Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Review Article

Biological Importance and Pharmacological Activities of Meranzin and Meranzin Hydrate Against Human Disorders

Author(s): Dinesh Kumar Patel* and Kanika Patel

Volume 2, Issue 3, 2022

Published on: 18 August, 2022

Article ID: e240522205185 Pages: 8

DOI: 10.2174/2666001602666220524140540

Price: $65

Abstract

Background: Herbal plant-based products and their derived phytochemicals have been used in the complementary and alternative systems of medicine for the treatment of human disorders. Vegetables, fruits, seeds, nuts, coffee, tea, and wine contain significant amounts of coumarin class phytochemicals. Coumarin is found to be present in cassia leaf oil, cinnamon bark oil, lavender oil, and microorganism-derived drugs.

Methods: Scientific databases, such as Google Scholar, Science Direct, Scopus, and PubMed, have been searched to collect the scientific information regarding meranzin and meranzin hydrate in the present work in order to know their medicinal importance and pharmacological activities in the medicine. Pharmacological activity data of meranzin and meranzin hydrates has been thoroughly studied from scientific databases and analyzed in the present work to evaluate their biological potential against human disorders. Analytical data on meranzin and meranzin hydrates have been also collected and analyzed in the present work to know the importance of analytical techniques for the standardization of plant material.

Results: Scientific data analysis revealed the biological potential of meranzin and meranzin hydrates against human health complications. Meranzin was found to be present in the Fructus aurantii, Triphasia trifolia, Cnidium monnieri, and Murraya exotica. Scientific data analysis revealed the biological potential of meranzin and meranzin hydrates in the medicine due to their anti-depressant, anti-fibrotic, anti-proliferative, anti-atherosclerosis, and anti-bacterial activities. Further scientific data analysis revealed the biological effectiveness of meranzin and meranzin hydrates on neuroinflammation, intestinal motility, and various forms of enzymes. Furthermore, pharmacokinetic parameters for meranzin and meranzin hydrates were also investigated in the present work. Chromatography techniques used for the analysis were also summarized and discussed to examine the importance of isolation, separation, and quantification of meranzin and meranzin hydrates.

Conclusion: Present study will facilitate scientists in the development of effective medicine from meranzin and meranzin hydrates against the various human health complications.

Keywords: Meranzin, coumarin, meranzin hydrate, antifibrotic, antiproliferative, antiatherosclerosis, antibacterial.

Graphical Abstract

[1]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[2]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “a concise report of its phytopharmaceutical importance.”. Curr. Tradit. Med., 2017, 3(3), 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[3]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health benefits of furanocoumarins ‘psoralidin’ an active phytochemical of psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15(4), 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[4]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[5]
Kasmi, R.; Hadaji, E.; Chedadi, O.; El Aissouq, A.; Bouachrine, M.; Ouammou, A. 2D-QSAR and docking study of a series of coumarin derivatives as inhibitors of CDK (anticancer activity) with an application of the molecular docking method. Heliyon, 2020, 6(8), e04514.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04514] [PMID: 32817887]
[6]
Yuan, J.; Wei, F.; Luo, X.; Zhang, M.; Qiao, R.; Zhong, M.; Chen, H.; Yang, W. Multi-component comparative pharmacokinetics in rats after oral administration of Fructus aurantii extract, naringin, neohesperidin, and naringin-neohesperidin. Front. Pharmacol., 2020, 11, 933.
[http://dx.doi.org/10.3389/fphar.2020.00933] [PMID: 32636752]
[7]
Xing, Z.H.; Peng, W-J.; Huang, W.; Huang, X.; Liu, W.P. Analysis of major constituents in Fructus aurantii-Magnolia bark decoction by UPLC-PDA. J. Chromatogr. Sci., 2014, 52(8), 826-830.
[http://dx.doi.org/10.1093/chromsci/bmt122] [PMID: 23934039]
[8]
Xie, W.; Qiu, X.; Huang, X.; Xie, Y.; Wu, K.; Wang, Y.; Ji, H.; He, J.; Ren, P. Comparison between the pharmacokinetics of meranzin hydrate in a rat model of chronic depression and in controls following the oral administration of Chaihu-Shugan-San. Exp. Ther. Med., 2013, 6(4), 913-918.
[http://dx.doi.org/10.3892/etm.2013.1229] [PMID: 24137289]
[9]
Tan, N.; Yazıcı-Tütüniş, S.; Bilgin, M.; Tan, E.; Miski, M. Antibacterial activities of pyrenylated coumarins from the roots of prangos hulusii. Molecules, 2017, 22(7), 1098.
[http://dx.doi.org/10.3390/molecules22071098] [PMID: 28671568]
[10]
He, Y.; Zhu, S.; Wu, C.; Lu, Y.; Tang, Q. Bioactivity-guided separation of potential D2 dopamine receptor antagonists from aurantii fructus based on molecular docking combined with high-speed counter-current chromatography. Molecules, 2018, 23(12), 3135.
[http://dx.doi.org/10.3390/molecules23123135]
[11]
Saied, S.; Nizami, S.S.; Anis, I. Two new coumarins from Murraya paniculata. J. Asian Nat. Prod. Res., 2008, 10(5-6), 515-519.
[http://dx.doi.org/10.1080/10286020801967292] [PMID: 18470803]
[12]
Dondon, R.; Bourgeois, P.; Fery-Forgues, S. A new bicoumarin from the leaves and stems of Triphasia trifolia. Fitoterapia, 2006, 77(2), 129-133.
[http://dx.doi.org/10.1016/j.fitote.2005.11.006] [PMID: 16431036]
[13]
Negi, N.; Abou-Dough, A.M.; Kurosawa, M.; Kitaji, Y.; Saito, K.; Ochi, A.; Ushijima, K.; Kusakabe, E.; Kitaguchi, Y.; Jinguji, Y.; Teshima, N.; Ju-ichi, M.; Ito, C. Coumarins from Murraya exotica collected in Egypt. Nat. Prod. Commun., 2015, 10(4), 617-620.
[http://dx.doi.org/10.1177/1934578X1501000420] [PMID: 25973490]
[14]
Wang, Z-C.; Feng, D-Q.; Ke, C-H. Coumarins from the herb cnidium monnieri and chemically modified derivatives as antifoulants against Balanus albicostatus and Bugula neritina larvae. Int. J. Mol. Sci., 2013, 14(1), 1197-1206.
[http://dx.doi.org/10.3390/ijms14011197] [PMID: 23303279]
[15]
Zheng, R-R.; Ya, J.; Wang, W-J.; Yang, H-B.; Zhang, Q-W.; Zhang, X-Q.; Ye, W.C. Chemical studies on roots of Ficus hirta. Zhongguo Zhongyao Zazhi, 2013, 38(21), 3696-3701.
[PMID: 24494557]
[16]
Feng, B.M.; Sha, Y.; Pei, Y.H.; Hua, H.M.; Li, W. Structure determination of the constituents from Citrus grandis Osbeck. Zhongguo Zhongyao Zazhi, 2001, 26(11), 764-765.
[PMID: 12776348]
[17]
Tsujimoto, T.; Yoshitomi, T.; Maruyama, T.; Yamamoto, Y.; Hakamatsuka, T.; Uchiyama, N. High-resolution liquid chromatography-mass spectrometry-based metabolomic discrimination of Citrus-type crude drugs and comparison with nuclear magnetic resonance spectroscopy-based metabolomics. J. Nat. Prod., 2019, 82(8), 2116-2123.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00977] [PMID: 31322883]
[18]
Li, G-J.; Wu, H-J.; Wang, Y.; Hung, W-L.; Rouseff, R.L. Determination of citrus juice coumarins, furanocoumarins and methoxylated flavones using solid phase extraction and HPLC with photodiode array and fluorescence detection. Food Chem., 2019, 271, 29-38.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.130] [PMID: 30236679]
[19]
Teng, W-Y.; Chen, C-C.; Chung, R-S. HPLC comparison of supercritical fluid extraction and solvent extraction of coumarins from the peel of Citrus maxima fruit. Phytochem. Anal., 2005, 16(6), 459-462.
[http://dx.doi.org/10.1002/pca.870] [PMID: 16315491]
[20]
Do, Q-T.; Lamy, C.; Renimel, I.; Sauvan, N.; André, P.; Himbert, F.; Morin-Allory, L.; Bernard, P. Reverse pharmacognosy: Identifying biological properties for plants by means of their molecule constituents: Application to meranzin. Planta Med., 2007, 73(12), 1235-1240.
[http://dx.doi.org/10.1055/s-2007-990216] [PMID: 17853346]
[21]
Dugo, P.; Russo, M.; Sarò, M.; Carnovale, C.; Bonaccorsi, I.; Mondello, L. Multidimensional liquid chromatography for the determination of chiral coumarins and furocoumarins in Citrus essential oils. J. Sep. Sci., 2012, 35(14), 1828-1836.
[http://dx.doi.org/10.1002/jssc.201200078] [PMID: 22807365]
[22]
Lei, Y.; Wang, Y.; Sun, Z.; Lin, M.; Cai, X.; Huang, D.; Luo, K.; Tan, S.; Zhang, Y.; Yan, J.; Xia, X. Quantitative analysis of multicomponents by single marker combined with HPLC fingerprint qualitative analyses for comprehensive evaluation of Aurantii Fructus. J. Sep. Sci., 2020, 43(7), 1382-1392.
[http://dx.doi.org/10.1002/jssc.201901193] [PMID: 31981302]
[23]
Yan, R.; Shen, J.; Liu, X.; Zou, Y.; Xu, X. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography. J. Sep. Sci., 2018, 41(9), 2092-2101.
[http://dx.doi.org/10.1002/jssc.201701423] [PMID: 29385309]
[24]
Zaher, A.M.; Moharram, A.M.; Davis, R.; Panizzi, P.; Makboul, M.A.; Calderón, A.I. Characterisation of the metabolites of an antibacterial endophyte Botryodiplodia theobromae Pat. of Dracaena draco L. by LC-MS/MS. Nat. Prod. Res., 2015, 29(24), 2275-2281.
[http://dx.doi.org/10.1080/14786419.2015.1012715] [PMID: 25693860]
[25]
Li, Z-H.; Chen, H-F.; Luo, L-P.; Yang, B.; Wei, Y.; Yuan, J-B.; Gong, Q.F.; Yang, W.L. Determination of the active constituents in aurantii fructus from Jiangxi province at different harvest time by HPLC. Zhong Yao Cai, 2013, 36(1), 28-31.
[PMID: 23750404]
[26]
Duan, L.; Guo, L.; Dou, L.L.; Yu, K-Y.; Liu, E-H.; Li, P. Comparison of chemical profiling and antioxidant activities of fruits, leaves, branches, and flowers of Citrus grandis ‘Tomentosa’. J. Agric. Food Chem., 2014, 62(46), 11122-11129.
[http://dx.doi.org/10.1021/jf5036355] [PMID: 25335649]
[27]
Chen, H-F.; Zhang, W-G.; Yuan, J-B.; Li, Y-G.; Yang, S-L.; Yang, W-L. Simultaneous quantification of polymethoxylated flavones and coumarins in Fructus aurantii and Fructus aurantii immaturus using HPLC-ESI-MS/MS. J. Pharm. Biomed. Anal., 2012, 59, 90-95.
[http://dx.doi.org/10.1016/j.jpba.2011.10.013] [PMID: 22071443]
[28]
Li, G.; Cheng, Y.; Zhang, T.; Li, Y.; Han, L.; Liang, G. Characterization of oxygenated heterocyclic compounds and in vitro antioxidant activity of pomelo essential oil. Drug Des. Devel. Ther., 2021, 15, 937-947.
[http://dx.doi.org/10.2147/DDDT.S299678] [PMID: 33688168]
[29]
Cheng, Y.; Ma, X.; Zhao, Q.; Wang, C.; Yan, D.; Li, F. Metabolic profile of C-prenyl coumarins using mass spectrometry-based metabolomics. Molecules, 2021, 26(21), 6558.
[http://dx.doi.org/10.3390/molecules26216558] [PMID: 34770967]
[30]
Liu, X.; Zhou, J.; Zhang, T.; Chen, K.; Xu, M.; Wu, L.; Liu, J.; Huang, Y.; Nie, B.; Shen, X.; Ren, P.; Huang, X. Meranzin hydrate elicits antidepressant effects and restores reward circuitry. Behav. Brain Res., 2021, 398112898.
[http://dx.doi.org/10.1016/j.bbr.2020.112898] [PMID: 32905810]
[31]
Xie, Y.; Huang, X.; Hu, S.Y.; Qiu, X.J.; Zhang, Y.J.; Ren, P.; Wang, Y.; Ji, H.; Zhang, C.H.; Xie, W.B.; He, J.; Xie, M.Z.; Huang, H.Y.; Liu, Z.Q.; Zhou, H.H. Meranzin hydrate exhibits anti-depressive and prokinetic-like effects through regulation of the shared α2-adrenoceptor in the brain-gut axis of rats in the forced swimming test. Neuropharmacology, 2013, 67, 318-325.
[http://dx.doi.org/10.1016/j.neuropharm.2012.10.003] [PMID: 23063894]
[32]
Xie, Y.; Huang, X.; Hu, S.Y.; Zhang, Y.J.; Wang, Y.; Qiu, X.J.; Ren, P.; Fan, R.; Zhang, C.H.; Xie, W.B.; Ji, H.; He, J.; Chen, X.; Xie, L.; Liu, Z.Q.; Zhou, H.H. The involvement of AMPA-ERK1/2-BDNF pathway in the mechanism of new antidepressant action of prokinetic meranzin hydrate. Amino Acids, 2013, 44(2), 413-422.
[http://dx.doi.org/10.1007/s00726-012-1347-2] [PMID: 22782214]
[33]
Xia, Z.; Zhang, C.; Du, Y.; Huang, W.; Xing, Z.; Cao, H.; Nie, K.; Wang, Y.; Xiong, X.; Yang, B. The effect of traditional chinese medicine zhike-houpu herbal pair on depressive behaviors and hippocampal serotonin 1A receptors in rats after chronic unpredictable mild stress. Psychosom. Med., 2019, 81(1), 100-109.
[http://dx.doi.org/10.1097/PSY.0000000000000639] [PMID: 30216226]
[34]
Shin, E.; Lee, C.; Sung, S.H.; Kim, Y.C.; Hwang, B.Y.; Lee, M.K. Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC-T6 hepatic stellate cells. J. Nat. Med., 2011, 65(2), 370-374.
[http://dx.doi.org/10.1007/s11418-010-0485-7] [PMID: 21082271]
[35]
Riviere, C.; Goossens, L.; Pommery, N.; Fourneau, C.; Delelis, A.; Henichart, J.P. Antiproliferative effects of isopentenylated coumarins isolated from Phellolophium madagascariense Baker. Nat. Prod. Res., 2006, 20(10), 909-916.
[http://dx.doi.org/10.1080/14786410500277787] [PMID: 16854718]
[36]
Li, L.; Yu, A-L.; Wang, Z-L.; Chen, K.; Zheng, W.; Zhou, J-J.; Xie, Q.; Yan, H.B.; Ren, P.; Huang, X. Chaihu-Shugan-San and absorbed meranzin hydrate induce anti-atherosclerosis and behavioral improvements in high-fat diet ApoE-/- mice via anti-inflammatory and BDNF-TrkB pathway. Biomed. Pharmacother., 2019, 115, 108893.
[http://dx.doi.org/10.1016/j.biopha.2019.108893] [PMID: 31022598]
[37]
Duan, F.; Li, Y.; Zhao, M.; Hu, T.; Pan, X.; Feng, Y.; Ma, F.; Qiu, S.; Zheng, Y. Screening of anti-inflammatory components of Qin Jin Hua Tan Tang by a multivariate statistical analysis approach for spectrum-effect relationships. J. Anal. Methods Chem., 2021, 2021, 6348979.
[http://dx.doi.org/10.1155/2021/6348979] [PMID: 34426776]
[38]
Rosselli, S.; Maggio, A.; Bellone, G.; Formisano, C.; Basile, A.; Cicala, C.; Alfieri, A.; Mascolo, N.; Bruno, M. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med., 2007, 73(2), 116-120.
[http://dx.doi.org/10.1055/s-2006-951772] [PMID: 17128388]
[39]
Adhikari-Devkota, A.; Kurauchi, Y.; Yamada, T.; Katsuki, H.; Watanabe, T.; Devkota, H.P. Anti-neuroinflammatory activities of extract and polymethoxyflavonoids from immature fruit peels of Citrus ‘Hebesu’. J. Food Biochem., 2019, 43(6), e12813.
[http://dx.doi.org/10.1111/jfbc.12813] [PMID: 31353615]
[40]
Huang, W.; Huang, X.; Xing, Z.; Qiu, X.; Wang, Y.; Fan, R.; Liu, W.; Ren, P.; Liu, Z.; Zhou, H. Meranzin hydrate induces similar effect to Fructus Aurantii on intestinal motility through activation of H1 histamine receptors. J. Gastrointest. Surg., 2011, 15(1), 87-96.
[http://dx.doi.org/10.1007/s11605-010-1374-9] [PMID: 21061180]
[41]
Huang, X.; Guo, Y.; Huang, W.H.; Zhang, W.; Tan, Z.R.; Peng, J.B.; Wang, Y.C.; Hu, D.L.; Ouyang, D.S.; Xiao, J.; Wang, Y.; Luo, M.; Chen, Y. Searching the cytochrome p450 enzymes for the metabolism of meranzin hydrate: A prospective antidepressant originating from Chaihu-Shugan-San. PLoS One, 2014, 9(11), e113819.
[http://dx.doi.org/10.1371/journal.pone.0113819] [PMID: 25427198]
[42]
Wang, Y.K.; Zhou, Z.M.; Dai, M.Y.; Ma, X.F.; Xiao, X.R.; Zhang, S.W.; Liu, H.N.; Li, F. Discovery and validation of quality markers of Fructus Aurantii against acetylcholinesterase using metabolomics and bioactivity assays. J. Sep. Sci., 2021, 44(11), 2189-2205.
[http://dx.doi.org/10.1002/jssc.202001190] [PMID: 33784419]
[43]
Qiu, X-J.; Huang, X.; Chen, Z-Q.; Ren, P.; Huang, W.; Qin, F.; Hu, S.H.; Huang, J.; He, J.; Liu, Z.Q.; Zhou, H.H. Pharmacokinetic study of the prokinetic compounds meranzin hydrate and ferulic acid following oral administration of Chaihu-Shugan-San to patients with functional dyspepsia. J. Ethnopharmacol., 2011, 137(1), 205-213.
[http://dx.doi.org/10.1016/j.jep.2011.05.009] [PMID: 21605652]
[44]
Wang, W.; Zhao, L.; Huang, H.; Yao, J.; Zhou, L.; Wang, D.; Qiu, X. Development of an ultra-high performance liquid chromatography method for simultaneous determination of six active compounds in Fructus aurantii and rat plasma and its application to a comparative pharmacokinetic study in rats administered with different doses. J. Anal. Methods Chem., 2018, 2018, 7579136.
[http://dx.doi.org/10.1155/2018/7579136] [PMID: 29862124]
[45]
Liu, Y.; Wang, W.; Chen, Y.; Yan, H.; Wu, D.; Xu, J.; Shi, S.; Shen, X.; Huang, X. Simultaneous quantification of nine components in the plasma of depressed rats after oral administration of Chaihu-Shugan-San by ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and its application to pharmacokinetic studies. J. Pharm. Biomed. Anal., 2020, 186, 113310.
[http://dx.doi.org/10.1016/j.jpba.2020.113310] [PMID: 32348951]
[46]
Zhang, X.; Han, L.; Liu, J.; Xu, Q.; Guo, Y.; Zheng, W.; Wang, J.; Huang, X.; Ren, P. Pharmacokinetic study of 7 compounds following oral administration of fructus aurantii to depressive rats. Front. Pharmacol., 2018, 9, 131.
[http://dx.doi.org/10.3389/fphar.2018.00131] [PMID: 29556193]
[47]
Yang, Y-F.; Zhang, L.; Zhang, Y-B.; Yang, X-W. Simultaneous assessment of absorption characteristics of coumarins from Angelicae pubescentis Radix: In vitro transport across Caco-2 cell and in vivo pharmacokinetics in rats after oral administration. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1060, 308-315.
[http://dx.doi.org/10.1016/j.jchromb.2017.06.020] [PMID: 28654868]
[48]
Shi, S.; Yan, H.; Chen, Y.; Liu, Y.; Zhang, X.; Xie, Y.; Xu, J.; Wu, L.; Chen, K.; Shen, X.; Ren, P.; Huang, X. Pharmacokinetic study of precisely representative antidepressant, prokinetic, anti-inflammatory and anti-oxidative compounds from Fructus aurantii and Magnolia Bark. Chem. Biol. Interact., 2020, 315, 108851.
[http://dx.doi.org/10.1016/j.cbi.2019.108851] [PMID: 31614129]
[49]
Yang, Y.F.; Zhang, L.; Yang, X.W. Distribution assessments of coumarins from Angelicae pubescentis Radix in rat cerebrospinal fluid and brain by liquid chromatography tandem mass spectrometry analysis. Molecules, 2018, 23(1), 225.
[http://dx.doi.org/10.3390/molecules23010225] [PMID: 29361720]
[50]
Sanches, K.; Dias, R.V.R.; da Silva, P.H.; Fossey, M.A.; Caruso, Í.P.; de Souza, F.P.; de Oliveira, L.C.; de Melo, F.A. Grb2 dimer interacts with coumarin through SH2 domains: A combined experimental and molecular modeling study. Heliyon, 2019, 5(11), e02869.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02869] [PMID: 31844748]
[51]
Ostrowska, K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm. J., 2020, 28(2), 220-232.
[http://dx.doi.org/10.1016/j.jsps.2019.11.025] [PMID: 32042262]
[52]
Yang, G.; Shi, L.; Pan, Z.; Wu, L.; Fan, L.; Wang, C.; Xu, C.; Liang, J. The synthesis of coumarin thiazoles containing a trifluoromethyl group and their antifungal activities. Arab. J. Chem., 2021, 14(1), 102880.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.027]
[53]
Tapanyiğit, O.; Demirkol, O.; Güler, E.; Erşatır, M.; Çam, M.E.; Giray, E.S. Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives. Arab. J. Chem., 2020, 13(12), 9105-9117.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.034]
[54]
Al-Abbas, N.S.; Shaer, N.A. Combination of coumarin and doxorubicin induces drug-resistant acute myeloid leukemia cell death. Heliyon, 2021, 7(3), e06255.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06255] [PMID: 33786386]
[55]
Shkoor, M.; Mehanna, H.; Shabana, A.; Farhat, T.; Bani-Yaseen, A.D. Experimental and DFT/TD-DFT computational investigations of the solvent effect on the spectral properties of nitro substituted pyridino[3,4-c]coumarins. J. Mol. Liq., 2020, 313, 113509.
[http://dx.doi.org/10.1016/j.molliq.2020.113509]
[56]
Macklin, L.J.; Schwans, J.P. Synthesis, biochemical evaluation, and molecular modeling of organophosphate-coumarin hybrids as potent and selective butyrylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(13), 127213.
[http://dx.doi.org/10.1016/j.bmcl.2020.127213] [PMID: 32381396]
[57]
Mangasuli, S.N. Synthesis of novel coumarin-thiazolidine-2,4-dione derivatives: An approach to computational studies and biological evaluation. Results Chem, 2021, 3, 100105.
[http://dx.doi.org/10.1016/j.rechem.2021.100105]
[58]
Nagaraja, O.; Bodke, Y.D.; Pushpavathi, I.; Ravi Kumar, S. Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon, 2020, 6(6), e04245.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04245] [PMID: 32637685]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy