Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Long Non-coding RNAs: Pivotal Epigenetic Regulators in Diabetic Retinopathy

Author(s): Zhaoxia Song, Chang He, Jianping Wen, Jianli Yang and Peng Chen*

Volume 23, Issue 4, 2022

Published on: 18 July, 2022

Page: [246 - 261] Pages: 16

DOI: 10.2174/1389202923666220531105035

Price: $65

Abstract

Diabetic retinopathy (DR) is a severe complication of diabetes; however, its mechanism is not fully understood. Evidence has recently revealed that long non-coding RNAs (lncRNAs) are abnormally expressed in DR, and lncRNAs may function as pivotal regulators. LncRNAs are able to modulate gene expression at the epigenetic level by acting as scaffolds of histone modification complexes and sponges of binding with microRNAs (miRNAs). LncRNAs are believed to be important epigenetic regulators, which may become beneficial in the diagnosis and therapy of DR. However, the mechanisms of lncRNAs in DR are still unclear. In this review, we summarize the possible functions and mechanisms of lncRNAs in epigenetic regulation to target genes in the progression of DR.

Keywords: Diabetic retinopathy, lncRNAs, miRNAs, epigenetics, regulator, histone modification.

Graphical Abstract

[1]
Klein, B.E. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol., 2007, 14(4), 179-183.
[http://dx.doi.org/10.1080/09286580701396720] [PMID: 17896294]
[2]
Mansour, S.E.; Browning, D.J.; Wong, K.; Flynn, H.W., Jr; Bhavsar, A.R. The evolving treatment of diabetic retinopathy. Clin. Ophthalmol., 2020, 14, 653-678.
[http://dx.doi.org/10.2147/OPTH.S236637] [PMID: 32184554]
[3]
Wang, J.H.; Ling, D.; Tu, L.; van Wijngaarden, P.; Dusting, G.J.; Liu, G.S. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside? Pharmacol. Ther., 2017, 173, 1-18.
[http://dx.doi.org/10.1016/j.pharmthera.2017.01.003] [PMID: 28132907]
[4]
Simó, R.; Hernández, C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog. Retin. Eye Res., 2015, 48, 160-180.
[http://dx.doi.org/10.1016/j.preteyeres.2015.04.003] [PMID: 25936649]
[5]
Yan, B.; Tao, Z.F.; Li, X.M.; Zhang, H.; Yao, J.; Jiang, Q. Aberrant expression of long noncoding RNAs in early diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2014, 55(2), 941-951.
[http://dx.doi.org/10.1167/iovs.13-13221] [PMID: 24436191]
[6]
Hung, T.; Chang, H.Y. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol., 2010, 7(5), 582-585.
[http://dx.doi.org/10.4161/rna.7.5.13216] [PMID: 20930520]
[7]
Zhang, D.; Qin, H.; Leng, Y.; Li, X.; Zhang, L.; Bai, D.; Meng, Y.; Wang, J. LncRNA MEG3 overexpression inhibits the development of diabetic retinopathy by regulating TGF-β1 and VEGF. Exp. Ther. Med., 2018, 16(3), 2337-2342.
[http://dx.doi.org/10.3892/etm.2018.6451] [PMID: 30186476]
[8]
Jaé, N.; Dimmeler, S. Long noncoding RNAs in diabetic retinopathy. Circ. Res., 2015, 116(7), 1104-1106.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306051] [PMID: 25814678]
[9]
Tong, P.; Peng, Q.H.; Gu, L.M.; Xie, W.W.; Li, W.J. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp. Mol. Pathol., 2019, 107, 102-109.
[http://dx.doi.org/10.1016/j.yexmp.2018.12.003] [PMID: 30529346]
[10]
Thomas, A.A.; Feng, B.; Chakrabarti, S. ANRIL: A regulator of VEGF in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2017, 58(1), 470-480.
[http://dx.doi.org/10.1167/iovs.16-20569] [PMID: 28122089]
[11]
Wang, J.; Gao, X.; Liu, J.; Wang, J.; Zhang, Y.; Zhang, T.; Zhang, H. Effect of intravitreal conbercept treatment on the expression of Long Noncoding RNAs and mRNAs in proliferative diabetic retinopathy patients. Acta Ophthalmol., 2019, 97(6), e902-e912.
[http://dx.doi.org/10.1111/aos.14083] [PMID: 30900812]
[12]
Wu, Y.; Jia, K.; Wu, H.; Sang, A.; Wang, L.; Shi, L.; Jiang, K.; Dong, J. A comprehensive competitive endogenous RNA network pinpoints key molecules in diabetic retinopathy. Mol. Med. Rep., 2019, 19(2), 851-860.
[http://dx.doi.org/ 10.3892/mmr.2018.9715] [PMID: 30535492]
[13]
Cao, N.J.; Liu, H.N.; Dong, F.; Wang, W.; Sun, W.; Wang, G. Integrative analysis of competitive endogenous RNA network reveals the regulatory role of non-coding RNAs in high-glucose-induced human retinal endothelial cells. PeerJ, 2020, 8, e9452.
[http://dx.doi.org/10.7717/peerj.9452] [PMID: 32655995]
[14]
Luo, R.; Xiao, F.; Wang, P.; Hu, Y.X. lncRNA H19 sponging miR-93 to regulate inflammation in retinal epithelial cells under hyperglycemia via XBP1s. Inflamm. Res., 2020, 69(3), 255-265.
[http://dx.doi.org/10.1007/s00011-019-01312-1] [PMID: 31953562]
[15]
Luo, R.; Jin, H.; Li, L.; Hu, Y.X.; Xiao, F. Long noncoding RNA MEG3 inhibits apoptosis of retinal pigment epithelium cells induced by high glucose via the miR-93/Nrf2 Axis. Am. J. Pathol., 2020, 190(9), 1813-1822.
[http://dx.doi.org/10.1016/j.ajpath.2020.05.008] [PMID: 32473920]
[16]
Fan, G.; Gu, Y.; Zhang, J.; Xin, Y.; Shao, J.; Giampieri, F.; Battino, M. Transthyretin upregulates long non-coding RNA MEG3 by affecting PABPC1 in diabetic retinopathy. Int. J. Mol. Sci., 2019, 20(24), e6313.
[http://dx.doi.org/10.3390/ijms20246313] [PMID: 31847264]
[17]
Yu, X.; Ma, X.; Lin, W.; Xu, Q.; Zhou, H.; Kuang, H. Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342-3p targeting of CASP1 in diabetic retinopathy. Exp. Eye Res., 2021, 202, 108300.
[http://dx.doi.org/10.1016/j.exer.2020.108300] [PMID: 33065089]
[18]
Zhao, D.; Zhao, Y.; Wang, J.; Wu, L.; Liu, Y.; Zhao, S.; Guo, F.; Ma, X.; Zhang, H.; Li, Z.; Meng, D.; Xu, L.; Zhang, L.; Liu, J.; Qin, G. Long noncoding RNA Hotair facilitates retinal endothelial cell dysfunction in diabetic retinopathy. Clin. Sci. (Lond.), 2020, 134(17), 2419-2434.
[http://dx.doi.org/10.1042/CS20200694] [PMID: 32812634]
[19]
Biswas, S.; Thomas, A.A.; Chen, S.; Aref-Eshghi, E.; Feng, B.; Gonder, J.; Sadikovic, B.; Chakrabarti, S. MALAT1: An epigenetic regulator of inflammation in diabetic retinopathy. Sci. Rep., 2018, 8(1), 6526.
[http://dx.doi.org/10.1038/s41598-018-24907-w] [PMID: 29695738]
[20]
Dahariya, S.; Paddibhatla, I.; Kumar, S.; Raghuwanshi, S.; Pallepati, A.; Gutti, R.K. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol., 2019, 112, 82-92.
[http://dx.doi.org/10.1016/j.molimm.2019.04.011] [PMID: 31079005]
[21]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[22]
Alvarez-Dominguez, J.R.; Lodish, H.F. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood, 2017, 130(18), 1965-1975.
[http://dx.doi.org/10.1182/blood-2017-06-788695] [PMID: 28928124]
[23]
Vanamamalai, V.K.; Garg, P.; Kolluri, G.; Gandham, R.K.; Jali, I.; Sharma, S. Transcriptomic analysis to infer key molecular players involved during host response to NDV challenge in Gallus gallus (Leghorn & Fayoumi). Sci. Rep., 2021, 11(1), 8486.
[http://dx.doi.org/10.1038/s41598-021-88029-6] [PMID: 33875770]
[24]
Chen, L.L. Linking long noncoding RNA localization and function. Trends Biochem. Sci., 2016, 41(9), 761-772.
[http://dx.doi.org/10.1016/j.tibs.2016.07.003] [PMID: 27499234]
[25]
Qiu, G.Z.; Tian, W.; Fu, H.T.; Li, C.P.; Liu, B. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Biochem. Biophys. Res. Commun., 2016, 471(1), 135-141.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.164] [PMID: 26845358]
[26]
Carrieri, C.; Cimatti, L.; Biagioli, M.; Beugnet, A.; Zucchelli, S.; Fedele, S.; Pesce, E.; Ferrer, I.; Collavin, L.; Santoro, C.; Forrest, A.R.; Carninci, P.; Biffo, S.; Stupka, E.; Gustincich, S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491(7424), 454-457.
[http://dx.doi.org/10.1038/nature11508] [PMID: 23064229]
[27]
Carlevaro-Fita, J.; Rahim, A.; Guigó, R.; Vardy, L.A.; Johnson, R. Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. RNA, 2016, 22(6), 867-882.
[http://dx.doi.org/10.1261/rna.053561.115] [PMID: 27090285]
[28]
Tsagakis, I.; Douka, K.; Birds, I.; Aspden, J.L. Long non-coding RNAs in development and disease: Conservation to mechanisms. J. Pathol., 2020, 250(5), 480-495.
[http://dx.doi.org/10.1002/path.5405] [PMID: 32100288]
[29]
Grote, P.; Wittler, L.; Hendrix, D.; Koch, F.; Währisch, S.; Beisaw, A.; Macura, K.; Bläss, G.; Kellis, M.; Werber, M.; Herrmann, B.G. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell, 2013, 24(2), 206-214.
[http://dx.doi.org/10.1016/j.devcel.2012.12.012] [PMID: 23369715]
[30]
Yap, K.L.; Li, S.; Muñoz-Cabello, A.M.; Raguz, S.; Zeng, L.; Mujtaba, S.; Gil, J.; Walsh, M.J.; Zhou, M.M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell, 2010, 38(5), 662-674.
[http://dx.doi.org/10.1016/j.molcel.2010.03.021] [PMID: 20541999]
[31]
Pandey, G.K.; Mitra, S.; Subhash, S.; Hertwig, F.; Kanduri, M.; Mishra, K.; Fransson, S.; Ganeshram, A.; Mondal, T.; Bandaru, S.; Ostensson, M.; Akyürek, L.M.; Abrahamsson, J.; Pfeifer, S.; Larsson, E.; Shi, L.; Peng, Z.; Fischer, M.; Martinsson, T.; Hedborg, F.; Kogner, P.; Kanduri, C. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell, 2014, 26(5), 722-737.
[http://dx.doi.org/10.1016/j.ccell.2014.09.014] [PMID: 25517750]
[32]
Zhang, J.; Zhang, P.; Wang, L.; Piao, H.L.; Ma, L. Long non-coding RNA HOTAIR in carcinogenesis and metastasis. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(1), 1-5.
[http://dx.doi.org/10.1093/abbs/gmt117] [PMID: 24165275]
[33]
Sun, W.; Yang, Y.; Xu, C.; Guo, J. Regulatory mechanisms of long noncoding RNAs on gene expression in cancers. Cancer Genet., 2017, 216-217, 105-110.
[http://dx.doi.org/10.1016/j.cancergen.2017.06.003] [PMID: 29025584]
[34]
Zhang, E.B.; Kong, R.; Yin, D.D.; You, L.H.; Sun, M.; Han, L.; Xu, T.P.; Xia, R.; Yang, J.S.; De, W.; Chen, Jf. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget, 2014, 5(8), 2276-2292.
[http://dx.doi.org/10.18632/oncotarget.1902] [PMID: 24810364]
[35]
Tsai, M.C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992), 689-693.
[http://dx.doi.org/10.1126/science.1192002] [PMID: 20616235]
[36]
Li, Y.; Wang, Z.; Shi, H.; Li, H.; Li, L.; Fang, R.; Cai, X.; Liu, B.; Zhang, X.; Ye, L. HBXIP and LSD1 scaffolded by lncRNA hotair mediate transcriptional activation by c-Myc. Cancer Res., 2016, 76(2), 293-304.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3607] [PMID: 26719542]
[37]
Wu, Y.; Zhang, L.; Zhang, L.; Wang, Y.; Li, H.; Ren, X.; Wei, F.; Yu, W.; Liu, T.; Wang, X.; Zhou, X.; Yu, J.; Hao, X. Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int. J. Oncol., 2015, 46(6), 2586-2594.
[http://dx.doi.org/10.3892/ijo.2015.2976] [PMID: 25901533]
[38]
Zhang, H.; Diab, A.; Fan, H.; Mani, S.K.; Hullinger, R.; Merle, P.; Andrisani, O. PLK1 and HOTAIR accelerate proteasomal degradation of SUZ12 and ZNF198 during Hepatitis B virus-induced liver carcinogenesis. Cancer Res., 2015, 75(11), 2363-2374.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2928] [PMID: 25855382]
[39]
Carnesecchi, J.; Forcet, C.; Zhang, L.; Tribollet, V.; Barenton, B.; Boudra, R.; Cerutti, C.; Billas, I.M.; Sérandour, A.A.; Carroll, J.S.; Beaudoin, C.; Vanacker, J.M. ERR α induces H3K9 demethylation by LSD1 to promote cell invasion. Proc. Natl. Acad. Sci. USA, 2017, 114(15), 3909-3914.
[http://dx.doi.org/10.1073/pnas.1614664114] [PMID: 28348226]
[40]
Shaker, O.G.; Abdelaleem, O.O.; Mahmoud, R.H.; Abdelghaffar, N.K.; Ahmed, T.I.; Said, O.M.; Zaki, O.M. Diagnostic and prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in diabetic retinopathy. IUBMB Life, 2019, 71(3), 310-320.
[http://dx.doi.org/10.1002/iub.1970] [PMID: 30468285]
[41]
Thomas, A.A.; Biswas, S.; Feng, B.; Chen, S.; Gonder, J.; Chakrabarti, S. lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia, 2019, 62(3), 517-530.
[http://dx.doi.org/10.1007/s00125-018-4797-6] [PMID: 30612136]
[42]
Bahrami, B.; Hong, T.; Gilles, M.C.; Chang, A. Anti-VEGF therapy for diabetic eye diseases. Asia Pac. J. Ophthalmol. (Phila.), 2017, 6(6), 535-545.
[http://dx.doi.org/ 10.22608/APO.2017350] [PMID: 29076303]
[43]
Patel, S.; Sternberg, P., Jr Diabetic retinopathy and antivascular endothelial growth factor agents. JAMA Ophthalmol., 2017, 135(6), 568-569.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.0318] [PMID: 28448646]
[44]
Navaratna, D.; McGuire, P.G.; Menicucci, G.; Das, A. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes. Diabetes, 2007, 56(9), 2380-2387.
[http://dx.doi.org/10.2337/db06-1694] [PMID: 17536065]
[45]
Wang, S.; Ren, X.; Hu, X.; Zhou, L.; Zhang, C.; Zhang, M. Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells. Toxicol. Appl. Pharmacol., 2019, 368, 37-48.
[http://dx.doi.org/10.1016/j.taap.2019.02.012] [PMID: 30796935]
[46]
Ciarlillo, D.; Celeste, C.; Carmeliet, P.; Boerboom, D.; Theoret, C. A hypoxia response element in the Vegfa promoter is required for basal Vegfa expression in skin and for optimal granulation tissue formation during wound healing in mice. PLoS One, 2017, 12(7), e0180586.
[http://dx.doi.org/10.1371/journal.pone.0180586] [PMID: 28686658]
[47]
Loewen, G.; Jayawickramarajah, J.; Zhuo, Y.; Shan, B. Functions of lncRNA HOTAIR in lung cancer. J. Hematol. Oncol., 2014, 7, 90.
[http://dx.doi.org/10.1186/s13045-014-0090-4] [PMID: 25491133]
[48]
Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; Thomas, M.; Berdel, W.E.; Serve, H.; Müller-Tidow, C. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22(39), 8031-8041.
[http://dx.doi.org/10.1038/sj.onc.1206928] [PMID: 12970751]
[49]
Puthanveetil, P.; Chen, S.; Feng, B.; Gautam, A.; Chakrabarti, S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J. Cell. Mol. Med., 2015, 19(6), 1418-1425.
[http://dx.doi.org/10.1111/jcmm.12576] [PMID: 25787249]
[50]
Yao, J.; Wang, X.Q.; Li, Y.J.; Shan, K.; Yang, H.; Wang, Y.N.; Yao, M.D.; Liu, C.; Li, X.M.; Shen, Y.; Liu, J.Y.; Cheng, H.; Yuan, J.; Zhang, Y.Y.; Jiang, Q.; Yan, B. Long non-coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling. EMBO Mol. Med., 2016, 8(4), 346-362.
[http://dx.doi.org/10.15252/emmm.201505725] [PMID: 26964565]
[51]
Zhang, Y.; Wu, H.; Wang, F.; Ye, M.; Zhu, H.; Bu, S. Long non-coding RNA MALAT1 expression in patients with gestational diabetes mellitus. Int. J. Gynaecol. Obstet., 2018, 140(2), 164-169.
[http://dx.doi.org/10.1002/ijgo.12384] [PMID: 29110299]
[52]
Liu, J.Y.; Yao, J.; Li, X.M.; Song, Y.C.; Wang, X.Q.; Li, Y.J.; Yan, B.; Jiang, Q. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis., 2014, 5(10), e1506.
[http://dx.doi.org/10.1038/cddis.2014.466] [PMID: 25356875]
[53]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[54]
Wang, D.; Ding, L.; Wang, L.; Zhao, Y.; Sun, Z.; Karnes, R.J.; Zhang, J.; Huang, H. LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget, 2015, 6(38), 41045-41055.
[http://dx.doi.org/10.18632/oncotarget.5728] [PMID: 26516927]
[55]
Pasmant, E.; Laurendeau, I.; Héron, D.; Vidaud, M.; Vidaud, D.; Bièche, I. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: Identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res., 2007, 67(8), 3963-3969.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2004] [PMID: 17440112]
[56]
Pasmant, E.; Sabbagh, A.; Vidaud, M.; Bièche, I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J., 2011, 25(2), 444-448.
[http://dx.doi.org/10.1096/fj.10-172452] [PMID: 20956613]
[57]
Yu, W.; Gius, D.; Onyango, P.; Muldoon-Jacobs, K.; Karp, J.; Feinberg, A.P.; Cui, H. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature, 2008, 451(7175), 202-206.
[http://dx.doi.org/10.1038/nature06468] [PMID: 18185590]
[58]
Chen, S.; Zhong, H.; Wang, Y.; Wang, Z.; Liang, X.; Li, S.; Li, Z.; Yu, Z.; Li, L.; Yi, G.; Fu, M. The clinical significance of long non-coding RNA ANRIL level in diabetic retinopathy. Acta Diabetol., 2020, 57(4), 409-418.
[http://dx.doi.org/10.1007/s00592-019-01442-2] [PMID: 31691869]
[59]
Wei, J.C.; Shi, Y.L.; Wang, Q. LncRNA ANRIL knockdown ameliorates retinopathy in diabetic rats by inhibiting the NF-κB pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(18), 7732-7739.
[http://dx.doi.org/10.26355/eurrev_201909_18982] [PMID: 31599399]
[60]
McArthur, K.; Feng, B.; Wu, Y.; Chen, S.; Chakrabarti, S. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes, 2011, 60(4), 1314-1323.
[http://dx.doi.org/10.2337/db10-1557] [PMID: 21357793]
[61]
Bochenek, G.; Häsler, R.; El Mokhtari, N.E.; König, I.R.; Loos, B.G.; Jepsen, S.; Rosenstiel, P.; Schreiber, S.; Schaefer, A.S. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum. Mol. Genet., 2013, 22(22), 4516-4527.
[http://dx.doi.org/10.1093/hmg/ddt299] [PMID: 23813974]
[62]
Sato, K.; Nakagawa, H.; Tajima, A.; Yoshida, K.; Inoue, I. ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol. Rep., 2010, 24(3), 701-707.
[http://dx.doi.org/10.3892/or_00000910] [PMID: 20664976]
[63]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[64]
Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[65]
Satari, M.; Aghadavod, E.; Mirhosseini, N.; Asemi, Z. The effects of microRNAs in activating neovascularization pathways in diabetic retinopathy. J. Cell. Biochem., 2019, 120(6), 9514-9521.
[http://dx.doi.org/10.1002/jcb.28227] [PMID: 30556195]
[66]
Tay, Y.; Rinn, J.; Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505(7483), 344-352.
[http://dx.doi.org/10.1038/nature12986] [PMID: 24429633]
[67]
Ye, Z.; Li, Z.; He, S. Long non coding RNA associated competing endogenous RNAs are induced by clusterin in retinal pigment epithelial cells. Mol. Med. Rep., 2017, 16(6), 8399-8405.
[http://dx.doi.org/10.3892/mmr.2017.7606] [PMID: 28944909]
[68]
Zhao, Y.; Chen, X.; Tong, X.L. Effect of lncRNA MEG3 on retinopathy in diabetic rats through regulating Fox01 expression. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(21), 9163-9170.
[http://dx.doi.org/10.26355/eurrev_201911_19406] [PMID: 31773666]
[69]
Xiao, F.; Li, L.; Fu, J.S.; Hu, Y.X.; Luo, R. Regulation of the miR-19b-mediated SOCS6-JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose-induced apoptosis in hRMECs. Biosci. Rep., 2020, 40(7), BSR20194370.
[http://dx.doi.org/10.1042/BSR20194370] [PMID: 32519748]
[70]
Tu, Y.; Zhu, M.; Wang, Z.; Wang, K.; Chen, L.; Liu, W.; Shi, Q.; Zhao, Q.; Sun, Y.; Wang, X.; Song, E.; Liu, X. Melatonin inhibits Müller cell activation and pro-inflammatory cytokine production via upregulating the MEG3/miR-204/Sirt1 axis in experimental diabetic retinopathy. J. Cell. Physiol., 2020, 235(11), 8724-8735.
[http://dx.doi.org/10.1002/jcp.29716] [PMID: 32324260]
[71]
Liu, P.; Jia, S.B.; Shi, J.M.; Li, W.J.; Tang, L.S.; Zhu, X.H.; Tong, P. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis. Biosci. Rep., 2019, 39(5), BSR20181469.
[http://dx.doi.org/10.1042/BSR20181469] [PMID: 30988072]
[72]
Yu, L.; Fu, J.; Yu, N.; Wu, Y.; Han, N. Long noncoding RNA MALAT1 participates in the pathological angiogenesis of diabetic retinopathy in an oxygen-induced retinopathy mouse model by sponging miR-203a-3p. Can. J. Physiol. Pharmacol., 2020, 98(4), 219-227.
[http://dx.doi.org/10.1139/cjpp-2019-0489] [PMID: 31689123]
[73]
Li, Q.; Pang, L.; Yang, W.; Liu, X.; Su, G.; Dong, Y. Long non-coding RNA of myocardial infarction associated transcript (LncRNA-MIAT) promotes diabetic retinopathy by upregulating transforming growth factor-β1 (TGF-β1) signaling. Med. Sci. Monit., 2018, 24, 9497-9503.
[http://dx.doi.org/10.12659/MSM.911787] [PMID: 30595603]
[74]
Yan, B.; Yao, J.; Liu, J.Y.; Li, X.M.; Wang, X.Q.; Li, Y.J.; Tao, Z.F.; Song, Y.C.; Chen, Q.; Jiang, Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res., 2015, 116(7), 1143-1156.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305510] [PMID: 25587098]
[75]
Zhang, J.; Chen, M.; Chen, J.; Lin, S.; Cai, D.; Chen, C.; Chen, Z. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci. Rep., 2017, 37(2), BSR20170036.
[http://dx.doi.org/10.1042/BSR20170036] [PMID: 28246353]
[76]
Luo, R.; Li, L.; Hu, Y.X.; Xiao, F. LncRNA H19 inhibits high glucose-induced inflammatory responses of human retinal epithelial cells by targeting miR-19b to increase SIRT1 expression. Kaohsiung J. Med. Sci., 2021, 37(2), 101-110.
[http://dx.doi.org/10.1002/kjm2.12302] [PMID: 33022863]
[77]
Shao, K.; Xi, L.; Cang, Z.; Chen, C.; Huang, S. Knockdown of NEAT1 exerts suppressive effects on diabetic retinopathy progression via inactivating TGF-β1 and VEGF signaling pathways. J. Cell. Physiol., 2020, 235(12), 9361-9369.
[http://dx.doi.org/10.1002/jcp.29740] [PMID: 32356340]
[78]
Li, X.J. Long non-coding RNA nuclear paraspeckle assembly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR-497/brain-derived neurotrophic factor axis. Diab. Vasc. Dis. Res., 2018, 15(3), 204-213.
[http://dx.doi.org/10.1177/1479164117749382] [PMID: 29383970]
[79]
Zhang, J.; Yao, T.; Wang, Y.; Yu, J.; Liu, Y.; Lin, Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol. Ther., 2016, 17(1), 104-113.
[http://dx.doi.org/10.1080/15384047.2015.1108496] [PMID: 26574780]
[80]
Qin, R.; Chen, Z.; Ding, Y.; Hao, J.; Hu, J.; Guo, F. Long non-coding RNA MEG3 inhibits the proliferation of cervical carcinoma cells through the induction of cell cycle arrest and apoptosis. Neoplasma, 2013, 60(5), 486-492.
[http://dx.doi.org/10.4149/neo_2013_063] [PMID: 23790166]
[81]
Li, R.; Fang, L.; Pu, Q.; Bu, H.; Zhu, P.; Chen, Z.; Yu, M.; Li, X.; Weiland, T.; Bansal, A.; Ye, S.Q.; Wei, Y.; Jiang, J.; Wu, M. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci. Signal., 2018, 11(536), eaao2387.
[http://dx.doi.org/10.1126/scisignal.aao2387] [PMID: 29945883]
[82]
Liu, J.; Li, Q.; Zhang, K.S.; Hu, B.; Niu, X.; Zhou, S.M.; Li, S.G.; Luo, Y.P.; Wang, Y.; Deng, Z.F. Downregulation of the long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating notch signaling. Mol. Neurobiol., 2017, 54(10), 8179-8190.
[http://dx.doi.org/10.1007/s12035-016-0270-z] [PMID: 27900677]
[83]
Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol., 2012, 48(3), R45-R53.
[http://dx.doi.org/10.1530/JME-12-0008] [PMID: 22393162]
[84]
Huang, X.; Gao, Y.; Qin, J.; Lu, S. The mechanism of long non-coding RNA MEG3 for hepatic ischemia-reperfusion: Mediated by miR-34a/Nrf2 signaling pathway. J. Cell. Biochem., 2018, 119(1), 1163-1172.
[http://dx.doi.org/10.1002/jcb.26286] [PMID: 28708282]
[85]
Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2)
[http://dx.doi.org/10.1111/jpi.12449] [PMID: 29024030]
[86]
Xi, L.; Zhang, Y.; Kong, S.; Liang, W. miR-34 inhibits growth and promotes apoptosis of osteosarcoma in nude mice through targetly regulating TGIF2 expression. Biosci. Rep., 2018, 38(3), BSR20180078.
[http://dx.doi.org/10.1042/BSR20180078] [PMID: 29895719]
[87]
Rokavec, M.; Öner, M.G.; Hermeking, H. lnflammation-induced epigenetic switches in cancer. Cell. Mol. Life Sci., 2016, 73(1), 23-39.
[http://dx.doi.org/10.1007/s00018-015-2045-5] [PMID: 26394635]
[88]
Shen, Y.; Xu, H.; Pan, X.; Wu, W.; Wang, H.; Yan, L.; Zhang, M.; Liu, X.; Xia, S.; Shao, Q. miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Exp. Ther. Med., 2017, 14(6), 5589-5596.
[http://dx.doi.org/10.3892/etm.2017.5254] [PMID: 29285097]
[89]
Karbasforooshan, H.; Karimi, G. The role of SIRT1 in diabetic retinopathy. Biomed. Pharmacother., 2018, 97, 190-194.
[http://dx.doi.org/10.1016/j.biopha.2017.10.075] [PMID: 29091865]
[90]
Mishra, M.; Duraisamy, A.J.; Kowluru, R.A. Sirt1: A guardian of the development of diabetic retinopathy. Diabetes, 2018, 67(4), 745-754.
[http://dx.doi.org/10.2337/db17-0996] [PMID: 29311218]
[91]
Chen, S.; Jiang, S.; Zheng, W.; Tu, B.; Liu, S.; Ruan, H.; Fan, C. RelA/p65 inhibition prevents tendon adhesion by modulating inflammation, cell proliferation, and apoptosis. Cell Death Dis., 2017, 8(3), e2710.
[http://dx.doi.org/10.1038/cddis.2017.135] [PMID: 28358376]
[92]
Yan, J.; Winterford, C.M.; Catts, V.S.; Pat, B.K.; Pender, M.P.; McCombe, P.A.; Greer, J.M. Increased constitutive activation of NF-κB p65 (RelA) in peripheral blood cells of patients with progressive multiple sclerosis. J. Neuroimmunol., 2018, 320, 111-116.
[http://dx.doi.org/10.1016/j.jneuroim.2018.04.002] [PMID: 29655870]
[93]
Xia, Y. Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res., 2014, 2(9), 823-830.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112] [PMID: 25187272]
[94]
Li, Y.; Wu, Z.; Yuan, J.; Sun, L.; Lin, L.; Huang, N.; Bin, J.; Liao, Y.; Liao, W. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis. Cancer Lett., 2017, 395, 31-44.
[http://dx.doi.org/10.1016/j.canlet.2017.02.035] [PMID: 28268166]
[95]
Wang, C.; Qu, Y.; Suo, R.; Zhu, Y. Long non-coding RNA MALAT1 regulates angiogenesis following oxygen-glucose deprivation/reoxygenation. J. Cell. Mol. Med., 2019, 23(4), 2970-2983.
[http://dx.doi.org/10.1111/jcmm.14204] [PMID: 30784209]
[96]
Gong, Q.; Su, G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci. Rep., 2017, 37(6), BSR20171157.
[http://dx.doi.org/10.1042/BSR20171157] [PMID: 29074557]
[97]
Muramatsu, F.; Kidoya, H.; Naito, H.; Sakimoto, S.; Takakura, N. microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin. Oncogene, 2013, 32(4), 414-421.
[http://dx.doi.org/10.1038/onc.2012.68] [PMID: 22391569]
[98]
Rapicavoli, N.A.; Poth, E.M.; Blackshaw, S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev. Biol., 2010, 10, 49.
[http://dx.doi.org/10.1186/1471-213X-10-49] [PMID: 20459797]
[99]
Curtis, T.M.; Gardiner, T.A.; Stitt, A.W. Microvascular lesions of diabetic retinopathy: Clues towards understanding pathogenesis? Eye (Lond.), 2009, 23(7), 1496-1508.
[http://dx.doi.org/10.1038/eye.2009.108] [PMID: 19444297]
[100]
Sun, X.; Wong, D. Long non-coding RNA-mediated regulation of glucose homeostasis and diabetes. Am. J. Cardiovasc. Dis., 2016, 6(2), 17-25.
[http://dx.doi.org/10.4172/2155-9570.1000298] [PMID: 27335687]
[101]
Sathishkumar, C.; Prabu, P.; Mohan, V.; Balasubramanyam, M. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Hum. Genomics, 2018, 12(1), 41.
[http://dx.doi.org/10.1186/s40246-018-0173-3] [PMID: 30139387]
[102]
Jiang, Q.; Shan, K.; Qun-Wang, X.; Zhou, R.M.; Yang, H.; Liu, C.; Li, Y.J.; Yao, J.; Li, X.M.; Shen, Y.; Cheng, H.; Yuan, J.; Zhang, Y.Y.; Yan, B. Long non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain. Oncotarget, 2016, 7(31), 49688-49698.
[http://dx.doi.org/10.18632/oncotarget.10434] [PMID: 27391072]
[103]
Jia, L.F.; Huang, Y.P.; Zheng, Y.F.; Lyu, M.Y.; Wei, S.B.; Meng, Z.; Gan, Y.H. miR-29b suppresses proliferation, migration, and invasion of tongue squamous cell carcinoma through PTEN-AKT signaling pathway by targeting Sp1. Oral Oncol., 2014, 50(11), 1062-1071.
[http://dx.doi.org/10.1016/j.oraloncology.2014.07.010] [PMID: 25127200]
[104]
Yu, J.; Luo, H.; Li, N.; Duan, X. Suppression of Type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway, Part II: An in vivo investigation. Invest. Ophthalmol. Vis. Sci., 2015, 56(10), 6019-6028.
[http://dx.doi.org/10.1167/iovs.15-16558] [PMID: 26393468]
[105]
Hansen, T.B.; Wiklund, E.D.; Bramsen, J.B.; Villadsen, S.B.; Statham, A.L.; Clark, S.J.; Kjems, J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J., 2011, 30(21), 4414-4422.
[http://dx.doi.org/10.1038/emboj.2011.359] [PMID: 21964070]
[106]
Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[107]
Man, S.M.; Karki, R.; Kanneganti, T.D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev., 2017, 277(1), 61-75.
[http://dx.doi.org/10.1111/imr.12534] [PMID: 28462526]
[108]
Viringipurampeer, I.A.; Metcalfe, A.L.; Bashar, A.E.; Sivak, O.; Yanai, A.; Mohammadi, Z.; Moritz, O.L.; Gregory-Evans, C.Y.; Gregory-Evans, K. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum. Mol. Genet., 2016, 25(8), 1501-1516.
[http://dx.doi.org/10.1093/hmg/ddw029] [PMID: 27008885]
[109]
Feenstra, D.J.; Yego, E.C.; Mohr, S. Modes of retinal cell death in diabetic retinopathy. J. Clin. Exp. Ophthalmol., 2013, 4(5), 298.
[PMID: 24672740]
[110]
Gao, J.; Cui, J.Z.; To, E.; Cao, S.; Matsubara, J.A. Evidence for the activation of pyroptotic and apoptotic pathways in RPE cells associated with NLRP3 inflammasome in the rodent eye. J. Neuroinflammation, 2018, 15(1), 15.
[http://dx.doi.org/10.1186/s12974-018-1062-3] [PMID: 29329580]
[111]
Riva, P.; Ratti, A.; Venturin, M. The long non-coding RNAs in neurodegenerative diseases: Novel mechanisms of pathogenesis. Curr. Alzheimer Res., 2016, 13(11), 1219-1231.
[http://dx.doi.org/10.2174/1567205013666160622112234] [PMID: 27338628]
[112]
Qian, K.; Liu, G.; Tang, Z.; Hu, Y.; Fang, Y.; Chen, Z.; Xu, X. The long non-coding RNA NEAT1 interacted with miR-101 modulates breast cancer growth by targeting EZH2. Arch. Biochem. Biophys., 2017, 615, 1-9.
[http://dx.doi.org/10.1016/j.abb.2016.12.011] [PMID: 28034643]
[113]
Li, J.H.; Zhang, S.Q.; Qiu, X.G.; Zhang, S.J.; Zheng, S.H.; Zhang, D.H. Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214. Int. J. Oncol., 2017, 50(2), 708-716.
[http://dx.doi.org/10.3892/ijo.2016.3803] [PMID: 28000845]
[114]
Yang, X.; Xiao, Z.; Du, X.; Huang, L.; Du, G. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol. Rep., 2017, 37(1), 555-562.
[http://dx.doi.org/10.3892/or.2016.5266] [PMID: 27878295]
[115]
Zhen, L.; Yun-Hui, L.; Hong-Yu, D.; Jun, M.; Yi-Long, Y. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol., 2016, 37(1), 673-683.
[http://dx.doi.org/10.1007/s13277-015-3843-y] [PMID: 26242266]
[116]
Zhang, Y.; Sun, X.; Icli, B.; Feinberg, M.W. Emerging roles for MicroRNAs in diabetic microvascular disease: Novel targets for therapy. Endocr. Rev., 2017, 38(2), 145-168.
[http://dx.doi.org/10.1210/er.2016-1122] [PMID: 28323921]
[117]
Kovacs, B.; Lumayag, S.; Cowan, C.; Xu, S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4402-4409.
[http://dx.doi.org/10.1167/iovs.10-6879] [PMID: 21498619]
[118]
Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long noncoding RNAs: From clinical genetics to therapeutic targets? J. Am. Coll. Cardiol., 2016, 67(10), 1214-1226.
[http://dx.doi.org/10.1016/j.jacc.2015.12.051] [PMID: 26965544]
[119]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M. Heterogeneous CPU+GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]
[120]
Fedorov, D.G.; Li, H.; Mironov, V.; Alexeev, Y. Computational methods for biochemical simulations implemented in GAMESS. Methods Mol. Biol., 2020, 2114, 123-142.
[http://dx.doi.org/10.1007/978-1-0716-0282-9_8] [PMID: 32016890]
[121]
Jarosz-Popek, J.; Wolska, M.; Gasecka, A.; Czajka, P.; Jakubik, D.; Sharif, L.; Adem, T.; Liu, W.L.; Mirowska-Guzel, D.; Postula, M.; Eyileten, C. The importance of non-coding RNAs in neurodegenerative processes of diabetes-related molecular pathways. J. Clin. Med., 2020, 10(1), E9.
[http://dx.doi.org/10.3390/jcm10010009] [PMID: 33374507]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy