and longevity. Usp. Gerontol., 2002, 9, 54-66. [In Russ.]
[PMID: 12096439]
[58]
Zhuravlev, A.I. Free radical oxidation in the pathogenesis of atherosclerosis; Bioantioxidants, 1975, pp. 131-133.
[59]
Woollett, L.A.; Spady, D.K.; Dietschy, J.M. Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res., 1992, 33(1), 77-88.
[http://dx.doi.org/10.1016/S0022-2275(20)41885-1] [PMID: 1552235]
[60]
Lee, J.C-Y.; Durand, T. Lipid peroxidation: Analysis and applications in biological systems. Antioxidants, 2019, 8(2), 40.
[http://dx.doi.org/10.3390/antiox8020040] [PMID: 30781854]
[61]
Hrelia, S.; Angeloni, C. New mechanisms of action of natural antioxidants in health and disease. Antioxidants, 2020, 9(4), 344.
[http://dx.doi.org/10.3390/antiox9040344] [PMID: 32340104]
[62]
Bacou, E.; Walk, C.; Rider, S.; Litta, G.; Perez-Calvo, E. Dietary oxidative distress: A review of nutritional challenges as models for Poultry, Swine and Fish. Antioxidants, 2021, 10(4), 525.
[http://dx.doi.org/10.3390/antiox10040525] [PMID: 33801670]
[63]
Mondé, A.A.; Lohoues, E.C.; Gauze-Gnagne-Agnero, C.; Camara-Cissé, M.; Diomandé, M.I.; Djessou, S.P.; Sess, E.D. Relationship between lipid assessment and arterial lesions observed in farm chickens fed on different vegetable oils. J. Food Nutr. Sci., 2016, 4(5), 126-130.
[http://dx.doi.org/10.11648/j.jfns.20160405.12]
[64]
Karlskov-Mortensen, P.; Frederiksen, S.D.; Pant, S.D.; Cirera, S.; Jørgensen, C.B.; Bruun, C.S.; Mark, T.; Fredholm, M. Focus on atherosclerosis and the pig as a model to identify genes affecting cholesterol and other plasma lipid levels. J. Anim. Sci., 2016, 94(4), 152-152.
[http://dx.doi.org/10.2527/jas2016.94supplement4152x]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy