Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Construction of PARPi Resistance-related Competing Endogenous RNA Network

Author(s): Lili Kong, Jiaqi Xu, Lijun Yu, Shuo Liu, Zongjian Liu and Juanjuan Xiang*

Volume 23, Issue 4, 2022

Published on: 10 June, 2022

Page: [262 - 274] Pages: 13

DOI: 10.2174/1389202923666220527114108

open access plus

Abstract

Objective: Ovarian cancer is a kind of common gynecological malignancy in women. PARP inhibitors (PARPi) have been approved for ovarian cancer treatment. However, the primary and acquired resistance have limited the application of PARPi. The mechanisms remain to be elucidated.

Methods: In this study, we characterized the expression profiles of mRNA and nonconding RNAs (ncRNAs) and constructed the regulatory networks based on RNA sequencing in PARPi Olaparibinduced ovarian cancer cells.

Results: We found that the functions of the differentially expressed genes were enriched in “PI3K/AKT signaling pathway,” “MAPK signaling pathway” and “metabolic process”. The functions of DELs (cis) were enriched in “Human papillomavirus infection”tight junction” “MAPK signaling pathway”. As the central regulator of ceRNAs, the differentially expressed miRNAs were enriched in “Human papillomavirus infection” "MAPK signaling pathway” "Ras signaling pathway”. According to the degree of interaction, we identified 3 lncRNAs, 2 circRNAs, 7 miRNAs, and 12 mRNA as the key regulatory ceRNA axis, in which miR-320b was the important mediator.

Conclusion: Here, we revealed the key regulatory lncRNA (circRNA)-miRNA-mRNA axis and their involved pathways in the PARPi resistant ovarian cancer cells. These findings provide new insights into exploring the ceRNA regulatory networks and developing new targets for PARPi resistance.

Keywords: Ovarian cancer, PARPi resistance, ceRNA network, mRNA, DNA, SSB.

Graphical Abstract

[1]
Vescarelli, E.; Gerini, G.; Megiorni, F.; Anastasiadou, E.; Pontecorvi, P.; Solito, L.; De Vitis, C.; Camero, S.; Marchetti, C.; Mancini, R.; Benedetti Panici, P.; Dominici, C.; Romano, F.; Angeloni, A.; Marchese, C.; Ceccarelli, S. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. J. Exp. Clin. Cancer Res., 2020, 39(1), 3.
[http://dx.doi.org/10.1186/s13046-019-1490-7] [PMID: 31898520]
[2]
Chen, A. PARP inhibitors: Its role in treatment of cancer. Chin. J. Cancer, 2011, 30(7), 463-471.
[http://dx.doi.org/10.5732/cjc.011.10111] [PMID: 21718592]
[3]
Zhu, H.; Wei, M.; Xu, J.; Hua, J.; Liang, C.; Meng, Q.; Zhang, Y.; Liu, J.; Zhang, B.; Yu, X.; Shi, S. PARP inhibitors in pancreatic cancer: Molecular mechanisms and clinical applications. Mol. Cancer, 2020, 19(1), 49.
[http://dx.doi.org/10.1186/s12943-020-01167-9] [PMID: 32122376]
[4]
Kim, D.S.; Camacho, C.V.; Kraus, W.L. Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Exp. Mol. Med., 2021, 53(1), 42-51.
[http://dx.doi.org/10.1038/s12276-021-00557-3] [PMID: 33487630]
[5]
Dedes, K.J.; Wilkerson, P.M.; Wetterskog, D.; Weigelt, B.; Ashworth, A.; Reis-Filho, J.S. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle, 2011, 10(8), 1192-1199.
[http://dx.doi.org/10.4161/cc.10.8.15273] [PMID: 21487248]
[6]
Li, H.; Liu, Z.Y.; Wu, N.; Chen, Y.C.; Cheng, Q.; Wang, J. PARP inhibitor resistance: The underlying mechanisms and clinical implications. Mol. Cancer, 2020, 19(1), 107.
[http://dx.doi.org/10.1186/s12943-020-01227-0] [PMID: 32563252]
[7]
Ledermann, J.A.; Pujade-Lauraine, E. Olaparib as maintenance treatment for patients with platinum-sensitive relapsed ovarian cancer. Ther. Adv. Med. Oncol., 2019, 11, 1758835919849753.
[http://dx.doi.org/10.1177/1758835919849753] [PMID: 31205507]
[8]
Vanderstichele, A.; Nieuwenhuysen, S.H.; Els, V.; Concin, T.V.G.; Berteloot, P.; Neven, P.; Busschaert, P.; Lambrechts, D.; Vergote, I. Randomized phase II CLIO study on olaparib monotherapy versus chemotherapy in platinum-resistant ovarian cancer. ASCO Meeting 2019, 2019, 1
[9]
Kartha, R.V.; Subramanian, S. Competing endogenous RNAs (ceRNAs): New entrants to the intricacies of gene regulation. Front. Genet., 2014, 5, 8.
[http://dx.doi.org/10.3389/fgene.2014.00008] [PMID: 24523727]
[10]
Tapodi, A.; Debreceni, B.; Hanto, K.; Bognar, Z.; Wittmann, I.; Gallyas, F., Jr; Varbiro, G.; Sumegi, B. Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J. Biol. Chem., 2005, 280(42), 35767-35775.
[http://dx.doi.org/10.1074/jbc.M507075200] [PMID: 16115861]
[11]
Akhlaghpour, H. An RNA-based theory of natural universal computation. J. Theor. Biol., 2022, 537, 110984.
[http://dx.doi.org/10.1016/j.jtbi.2021.110984] [PMID: 34979104]
[12]
Kandagalla, S.; Rimac, H.; Potemkin, V.A.; Grishina, M.A. Complementarity principle in terms of electron density for the study of EGFR complexes. Future Med. Chem., 2021, 13(10), 863-875.
[http://dx.doi.org/10.4155/fmc-2020-0265] [PMID: 33847171]
[13]
Glossman-Mitnik, D. Density functional theory. Intechopen, 2019, 2019, 76822.
[http://dx.doi.org/10.5772/intechopen.76822]
[14]
Lee, E.K.; Matulonis, U.A. PARP Inhibitor Resistance Mechanisms and Implications for Post-Progression Combination Therapies. Cancers (Basel), 2020, 12(8), E2054.
[http://dx.doi.org/10.3390/cancers12082054] [PMID: 32722408]
[15]
Militello, G.; Weirick, T.; John, D.; Döring, C.; Dimmeler, S.; Uchida, S. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief. Bioinform., 2017, 18(5), 780-788.
[PMID: 27373735]
[16]
Xu, L.; Xu, Y.; Yang, M.; Li, J.; Xu, F.; Chen, B.L. LncRNA SNHG14 regulates the DDP-resistance of non-small cell lung cancer cell through miR-133a/HOXB13 pathway. BMC Pulm. Med., 2020, 20(1), 266.
[http://dx.doi.org/10.1186/s12890-020-01276-7] [PMID: 33059643]
[17]
Wang, X.; Yang, P.; Zhang, D.; Lu, M.; Zhang, C.; Sun, Y. LncRNA SNHG14 promotes cell proliferation and invasion in colorectal cancer through modulating miR-519b-3p/DDX5 axis. J. Cancer, 2021, 12(16), 4958-4970.
[http://dx.doi.org/10.7150/jca.55495] [PMID: 34234865]
[18]
Liao, Z.; Zhang, H.; Su, C.; Liu, F.; Liu, Y.; Song, J.; Zhu, H.; Fan, Y.; Zhang, X.; Dong, W.; Chen, X.; Liang, H.; Zhang, B. Long noncoding RNA SNHG14 promotes hepatocellular carcinoma progression by regulating miR-876-5p/SSR2 axis. J. Exp. Clin. Cancer Res., 2021, 40(1), 36.
[http://dx.doi.org/10.1186/s13046-021-01838-5] [PMID: 33485374]
[19]
Sun, B.; Ke, K.B.; Liu, D.F.; Wang, Q.; Li, Y.N.; Chen, J.H.; Zhang, J.H. Long noncoding RNA SNHG14 acts as an oncogene in prostate cancer via targeting miR-613. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(21), 10919.
[PMID: 33215403]
[20]
Zhao, Y.L.; Huang, Y.M. LncSNHG14 promotes ovarian cancer by targeting microRNA-125a-5p. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(8), 3235-3242.
[PMID: 31081075]
[21]
Wan, C.; Wen, J.; Liang, X.; Xie, Q.; Wu, W.; Wu, M.; Liu, Z. Identification of miR-320 family members as potential diagnostic and prognostic biomarkers in myelodysplastic syndromes. Sci. Rep., 2021, 11(1), 183.
[http://dx.doi.org/10.1038/s41598-020-80571-z] [PMID: 33420276]
[22]
Lv, Q.; Hu, J.X.; Li, Y.J.; Xie, N.; Song, D.D.; Zhao, W.; Yan, Y.F.; Li, B.S.; Wang, P.Y.; Xie, S.Y. MiR-320a effectively suppresses lung adenocarcinoma cell proliferation and metastasis by regulating STAT3 signals. Cancer Biol. Ther., 2017, 18(3), 142-151.
[http://dx.doi.org/10.1080/15384047.2017.1281497] [PMID: 28106481]
[23]
Chaubey, P.M.; Hofstetter, L.; Roschitzki, B.; Stieger, B. Proteomic analysis of the rat canalicular membrane reveals expression of a complex system of P4-ATPases in liver. PLoS One, 2016, 11(6), e0158033.
[http://dx.doi.org/10.1371/journal.pone.0158033] [PMID: 27347675]
[24]
Szántó, M.; Gupte, R.; Kraus, W.L.; Pacher, P.; Bai, P. PARPs in lipid metabolism and related diseases. Prog. Lipid Res., 2021, 84, 101117.
[http://dx.doi.org/10.1016/j.plipres.2021.101117] [PMID: 34450194]
[25]
Lai, T.C.; Fang, C.Y.; Jan, Y.H.; Hsieh, H.L.; Yang, Y.F.; Liu, C.Y.; Chang, P.M.; Hsiao, M. Kinase shRNA screening reveals that TAOK3 enhances microtubule-targeted drug resistance of breast cancer cells via the NF-κB signaling pathway. Cell Commun. Signal., 2020, 18(1), 164.
[http://dx.doi.org/10.1186/s12964-020-00600-2] [PMID: 33087151]

© 2025 Bentham Science Publishers | Privacy Policy