Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Tinospora cordifolia: A New Perspective on Alzheimer’s Disease and Green Nanotechnology

Author(s): Krishna Bhalodi and Charmy S. Kothari*

Volume 13, Issue 2, 2023

Published on: 06 September, 2022

Article ID: e230522205119 Pages: 14

DOI: 10.2174/2210315512666220523123836

Price: $65

Abstract

Alzheimer’s disease (AD) is a common cause of dementia; the hallmark includes neuronal death and synaptic loss leading to cognitive decline. Up to date, there have been a vast number of preclinical and clinical trials based on natural compounds that play a crucial role in the prevention of AD. Tinospora cordifolia (Tc) is a medicinal plant with numerous bioactive properties used in Indian medicine. The literature study will scrutinized based on the disease-modifying effects of Tinospora cordifolia. It benefits the neurobiological researcher in understanding and researching the naturally occurring compound in combating AD. Furthermore, recent nanotechnology trends, such as green synthesis nanoparticles, have more potential in biomedical fields. Following that, the review draws attention to the green synthesized nanoparticle of Tc, which has a wide range of applications.

Keywords: Tinospora cordifolia (Tc), pharmacological activity, antioxidant, alzheimer’s disease, green synthesis nanoparticle.

Graphical Abstract

[1]
Alzheimer’s Disease International. World Alzheimer Report 2019: Attitudes to dementia; London Alzheimer’s Dis Int, 2019, p. 160.
[2]
Kocahan, S.; Doğan, Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 1-8.
[http://dx.doi.org/10.9758/cpn.2017.15.1.1] [PMID: 28138104]
[3]
Bhatti, G.K.; Reddy, A.P.; Reddy, P.H.; Bhatti, J.S. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front. Aging Neurosci., 2020, 11(369), 369.
[http://dx.doi.org/10.3389/fnagi.2019.00369] [PMID: 31998117]
[4]
Bekris, L.M.; Yu, C-E.; Bird, T.D.; Tsuang, D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol., 2010, 23(4), 213-227.
[http://dx.doi.org/10.1177/0891988710383571] [PMID: 21045163]
[5]
Imbimbo, B.P.; Lombard, J.; Pomara, N. Pathophysiology of Alzheimer’s disease. Neuroimaging Clin. N. Am., 2005, 15(4), 727-753. ix.
[http://dx.doi.org/10.1016/j.nic.2005.09.009] [PMID: 16443487]
[6]
Dong, Y.; Li, X.; Cheng, J.; Hou, L. Drug development for alzheimer’s disease: Microglia induced neuroinflammation as a target? Int. J. Mol. Sci., 2019, 20(558), 1-24.
[7]
Kumar, A.; Singh, A.; Ekavali , A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[8]
Association, A. Alzheimer’s Association Report 2019 Alzheimer’s disease facts and figures. Alzheimers Dement., 2019, 15(3), 321-387.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[9]
Manoharan, S.; Essa, M.M.; Vinoth, A.; Kowsalya, R.; Manimaran, A.; Selvasundaram, R. Alzheimer’s disease and medicinal plants: An overview. Adv. Neurobiol., 2016, 12, 95-105.
[http://dx.doi.org/10.1007/978-3-319-28383-8_6] [PMID: 27651250]
[10]
Brahmachari, G. Natural products in drug discovery: Impacts and opportunities-an assessment. Bioact. Nat. Prod., 2011, PP. 1-199. Available from: https://www.worldscientific.com/doi/abs/10.1142/9789814335386_0001
[11]
Sharma, P.; Dwivedee, B.P.; Bisht, D.; Dash, A.K.; Kumar, D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon, 2019, 5(9), e02437.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02437] [PMID: 31701036]
[12]
Tiwari, P.; Nayak, P.; Sahu, P.K. Phytochemistry and pharmacology of Tinospora cordifolia: A review. Syst Rev Pharm., 2018, 9(1), 70-78.
[http://dx.doi.org/10.5530/srp.2018.1.14]
[13]
Miers, W.; Hook, E.; Jagetia, G.C. Anticancer activity of Giloe, Tinospora cordifolia. Int. J. Complement. Altern. Med., 2019, 12(2), 79-85.
[http://dx.doi.org/10.15406/ijcam.2019.12.00453]
[14]
Tiwari, M.; Dwivedi, U.N.; Kakkar, P. Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. J. Ethnopharmacol., 2014, 153(2), 326-337.
[http://dx.doi.org/10.1016/j.jep.2014.01.031] [PMID: 24556222]
[15]
Menon, P.V.; Prince, P.S.M. Hypoglycaemic and hypolipidaemic action of alcohol extract of Tinospora cordifolia roots in chemical induced diabetes in rats. Phytother. Res., 2003, 17, 410-413.
[http://dx.doi.org/10.1002/ptr.1130] [PMID: 12722152]
[16]
Khan, M.A.; Gray, A.I.; Waterman, P.G.; Umamaheswari, S.; Prince, S.U. Antihyperglycaemic effect of ‘Ilogen-Excel’, an ayurvedic herbal formulation in streptozotocin-induced diabetes mellitus. Acta Pol. Pharm. Res., 2007, 64(1), 53-61.
[17]
Abiramasundari, G.; Sumalatha, K.R.; Sreepriya, M. Effects of Tinospora cordifolia (Menispermaceae) on the proliferation, osteogenic differentiation and mineralization of osteoblast model systems in vitro. J. Ethnopharmacol., 2012, 141(1), 474-480.
[http://dx.doi.org/10.1016/j.jep.2012.03.015] [PMID: 22449439]
[18]
Dinesh, K.V.; Geethanjali, B.A.; K.O.; Kumar, J.R.; Basalingappa, K.M. Tinospora cordifolia: The antimicrobial property of the leaves of amruthaballi. J. Bacteriol. Mycol. (Monroe Township), 2017, 5(5), 363-371.
[19]
Sharma, U.; Bala, M.; Kumar, N.; Singh, B.; Munshi, R.K.; Bhalerao, S. Immunomodulatory active compounds from Tinospora cordifolia. J. Ethnopharmacol., 2012, 141(3), 918-926.
[http://dx.doi.org/10.1016/j.jep.2012.03.027] [PMID: 22472109]
[20]
Birla, H.; Nand, S.; Saumitra, R.; Singh, S.; Zahra, W.; Rawat, A. Tinospora cordifolia suppresses neuroinflammation in Parkinsonian mouse model. Neuro Molecular Med, 2019, 21, 42-53.
[http://dx.doi.org/10.1007/s12017-018-08521-7]
[21]
Pachaly Peter, S.C. Alkaloide aus Tinospora cordifolia Miers. Arch. Pharm. (Weinheim), 1981, 314, 251-256.
[http://dx.doi.org/10.1002/ardp.19813140311]
[22]
Bisset, NG; Nwaiwu, J Quaternary alkaloids of tinospora species. J Med plant Res., 1983, 48, 275-9.
[23]
Loeffler, S.; Deus-Neumann, B.; Zenk, M.H. S-adenosyl-l-methionine:(s)-coclaurine-n-methyl- transferase from Tinospora cordifolia. Phytochemistry, 1995, 38(6), 1387-1395.
[http://dx.doi.org/10.1016/0031-9422(94)00813-9]
[24]
Sarma, D.N.K.; Khosa, R.L.; Sahai, M. Isolation of jatrorrhizine from Tinospora cordifolia roots. Planta Med., 1995, 61(1), 98-99.
[http://dx.doi.org/10.1055/s-2006-958022] [PMID: 7701011]
[25]
Sarma, D.N.K.; Koul, S.; Khosa, R.L. Alkaloids from Tinospora cordifolia Miers. J. Pharm. Sci. Res., 2009, 1(1), 26-27.
[26]
Khan, M.A.; Alexander, I.; Gray, P.G.W. Tinosporaside, an 18-norclerodane glucoside from Tinospora cordifolia. Phytochemistry, 1988, 28(1), 273-275.
[27]
Bhatt, R.K.; Sabata, B.K. A furanoid diterpene glucoside from Tinospora cordifolia. Phytochemistry, 1989, 28(9), 2419-2422.
[http://dx.doi.org/10.1016/S0031-9422(00)97996-2]
[28]
Fukuda, N.; Yonemitsu, M.; Kimura, T. Isolation and structure elucidation of the five new furanoid diterpene glycosides borapetoside C - G. Liebigs Ann. Chem., 1995, 1995(9), 1689-1691.
[29]
Sipahimalani, A.; Norr, H.; Hildebert, Wagner Phenyipropanoid glycosides and tetrahydrofurofuranlignan glyco - sides from the adaptogenic plant drugs tinospora cordtfola and drypetes roxburghii. Planta Med., 1994, 60, 596-597.
[http://dx.doi.org/10.1055/s-2006-959587] [PMID: 17236093]
[30]
Gangan, V.D.; Pradhan, P.; Sipahimalani, A.T.; Banerji, A. Cordifolisides A,B, C: Norditerpene furan glycosides from Tinospora cordifolia. Phytochemistry, 1994, 37(3), 781-786.
[http://dx.doi.org/10.1016/S0031-9422(00)90358-3] [PMID: 7765690]
[31]
Gangan, V.D.; Pradhan, P.; Sipahimalani, A.T.; Banerji, A. Norditerpene furan glycosides from Tinospora cordifolia. Phytochemistry, 1995, 39(5), 1139-1142.
[http://dx.doi.org/10.1016/0031-9422(95)00115-N] [PMID: 7765690]
[32]
Maurya, R.; Wazir, V.; Tyagi, A.; Kapil, R.S. Clerodane diterpenoids from Tinospora cordifolia. Phytochemistry, 1995, 38(3), 659-661.
[http://dx.doi.org/10.1016/0031-9422(94)00686-N]
[33]
Wazir, V.; Maurya, R.; Kapil, R.S. Cordioside, a clerodane furano diterpene glucoside from Tinospora cordifolia. Phytochemistry, 1995, 38(2), 447-449.
[http://dx.doi.org/10.1016/0031-9422(94)00601-O]
[34]
Ghosal, S.; Vishwakarma, R.A. Tinocordiside, a new rearranged cadinane sesquiterpene glycoside from Tinospora cordifolia. J. Nat. Prod., 1997, 60(8), 839-841.
[http://dx.doi.org/10.1021/np970169z]
[35]
Rakesh, M.; Sukhdev, H.S. Tinocordifolin, a sesquiterpene from Tinospora cordifolia. Phytochemistry, 1998, 49(5), 1343-1345.
[http://dx.doi.org/10.1016/S0031-9422(98)00093-4]
[36]
Maurya, R.; Manhas, L.R.; Gupta, P.; Mishra, P.K.; Singh, G.; Yadav, P.P.; Amritosides, A. Amritosides A, B, C and D: Clerodane furano diterpene glucosides from Tinospora cordifolia. Phytochemistry, 2004, 65(14), 2051-2055.
[http://dx.doi.org/10.1016/j.phytochem.2004.05.017] [PMID: 15279971]
[37]
Phan, V.K.; Chau, V.M.; Nguyen, T.D.; La, V.K.; Dan, T.H.; Nguyen, H.N.; Nguyen, X.C.; Hoang, T.H.; Trinh, V.L. Aporphine alkaloids, clerodane diterpenes, and other constituents from Tinospora cordifolia. Fitoterapia, 2010, 81(6), 485-489.
[http://dx.doi.org/10.1016/j.fitote.2010.01.005] [PMID: 20080155]
[38]
Sivasubramanian, A.; Narasimha, K.K.G.; Rishikesan, R.; Campos, A.M.F.O. A new antifeedant clerodane diterpenoid from Tinospora cordifolia. Nat. Prod. Res., 2013, 27(16), 1431-1436.
[PMID: 22946632]
[39]
Jampani, B. Hanuman; R K Bhatt, BKS A diterpenoid furanolactone from Tinospora cordifolia. Phytochemistry, 1985, 25(7), 1677-1680.
[40]
Swaminathan, K.; Sinha, U.C.; RK Bhatt, BKS. Structure of tinosporide, a diterpenoid furanolaetone from Tinospora cordifolia miers. Acta Crystallogr., 1989, C45, 134-136.
[41]
Ahmad, F.; Ali, M.; Alam, P. New phytoconstituents from the stem bark of Tinospora cordifolia Miers. Nat. Prod. Res., 2010, 24(10), 926-934.
[http://dx.doi.org/10.1080/14786410802435679] [PMID: 20496230]
[42]
Hanuman, J.B.; Mishra, A.K.; Sabata, B. A natural phenolic lignan from Tinospora cordifolia miers. J. Chem. Soc. Perkin. Trans., 1986, 04, 1181-1185.
[http://dx.doi.org/10.1039/p19860001181]
[43]
Pathak, A.K.; Agarwal, P.; Jain, D.C.; Sharma, R.P.; Howarth, O.EW. NMR studies of 20p-hydroxyecdysone, a steroid; Isolated from Tinospora cordifolia. Indian J. Chem., 1995, 34B, 674-676.
[44]
Du, X.; Wang, X.; Geng, M. Alzheimer ’ s disease hypothesis and related therapies. Transl. Neurodegener., 2018, 7(2), 1-7.
[45]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[46]
Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxidative Med. Cell. Longev., 2013, 2013, 316523.
[47]
Tiwari, S.C.; Soni, R.M. Alzheimer ’ s disease pathology and oxidative stress: Possible therapeutic options Alzheimer ’ s disease & parkinsonism. J. Alzheimer’s Dis. Park., 2014, 4(5), 1-10.
[48]
Subramanian, M.; Chintalwar, G.J.; Chattopadhyay, S.; Subramanian, M.; Chintalwar, G.J.; Chattopadhyay, S. Antioxidant properties of a Tinospora cordifolia polysaccharide against iron-mediated lipid damage and γ-ray induced protein damage. Redox Rep., 2002, 7(3), 137-143.
[http://dx.doi.org/10.1179/135100002125000370] [PMID: 12189043]
[49]
Bhawya, D.; Anilakumar, K.R. In vitro antioxidant potency of Tinospora cordifolia (gulancha) in sequential extracts. Int. J. Pharm. Biol., 2010, 1(5), 448-456.
[50]
Jain, S.; Sherlekar, B.; Barik, R. Evaluation pf antioxidant potential of Tinospora cordifolia and Tinospora sinensis. Int. J. Pharm. Sci. Res., 2010, 1(11), 122-128.
[51]
Sarkar, R.; Mandal, N. Hydroalcoholic extracts of Indian medicinal plants can help in amelioration from oxidative stress through antioxidant properties. J. Complement. Integr. Med., 2012, 9(1), 7.
[http://dx.doi.org/10.1515/1553-3840.1583] [PMID: 22624183]
[52]
Kumar, A.; Kumar, M.; Dandapat, S.; Sinha, M.P. Antioxidant activity and Pharmacological screening of Tinospora cordifolia (THUNB.). Bioscan. An. Int. Quartely. J. Life Sci., 2013, 8(2), 689-693.
[53]
Pushp, P.; Sharma, N.; Joseph, G.S.; Singh, R.P. Antioxidant activity and detection of (-)epicatechin in the methanolic extract of stem of Tinospora cordifolia. J. Food Sci. Technol., 2013, 50(3), 567-572.
[http://dx.doi.org/10.1007/s13197-011-0354-8] [PMID: 24425954]
[54]
Laboni, F.R.; Akhter, M.; Batul, U.K. Evaluation of antinociceptive and antioxidant properties of the ethanolic extract of Tinospora cordifolia stem from Bangladesh. Pharmacol. Online, 2013, 3, 88-94.
[55]
Premanath, R.; Lakshmidevi, N. studies on antioxidant activity of Tinospora cordifolia (miers.) leaves using in vitro models. J. Am. Sci., 2010, 6(10), 736-705.
[56]
Praveen, N.; Thiruvengadam, M.; Kim, H.J.; Kumar, J.K.P.; Chung, I.M. Antioxidant activity of Tinospora cordifolia leaf extracts through non-enzymatic method. J. Med. Plants Res., 2012, 6(33), 4790-4795.
[57]
Sarala, M.; Velu, V.; Anandharamakrishnan, C.; Singh, R.P. Spray drying of Tinospora cordifolia leaf and stem extract and evaluation of antioxidant activity. J. Food Sci. Technol., 2012, 49(1), 119-122.
[http://dx.doi.org/10.1007/s13197-011-0364-6] [PMID: 23572835]
[58]
Naik, D.; Dandge, C.; Rupanar, S. Determination of chemical composition and evaluation of antioxidant activity of essential oil from Tinospora cordifolia (willd.) leaf. J. Essent. Oil-Bear. Plants, 2014, 17(2), 228-236.
[http://dx.doi.org/10.1080/0972060X.2013.831568]
[59]
Khan, M.I.; Harsha, P.S.C.S.; Giridhar, P.; Ravishankar, G.A. Pigment identification, antioxidant activity, and nutrient composition of Tinospora cordifolia (willd.) Miers ex Hook. f & Thoms fruit. Int. J. Food Sci. Nutr., 2011, 62(3), 239-249.
[http://dx.doi.org/10.3109/09637486.2010.529069] [PMID: 21155657]
[60]
Upadhyay, N.; Ganie, S.A.; Agnihotri, R.K.; Sharma, R. Free radical scavenging activity of Tinospora cordifolia (Willd.). Miers. J. Pharmacogn. Phytochem., 2014, 3(2), 63-69.
[61]
Sharma, A.; Kaur, G. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: An in vitro perspective. BMC Complement. Altern. Med., 2018, 18(1), 268.
[http://dx.doi.org/10.1186/s12906-018-2330-6] [PMID: 30285727]
[62]
Sharma, A.; Kalotra, S.; Bajaj, P.; Singh, H.; Kaur, G. Butanol extract of Tinospora cordifolia ameliorates cognitive deficits associated with glutamate-Induced excitotoxicity: A mechanistic study using hippocampal neurons., Neuromol. Med, 2019, 1-19.
[http://dx.doi.org/10.1007/s12017-019-08566-2] [PMID: 31606849]
[63]
Prakash, R.; Sandhya, E.; Ramya, N.; Dhivya, R.P.M. A review on the adaptogenic activity of potent rasayana Tinospora cordifolia. Transl. Biomed., 2017, 8(4), 135-142.
[64]
Chen, X.Q.; Mobley, W.C. Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses. Front. Neurosci., 2019, 13(May), 446.
[http://dx.doi.org/10.3389/fnins.2019.00446] [PMID: 31133787]
[65]
Balkrishna, A.; Pokhrel, S.; Tomer, M.; Verma, S.; Kumar, A.; Nain, P.; Gupta, A.; Varshney, A. Anti-acetylcholinesterase activities of mono-herbal extracts and exhibited synergistic effects of the phytoconstituents: A biochemical and computational study. Molecules, 2019, 24(22), 1-15.
[http://dx.doi.org/10.3390/molecules24224175] [PMID: 31752124]
[66]
Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci., 2003, 4(2), 131-138.
[http://dx.doi.org/10.1038/nrn1035] [PMID: 12563284]
[67]
Suresh Kumar, S.S. Antioxidant and anti-butyrlcholinesterase activity of an ethanolic extract of Tinospora cordifolia. Eur. J. Pharm. Med. Res., 2015, 2(4), 1263-1272.
[68]
Vinutha, B.; Prashanth, D.; Salma, K.; Sreeja, S.L.; Pratiti, D.; Padmaja, R.; Radhika, S.; Amit, A.; Venkateshwarlu, K.; Deepak, M. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol., 2007, 109(2), 359-363.
[http://dx.doi.org/10.1016/j.jep.2006.06.014] [PMID: 16950584]
[69]
Malve, H.O.; Raut, S.B.; Marathe, P.A.; Rege, N.N. Effect of combination of Phyllanthus emblica, Tinospora cordifolia, and Ocimum sanctum on spatial learning and memory in rats. J. Ayurveda Integr. Med., 2014, 5(4), 209-215.
[http://dx.doi.org/10.4103/0975-9476.146564] [PMID: 25624694]
[70]
Mishra, R.; Manchanda, S.; Gupta, M.; Kaur, T.; Saini, V.; Sharma, A.; Kaur, G. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci. Rep., 2016, 6, 25564.
[http://dx.doi.org/10.1038/srep25564] [PMID: 27146164]
[71]
Agarwal, A.; Malini, S.; Bairy, K.L.; Rao, M.S. Effect of Tinospora cordifolia on learning and memory in normal and memory deficit rats. Indian J. Pharmacol., 2002, 34, 339-349.
[72]
Jyothi, C.H.; Shashikala, G.; Vidya, H.K.; Shashikala, G.H. Evaluation of effect of alcoholic extract of Tinospora cordifolia on learning and memory in alprazolam induced amnesia in albino mice. Int. J. Basic Clin. Pharmacol., 2016, 5(5), 2159-2163.
[73]
George, M.; Josepha, L.; Mathew, M. A research on screening of learning and memory enhancing activity of whole plant extract of Tinospora cordifoli a (Willd). Pharma Innov., 2016, 5(7), 104-107.
[74]
Bairy, K.L.; Rao, Y.; Kumar, K.B. Efficacy of Tinospora cordifolia on learning and memory in healthy volunteers: A double-blind, randomized, placebo controlled study. Iran J. Pharmacol. Ther., 2004, 3(2), 57-60.
[75]
Organization, GH Towards a dementia plan: A WHO guide. CC BYNC- SA 3.0 IGO 2018.
[76]
Malik, B.; Bilal, T.; Kumar, K. Biosynthesis of nanoparticles and their application in pharmaceutical industry. Nanotechnology, 2017, 2017, 331-49.
[77]
Ovais, M.; Zia, N.; Ahmad, I.; Khalil, A.T.; Raza, A.; Ayaz, M.; Sadiq, A.; Ullah, F.; Shinwari, Z.K. Phyto-therapeutic and nanomedicinal approaches to cure alzheimer’s disease: Present status and future opportunities. Front. Aging Neurosci., 2018, 10(284), 284.
[http://dx.doi.org/10.3389/fnagi.2018.00284] [PMID: 30405389]
[78]
Madkour, L.H. Biogenic – Biosynthesis Metallic Nanoparticles (MNPs) for pharmacological, biomedical & environmental nanobiotechnological applications. Chronicles Pharm Sci., 2018, 2(1), 384-444.
[79]
Sharma, P.; Guleria, P.; Kumar, V. Green nanotechnology for bioactive compounds delivery. Biotechnol. Product. Bioactive Compounds, 2019, 391-407.
[http://dx.doi.org/10.1016/B978-0-444-64323-0.00013-8]
[80]
Khatami, M.; Alijani, H.Q.; Sharifi, I. Biosynthesis of bimetallic and core-shell nanoparticles: Their biomedical applications - A review. IET Nanobiotechnol., 2018, 12(7), 879-887.
[http://dx.doi.org/10.1049/iet-nbt.2017.0308] [PMID: 30247125]
[81]
Ramanathan, A.A.; Aqra, M.W. An overview of the green road to the synthesis of nanoparticles. J. Mater. Sci. Res. Rev., 2019, 2(3), 1-11.
[82]
Youssif, K.A.; Haggag, E.G.; Elshamy, A.M.; Rabeh, M.A.; Gabr, N.M.; Seleem, A.; Salem, M.A.; Hussein, A.S.; Krischke, M.; Mueller, M.J.; Abdelmohsen, U.R. Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts. PLoS One, 2019, 14(11), e0223781.
[http://dx.doi.org/10.1371/journal.pone.0223781] [PMID: 31693694]
[83]
Seham, S. El-Hawwary; Hanan, M. Abd Almaksoud, FRS; Elimam, H.; Ahmed, M. Sayed MAERURA Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling. RSC Advances, 2021, 11, 18009-18025.
[http://dx.doi.org/10.1039/D1RA01725J]
[84]
Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; Ali, S. Green nanotechnology: A review on green synthesis of silver nanoparticles - an ecofriendly approach. Int. J. Nanomedicine, 2019, 14, 5087-5107.
[http://dx.doi.org/10.2147/IJN.S200254] [PMID: 31371949]
[85]
Akintelu, S.A.; Folorunso, A.S. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. Bionanoscience, 2020, 10(4), 848-863.
[http://dx.doi.org/10.1007/s12668-020-00774-6]
[86]
Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 844-851.
[http://dx.doi.org/10.1080/21691401.2019.1577878] [PMID: 30879351]
[87]
Ahmed, S.; Annu; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B, 2017, 166, 272-284.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.011] [PMID: 28013182]
[88]
Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem., 2019, 178, 687-704.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.010] [PMID: 31228811]
[89]
Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. Int., 2020, 27(3), 2522-2565.
[http://dx.doi.org/10.1007/s11356-019-07193-5] [PMID: 31865580]
[90]
Anuj, S.A.; Ishnava, K.B. Plant mediated synthesis of silver nanoparticles by using drid stem powder of Tinospora cordifolia, its antibacterial activity and comparison with antibiotics. Int. J. Pharma Bio Sci., 2013, 4(4), 849-863.
[91]
Singh, K.; Panghal, M.; Kadyan, S.; Chaudhary, U.; Yadav, J.P. Antibacterial activity of synthesized Silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from Burn Patients. J. Nanomed. Nanotechnol., 2014, 5(2), 1-6.
[http://dx.doi.org/10.4172/2157-7439.1000192]
[92]
Singh, K.; Panghal, M.; Kadyan, S.; Yadav, J.P. Evaluation of antimicrobial activity of synthesized silver nanoparticles using phyllanthus amarus and Tinospora cordifolia medicinal plants nanomedicine & nanotechnology. J. Nanomed. Nanotechnol., 2014, 5(6), 1-5.
[http://dx.doi.org/10.4172/2157-7439.1000250]
[93]
Mittal, J.; Singh, A.; Batra, A.; Sharma, M.M. Synthesis & characterization of silver nanoparticles and their anti-microbial efficacy. Part. Sci. Technol., 2016, 35(3), 338-345.
[94]
Patil, R.C.; Pandey, A. Antibacterial properties of biologically synthesized chitosan nanoparticles along with leaves extract of Tinospora cordifolia. IOSR J. Biotechnol. Biochem., 2017, 3(4), 25-31.
[95]
Vijayakumari, P.; Thirumurugan, V. Green synthesis and characterization of silver nanoparticles using Tinosopora cordifolia extract and their antimicrobial activity. Int. J. Adv. Res. Ideas. Innov. Technol., 2017, 3(6), 421-426.
[96]
Maity, S.; Saranya, J.; Sunitha, S.N. Green synthesis, characterization and in vitro antibacterial activity of silver nanoparticles by using leaf extract of Tinospora cordifolia. Int. J. Eng. Sci. Res., 2018, 6(1), 283-288.
[97]
Joshi, N.C.; Chaudhary, N.; Rai, N. Medicinal plant leaves extract based synthesis, characterisations and antimicrobial activities of zro2nanoparticles (ZrO2 NPs). Bionanoscience, 2021, 11, 497-505.
[http://dx.doi.org/10.1007/s12668-021-00829-2]
[98]
Parvathiraja, C.; Shailajha, S.S.S.; Kairon, M.M.S. Photocatalytic and antibacterial activity of bio-treated Ag nanoparticles synthesized using Tinospora cordifolia leaf extract. J. Mater. Sci. Mater. Electron., 2019, 30, 8515-8525.
[http://dx.doi.org/10.1007/s10854-019-01172-9]
[99]
Sharma, P.; Pant, S.; Poonia, P.; Kumari, S.; Dave, V.; Sharma, S. Green synthesis of colloidal copper nanoparticles capped with Tinospora cordifolia and its application in catalytic degradation in textile dye: An ecologically sound approach. J. Inorg. Organomet. Polym. Mater., 2018, 28, 2463-2472.
[http://dx.doi.org/10.1007/s10904-018-0933-5]
[100]
Aruljothi, C.; Vasuki, T. Photocatalytic and antibacterial activity of green synthesized iron oxide nanoparticles. Int. J. Sci. Res., 2020, 9(3), 2019-2021.
[101]
Selvam, K.; Sudhakar, C.; Govarthanan, M.; Thiyagarajan, P.; Sengottaiyan, A.; Senthilkumar, B. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J. Radiat. Res. Appl. Sci. [Internet], 2017, 10, 6-12.
[http://dx.doi.org/10.1016/j.jrras.2016.02.005]
[102]
Saha, S.; Basu, R.; Das, S. Green synthesis of copper oxide- Tinospora cordifolia nanoparticle: Antioxidant and antimicrobial activity. Eur. J. Pharm. Med. Res., 2019, 6(7), 340-346.
[103]
Nethravathi, P.C.; Kumar, M.A.P.; Suresh, D.; Lingaraju, K. Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Mater. Sci. Semicond. Process., 2015, 33, 81-88.
[http://dx.doi.org/10.1016/j.mssp.2015.01.034]
[104]
John, T.; Parmar, K.A.; Tak, P. Biosynthesis and characterization of silver nanoparticles from Tinospora cordifolia root extract. J. Nanosci. Technol., 2019, 5(1), 622-626.
[http://dx.doi.org/10.30799/jnst.211.19050112]
[105]
Sakthipriya, M.; Sarathchandra, G.; Jagadeeswaran, A.; Preetha, S.P. Synthesis, characterisation and pharmacological assessment of nanoparticles of Tinospora cordifolia for its cytotoxic activity. J. Pharmacogn. Phytochem., 2020, 9(3), 1901-1906.
[106]
Khater, M.; Greco, F.; Osborn, H.M.I. Antiangiogenic activity of flavonoids: A systematic review and meta-analysis. Molecules, 2020, 25(4712), 1-31.
[107]
Deepika, P.; Vinusha, H.M.; Begum, M.; Kumar, H.J.B.; Rekha, N.D. Synthesis of biologically active silver nanoparticles using Tinospora cordifolia leaf extract for antimicrobial applications. Indian J. Adv. Chem. Sci., 2019, 7(1), 35-38.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy