Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Ayurvedic Herbs and Spices: A Promising Approach for the Treatment of COVID-19

Author(s): Ahsas Goyal*, Aanchal Verma, Neetu Agrawal and Shilpi Pathak

Volume 13, Issue 3, 2023

Published on: 09 September, 2022

Article ID: e200522205091 Pages: 14

DOI: 10.2174/2210315512666220520151227

Price: $65

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus accountable for the coronavirus disease 2019 (COVID-19) that has led to many fatal cases worldwide. It causes a severe acute respiratory syndrome, a hyperinflammatory response, vascular damage, microangiopathy, and widespread thrombosis. Vaccines, interferon therapies, and small-molecule drugs may be among the various alternatives for managing or preventing emerging SARS-CoV-2 infections. New interventions, on the other hand, are likely to take months to years to develop. Furthermore, existing antiviral agents commonly develop viral resistance along with certain side effects. Therefore, effective prevention and treatment medications without side effects against human coronavirus are urgently needed. Indian and Chinese traditional medicine have suggested some natural products for the prevention, treatment, and rehabilitation of the diseases, including COVID-19 and various herbs and mushrooms that have been reported to possess potential antiviral and anti-inflammatory activities. Therefore, in this pandemic, traditional medicines pose a ray of hope for human health. The Ministry of Ayush, India, has also recommended a number of therapies to increase immunity in addition to ayurvedic treatments. Thus, the probability of naturally occurring substances as successful treatments against COVID-19 may seem hopeful due to their diverse biological and therapeutic properties. This review focuses on the latest updates of Ayurvedic herbs and spices as promising approaches for treatment during this devastating pandemic situation.

Keywords: Anti-viral, Ayurveda, Chinese Medicine, COVID-19, Herbs, SARS-CoV-2, Spices, Traditional

[1]
Halaji, M.; Farahani, A.; Ranjbar, R.; Heiat, M.; Dehkordi, F.S. Emerging coronaviruses: First SARS, second MERS and third SARS-CoV-2: Epidemiological updates of COVID-19. Infez. Med., 2020, 28(Suppl. 1), 6-17.
[PMID: 32532933]
[2]
Adluri, U.S.P.; Tripathi, A.C. Understanding COVID-19 pandemic - A comprehensive Ayurvedic perspective. J. Ayurveda Integr. Med., 2020, 13(1), 100348.
[http://dx.doi.org/10.1016/j.jaim.2020.08.001] [PMID: 33262017]
[3]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[4]
Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet, 2020, 395(10225), 689-697.
[http://dx.doi.org/10.1016/S0140-6736(20)30260-9] [PMID: 32014114]
[5]
COVID Live Update: 173,351,095 Cases and 3,728,510 Deaths from the Coronavirus - Worldometer. Available from: https://www.worldometers.info/coronavirus/ (Accessed Jun 5, 2021).
[6]
Lau, S.K.P.; Chan, J.F.W. Coronaviruses: Emerging and re-emerging pathogens in humans and animals. Virol. J., 2015, 12(1), 209.
[http://dx.doi.org/10.1186/s12985-015-0432-z] [PMID: 26690088]
[7]
Mishra, A.; Bentur, S.A.; Thakral, S.; Garg, R.; Duggal, B. The use of integrative therapy based on Yoga and Ayurveda in the treatment of a high-risk case of COVID-19/SARS-CoV-2 with multiple comorbidities: A case report. J. Med. Case Reports, 2021, 15(1), 95.
[http://dx.doi.org/10.1186/s13256-020-02624-1] [PMID: 33627186]
[8]
Zhu, L.; She, Z.G.; Cheng, X.; Qin, J.J.; Zhang, X.J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; Li, H.; Zhang, P.; Song, X.; Chen, X.; Xiang, M.; Zhang, C.; Bai, L.; Xiang, D.; Chen, M.M.; Liu, Y.; Yan, Y.; Liu, M.; Mao, W.; Zou, J.; Liu, L.; Chen, G.; Luo, P.; Xiao, B.; Zhang, C.; Zhang, Z.; Lu, Z.; Wang, J.; Lu, H.; Xia, X.; Wang, D.; Liao, X.; Peng, G.; Ye, P.; Yang, J.; Yuan, Y.; Huang, X.; Guo, J.; Zhang, B.H.; Li, H. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab., 2020, 31(6), 1068-1077.e3.
[http://dx.doi.org/10.1016/j.cmet.2020.04.021] [PMID: 32369736]
[9]
Singh, A.K.; Gupta, R.; Misra, A. Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab. Syndr., 2020, 14(4), 283-287.
[http://dx.doi.org/10.1016/j.dsx.2020.03.016] [PMID: 32283499]
[10]
Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging (Albany NY), 2020, 12(7), 6049-6057.
[http://dx.doi.org/10.18632/aging.103000] [PMID: 32267833]
[11]
Baharoon, S.; Memish, Z.A. MERS-CoV as an emerging respiratory illness: A review of prevention methods. Travel Med. Infect. Dis., 2019, 32, 101520.
[http://dx.doi.org/10.1016/j.tmaid.2019.101520] [PMID: 31730910]
[12]
Han, H.J.; Nwagwu, C.; Anyim, O.; Ekweremadu, C.; Kim, S. COVID-19 and cancer: From basic mechanisms to vaccine development using nanotechnology. Int. Immunopharmacol., 2021, 90, 107247.
[http://dx.doi.org/10.1016/j.intimp.2020.107247] [PMID: 33307513]
[13]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[14]
Tahamtan, A.; Ardebili, A. Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Rev. Mol. Diagn., 2020, 20(5), 453-454.
[http://dx.doi.org/10.1080/14737159.2020.1757437] [PMID: 32297805]
[15]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[16]
Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatr., 2020, 52, 102066.
[http://dx.doi.org/10.1016/j.ajp.2020.102066] [PMID: 32302935]
[17]
Pothirat, C.; Chaiwong, W.; Phetsuk, N.; Pisalthanapuna, S.; Chetsadaphan, N.; Inchai, J. Major affective disorders in chronic obstructive pulmonary disease compared with other chronic respiratory diseases. Int. J. Chron. Obstruct. Pulmon. Dis., 2015, 10, 1583-1590.
[http://dx.doi.org/10.2147/COPD.S86742] [PMID: 26300637]
[18]
Huang, Y.F.; Bai, C.; He, F.; Xie, Y.; Zhou, H. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus disease 2019 (COVID-19). Pharmacol. Res., 2020, 158, 104939.
[http://dx.doi.org/10.1016/j.phrs.2020.104939] [PMID: 32445956]
[19]
Mirzaie, A.; Halaji, M.; Dehkordi, F.S.; Ranjbar, R.; Noorbazargan, H. A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19). Complement. Ther. Clin. Pract., 2020, 40, 101214.
[http://dx.doi.org/10.1016/j.ctcp.2020.101214] [PMID: 32891290]
[20]
Shankar, D.; Patwardhan, B. AYUSH for new India: Vision and strategy. J. Ayurveda Integr. Med., 2017, 8(3), 137-139.
[http://dx.doi.org/10.1016/j.jaim.2017.09.001] [PMID: 28923183]
[21]
Girija, P.L.T.; Sivan, N. Ayurvedic treatment of COVID-19/SARS-CoV-2: A case report. J. Ayurveda Integr. Med., 2020, 13(1), 100329. Advance online publication [http://dx.doi.org/10.1016/j.jaim.2020.06.001]
[PMID: 32680602]
[22]
Sulaiman, C.T.; Deepak, M.; Ramesh, P.R.; Mahesh, K.; Anand, E.M.; Balachandran, I. Chemical profiling of selected Ayurveda formulations recommended for COVID-19. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 2.
[http://dx.doi.org/10.1186/s43088-020-00089-1] [PMID: 33457430]
[23]
Pandkar, P.D.; Sachdeva, V. Pathophysiology of COVID-19 and host centric approaches in Ayurveda. J. Ayurveda Integr. Med., 2022, 13(1), 100380.
[http://dx.doi.org/10.1016/j.jaim.2020.11.010] [PMID: 33519134]
[24]
Puthiyedath, R.; Kataria, S.; Payyappallimana, U.; Mangalath, P.; Nampoothiri, V.; Sharma, P.; Singh, M.K.; Kumar, K.; Trehan, N. Ayurvedic clinical profile of covid-19 – A preliminary report. J. Ayurveda Integr. Med., 2020, S0975-9476(20), 30039-30045.
[25]
Rastogi, S.; Pandey, D.N.; Singh, R.H. COVID-19 pandemic: A pragmatic plan for Ayurveda intervention. J. Ayurveda Integr. Med., 2022, 13(1), 100312.
[http://dx.doi.org/10.1016/j.jaim.2020.04.002] [PMID: 32382220]
[26]
Payyappallimana, U.; Patwardhan, K.; Mangalath, P.; Kessler, C.S.; Jayasundar, R.; Kizhakkeveettil, A.; Morandi, A.; Puthiyedath, R. The COVID-19 pandemic and the relevance of Ayurveda’s whole systems approach to health and disease management. J. Altern. Complement. Med., 2020, 26(12), 1089-1092.
[http://dx.doi.org/10.1089/acm.2020.0370] [PMID: 33121250]
[27]
Venkateswaran, P.S.; Millman, I.; Blumberg, B.S. Effects of an extract from Phyllanthus niruri on hepatitis B and woodchuck hepatitis viruses: In vitro and in vivo studies. Proc. Natl. Acad. Sci. USA, 1987, 84(1), 274-278.
[http://dx.doi.org/10.1073/pnas.84.1.274] [PMID: 3467354]
[28]
Vellingiri, B.; Jayaramayya, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharan, B.; Ganesan, S.; Venugopal, A.; Venkatesan, D.; Ganesan, H.; Rajagopalan, K.; Rahman, P.K.S.M.; Cho, S.G.; Kumar, N.S.; Subramaniam, M.D. COVID-19: A promising cure for the global panic. Sci. Total Environ., 2020, 725, 138277.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277] [PMID: 32278175]
[29]
Balasubramani, S.P.; Venkatasubramanian, P.; Kukkupuni, S.K.; Patwardhan, B. Plant-based Rasayana drugs from Ayurveda. Chin. J. Integr. Med., 2011, 17(2), 88-94.
[http://dx.doi.org/10.1007/s11655-011-0659-5] [PMID: 21390573]
[30]
Chandran, S.; Dinesh, K.S.; Patgiri, B.J.; Dharmarajan, P. Unique contributions of Keraleeya Ayurveda in pediatric health care. J. Ayurveda Integr. Med., 2018, 9(2), 136-142.
[http://dx.doi.org/10.1016/j.jaim.2017.10.008] [PMID: 29471987]
[31]
Balachandar, V.; Mahalaxmi, I.; Kaavya, J.; Vivekanandhan, G.; Ajithkumar, S.; Arul, N.; Singaravelu, G.; Senthil Kumar, N.; Mohana Dev, S. COVID-19: Emerging protective measures. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 3422-3425.
[PMID: 32271461]
[32]
Talwar, S.; Sood, S.; Kumar, J.; Chauhan, R.; Sharma, M.; Tuli, H.S. Ayurveda and allopathic therapeutic strategies in coronavirus pandemic treatment 2020. Curr. Pharmacol. Rep., 2020, 6(6), 1-10.
[http://dx.doi.org/10.1007/s40495-020-00245-2] [PMID: 33106765]
[33]
Ayurveda immunity boosting measures for self care during COVID19 crisis Ministry of AYUSH, Available from: https://main.ayush.gov.in/event/ayurveda-immunity-boosting-measures-self-care-during-covid-19-crisis (Accessed Mar 31, 2021).
[34]
Tillu, G. AYUSH research for new India: Vision and strategies. Proceed. J. Ayurveda Integr. Med., 2018, 9, 240-244.
[35]
Brown, P. Studying COVID-19 in light of critical approaches to risk and uncertainty: Research pathways, conceptual tools, and some magic from mary douglas. Health Risk Soc., 2020, 22(1), 1-14.
[http://dx.doi.org/10.1080/13698575.2020.1745508]
[36]
Tillu, G.; Chaturvedi, S.; Chopra, A.; Patwardhan, B. Public health approach of Ayurveda and yoga for COVID-19 prophylaxis. J. Altern. Complement. Med., 2020, 26(5), 360-364.
[http://dx.doi.org/10.1089/acm.2020.0129] [PMID: 32310670]
[37]
Sumantran, V.N.; Tillu, G. Cancer, inflammation, and insights from ayurveda. Evid. Based Complement. Alternat. Med., 2012, 2012, 306346.
[http://dx.doi.org/10.1155/2012/306346] [PMID: 22829853]
[38]
Shrungeswara, A.H.; Unnikrishnan, M.K. Evolution of dietary preferences and the innate urge to heal: Drug discovery lessons from Ayurveda. J. Ayurveda Integr. Med., 2019, 10(3), 222-226.
[http://dx.doi.org/10.1016/j.jaim.2017.08.003] [PMID: 29576440]
[39]
Gowrishankar, S.; Muthumanickam, S.; Kamaladevi, A.; Karthika, C.; Jothi, R.; Boomi, P.; Maniazhagu, D.; Pandian, S.K. Promising phytochemicals of traditional Indian herbal steam inhalation therapy to combat COVID-19 - An in silico study. Food Chem. Toxicol., 2021, 148, 111966.
[http://dx.doi.org/10.1016/j.fct.2020.111966] [PMID: 33412235]
[40]
Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H.S.; Al Zarzour, R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology, 2020, 28(5), 1153-1161.
[http://dx.doi.org/10.1007/s10787-020-00744-0] [PMID: 32803479]
[41]
Ma, L.; Yao, L. Antiviral effects of plant-derived essential oils and their components: An updated review. Molecules, 2020, 25(11), 2627.
[http://dx.doi.org/10.3390/molecules25112627] [PMID: 32516954]
[42]
Amruthesh, S. Dentistry and Ayurveda - IV: Classification and management of common oral diseases. Indian J. Dent. Res., 2008, 19(1), 52-61.
[http://dx.doi.org/10.4103/0970-9290.38933] [PMID: 18245925]
[43]
Shanbhag, V.K.L. Oil pulling for maintaining oral hygiene - A review. J. Tradit. Complement. Med., 2016, 7(1), 106-109.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.004] [PMID: 28053895]
[44]
Agarwal, A.; Gupta, D.; Yadav, G.; Goyal, P.; Singh, P.K.; Singh, U. An evaluation of the efficacy of licorice gargle for attenuating postoperative sore throat: A prospective, randomized, single-blind study. Anesth. Analg., 2009, 109(1), 77-81.
[http://dx.doi.org/10.1213/ane.0b013e3181a6ad47] [PMID: 19535697]
[45]
Sari, E.; Birinci, I. Microbiological evaluation of 0.2% chlorhexidine gluconate mouth rinse in orthodontic patients. Angle Orthod., 2007, 77(5), 881-884.
[http://dx.doi.org/10.2319/080506-320.1] [PMID: 17685773]
[46]
Rajan, M.; Gupta, P.; Kumar, A. Promising antiviral molecules from ayurvedic herbs and spices against covid-19. Chin. J. Integr. Med., 2021, 27(4), 243-244.
[http://dx.doi.org/10.1007/s11655-021-3331-8] [PMID: 33544289]
[47]
Cameron, M.J.; Bermejo-Martin, J.F.; Danesh, A.; Muller, M.P.; Kelvin, D.J. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res., 2008, 133(1), 13-19.
[http://dx.doi.org/10.1016/j.virusres.2007.02.014] [PMID: 17374415]
[48]
Leisman, D.E.; Deutschman, C.S.; Legrand, M. Facing COVID-19 in the ICU: Vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med., 2020, 46(6), 1105-1108.
[http://dx.doi.org/10.1007/s00134-020-06059-6] [PMID: 32347323]
[49]
Singh, N.; Bhalla, M.; de Jager, P.; Gilca, M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(5)(Suppl.), 208-213.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[50]
Tripathi, M.K.; Singh, P.; Sharma, S.; Singh, T.P.; Ethayathulla, A.S.; Kaur, P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J. Biomol. Struct. Dyn., 2021, 39(15), 5668-5681.
[http://dx.doi.org/10.1080/07391102.2020.1848630] [PMID: 32643552]
[51]
Shree, P.; Mishra, P.; Selvaraj, C.; Singh, S.K.; Chaube, R.; Garg, N.; Tripathi, Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)- A molecular docking study. J. Biomol. Struct. Dyn., 2020, 40(1), 190-203.
[PMID: 32851919]
[52]
Gurav, N.S.; Gurav, S.S.; Sakharwade, S.N. Studies on Ashwagandha Ghrita with reference to murcchana process and storage conditions. J. Ayurveda Integr. Med., 2020, 11(3), 243-249.
[http://dx.doi.org/10.1016/j.jaim.2019.10.004] [PMID: 32139244]
[53]
Chengappa, K.N.R.; Brar, J.S.; Gannon, J.M.; Schlicht, P.J. Adjunctive use of a standardized extract of Withania somnifera (Ashwagandha) to treat symptom exacerbation in schizophrenia: A randomized, double-blind, placebo-controlled study. J. Clin. Psychiatr., 2018, 79(5), 17m11826.
[54]
Balkrishna, A.; Pokhrel, S.; Singh, H.; Joshi, M.; Mulay, V.P.; Haldar, S.; Varshney, A. Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized zebrafish model. Drug Des. Devel. Ther., 2021, 15, 1111-1133.
[http://dx.doi.org/10.2147/DDDT.S292805] [PMID: 33737804]
[55]
Chopra, A.; Srikanth, N.; Patwardhan, B. Withania somnifera as a safer option to hydroxychloroquine in the chemoprophylaxis of COVID-19: Results of interim analysis. Complement. Ther. Med., 2021, 62, 102768.
[http://dx.doi.org/10.1016/j.ctim.2021.102768] [PMID: 34418550]
[56]
Patil, V.S.; Hupparage, V.B.; Malgi, A.P.; Deshpande, S.H.; Patil, S.A.; Mallapur, S.P. Dual inhibition of COVID-19 spike glycoprotein and main protease 3CLpro by Withanone from Withania somnifera. Chin. Herb. Med., 2021, 13(3), 359-369.
[http://dx.doi.org/10.1016/j.chmed.2021.06.002] [PMID: 34188665]
[57]
Khanal, P.; Chikhale, R.; Dey, Y.N.; Pasha, I.; Chand, S.; Gurav, N.; Ayyanar, M.; Patil, B.M.; Gurav, S. Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19. J. Biomol. Struct. Dyn., 2021, 1-14. Advance online publication [http://dx.doi.org/10.1080/07391102.2020.1869588]
[PMID: 33459174]
[58]
Jamshidi, N.; Cohen, M.M. The clinical efficacy and safety of Tulsi in humans: A systematic review of the literature. Evid. Based Complement. Alternat. Med., 2017, 2017, 9217567.
[http://dx.doi.org/10.1155/2017/9217567] [PMID: 28400848]
[59]
Prakash, P.; Gupta, N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J. Physiol. Pharmacol., 2005, 49(2), 125-131.
[PMID: 16170979]
[60]
Sharma, S. Bioactive botanicals from basil (Ocimum Sp.). J. Sci. Ind. Res., 1999, 58(2), 332-338.
[61]
Mukherjee, R.; Dash, P.K.; Ram, G.C. Immunotherapeutic potential of Ocimum sanctum (L.) in bovine subclinical mastitis. Res. Vet. Sci., 2005, 79(1), 37-43.
[http://dx.doi.org/10.1016/j.rvsc.2004.11.001] [PMID: 15894022]
[62]
Mondal, S.; Varma, S.; Bamola, V.D.; Naik, S.N.; Mirdha, B.R.; Padhi, M.M.; Mehta, N.; Mahapatra, S.C. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J. Ethnopharmacol., 2011, 136(3), 452-456.
[http://dx.doi.org/10.1016/j.jep.2011.05.012] [PMID: 21619917]
[63]
Winter, P.M.; Dung, N.M.; Loan, H.T.; Kneen, R.; Wills, B.; Thu, T.; House, D.; White, N.J.; Farrar, J.J.; Hart, C.A.; Solomon, T. Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J. Infect. Dis., 2004, 190(9), 1618-1626.
[http://dx.doi.org/10.1086/423328] [PMID: 15478067]
[64]
Mohapatra, P.K.; Chopdar, K.S.; Dash, G.C.; Mohanty, A.K.; Raval, M.K. In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID-19) main protease. J. Biomol. Struct. Dyn., 2021, 1-10.
[http://dx.doi.org/10.1080/07391102.2021.2007170] [PMID: 34821198]
[65]
Paidi, R.K.; Jana, M.; Raha, S.; McKay, M.; Sheinin, M.; Mishra, R.K.; Pahan, K. Eugenol, A component of holy basil (Tulsi) and common spice clove, inhibits the interaction between SARS-CoV-2 spike S1 and ACE2 to induce therapeutic responses. J. Neuroimmune Pharmacol., 2021, 16(4), 743-755.
[http://dx.doi.org/10.1007/s11481-021-10028-1] [PMID: 34677731]
[66]
El-Saber Batiha, G.; Magdy Beshbishy, A.; G. Wasef, L.; Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 2020, 12(3), 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[67]
Gebreyohannes, G.; Gebreyohannes, M. Medicinal values of garlic: A review. Int. J., 2013, 5, 401-408.
[68]
Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol., 2020, 104, 219-234.
[http://dx.doi.org/10.1016/j.tifs.2020.08.006] [PMID: 32836826]
[69]
Mehrbod, P.; Amini, E.; Tavassoti-Kheiri, M. Antiviral activity of garlic extract on influenza virus. Iran. J. Virol., 2009, 3(1), 19-23.
[http://dx.doi.org/10.21859/isv.3.1.19]
[70]
Kumar Verma, A.; Kumar, V.; Singh, S.; Goswami, B.C.; Camps, I.; Sekar, A.; Yoon, S.; Lee, K.W. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomed. Pharmacother., 2021, 137, 111356.
[http://dx.doi.org/10.1016/j.biopha.2021.111356] [PMID: 33561649]
[71]
Oso, B.J.; Adeoye, A.O.; Olaoye, I.F. Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases. J. Biomol. Struct. Dyn., 2022, 40(1), 389-400.
[http://dx.doi.org/10.1080/07391102.2020.1813630] [PMID: 32876538]
[72]
Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med., 1992, 58(5), 417-423.
[http://dx.doi.org/10.1055/s-2006-961504] [PMID: 1470664]
[73]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[74]
Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol., 2008, 46(2), 409-420.
[http://dx.doi.org/10.1016/j.fct.2007.09.085] [PMID: 17950516]
[75]
Kaushik, S.; Jangra, G.; Kundu, V.; Yadav, J.P.; Kaushik, S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease, 2020, 31(3), 1-7.
[http://dx.doi.org/10.1007/s13337-020-00584-0] [PMID: 32420412]
[76]
Dorra, N.; El-Berrawy, M.; Sallam, S.; Mahmoud, R. Evaluation of antiviral and antioxidant activity of selected herbal extracts. J. High Instit. Public Health, 2019, 49(1), 36-40.
[http://dx.doi.org/10.21608/jhiph.2019.29464]
[77]
Imanishi, N.; Andoh, T.; Mantani, N.; Sakai, S.; Terasawa, K.; Shimada, Y.; Sato, M.; Katada, Y.; Ueda, K.; Ochiai, H. Macrophage-mediated inhibitory effect of Zingiber officinale Rosc, a traditional oriental herbal medicine, on the growth of influenza A/Aichi/2/68 virus. Am. J. Chin. Med., 2006, 34(1), 157-169.
[http://dx.doi.org/10.1142/S0192415X06003722] [PMID: 16437748]
[78]
Ahkam, A.H.; Hermanto, F.E.; Alamsyah, A.; Aliyyah, I.H.; Fatchiyah, F. Virtual prediction of antiviral potential of ginger (Zingiber officinale) bioactive compounds against spike and MPro of SARS-CoV2 protein. Berkala Penelitian Hayati, 2020, 25(2), 52-57.
[http://dx.doi.org/10.23869/bphjbr.25.2.20207]
[79]
Omosa, L.K.; Midiwo, J.O.; Kuete, V. Curcuma longa. In: Medicinal Spices and Vegetables from Africa: Therapeutic Potential Against Metabolic, Inflammatory, Infectious and Systemic Diseases; Elsevier Inc., 2017; pp. 425-435.
[http://dx.doi.org/10.1016/B978-0-12-809286-6.00019-4]
[80]
Gopinath, H.; Karthikeyan, K. Turmeric: A condiment, cosmetic and cure. Indian J. Dermatol. Venereol. Leprol., 2018, 84(1), 16-21.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_1143_16] [PMID: 29243674]
[81]
Lai, Y.; Yan, Y.; Liao, S.; Li, Y.; Ye, Y.; Liu, N.; Zhao, F.; Xu, P. 3D-quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Arch. Pharm. Res., 2020, 43(5), 489-502.
[http://dx.doi.org/10.1007/s12272-020-01230-5] [PMID: 32248350]
[82]
Gupta, H.; Gupta, M.; Bhargava, S. Potential use of turmeric in COVID-19. Clin. Exp. Dermatol., 2020, 45(7), 902-903.
[http://dx.doi.org/10.1111/ced.14357] [PMID: 32608046]
[83]
Joe, B.; Vijaykumar, M.; Lokesh, B.R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr., 2004, 44(2), 97-111.
[http://dx.doi.org/10.1080/10408690490424702] [PMID: 15116757]
[84]
Utomo, R.Y.; Ikawati, M.; Meiyanto, E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. 2020, 2020, 030214.
[http://dx.doi.org/10.20944/preprints202003.0214.v1]
[85]
Singh, N.A.; Kumar, P. Jyoti; Kumar, N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. Phytother. Res., 2021, 35(5), 2745-2757. Advance online publication [http://dx.doi.org/10.1002/ptr.7019]
[PMID: 33511704]
[86]
Rajagopal, K.; Varakumar, P.; Baliwada, A.; Byran, G. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): An in silico approach. Fut. J. Pharm. Sci., 2020, 6(1), 104.
[http://dx.doi.org/10.1186/s43094-020-00126-x] [PMID: 33215042]
[87]
Bormann, M.; Alt, M.; Schipper, L.; van de Sand, L.; Le-Trilling, V.T.K.; Rink, L.; Heinen, N.; Madel, R.J.; Otte, M.; Wuensch, K.; Heilingloh, C.S.; Mueller, T.; Dittmer, U.; Elsner, C.; Pfaender, S.; Trilling, M.; Witzke, O.; Krawczyk, A. Turmeric root and its bioactive ingredient curcumin effectively neutralize SARS-CoV-2 in vitro. Viruses, 2021, 13(10), 1914.
[http://dx.doi.org/10.3390/v13101914] [PMID: 34696344]
[88]
Pawar, K.S.; Mastud, R.N.; Pawar, S.K.; Pawar, S.S.; Bhoite, R.R.; Bhoite, R.R.; Kulkarni, M.V.; Deshpande, A.R. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial. Front. Pharmacol., 2021, 12, 669362.
[http://dx.doi.org/10.3389/fphar.2021.669362] [PMID: 34122090]
[89]
Sonkamble, V.V.; Kamble, L.H. Antidiabetic potential and identification of phytochemicals from Tinospora cordifolia. Am. J. Phytomed. Clin. Therap., 2015, 3(1), 097-110.
[90]
Jena, S.; Munusami, P.; Mm, B.; Chanda, K. Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. Virusdisease, 2021, 32(1), 65-77.
[http://dx.doi.org/10.1007/s13337-021-00666-7] [PMID: 33778129]
[91]
Sharma, P.; Dwivedee, B.P.; Bisht, D.; Dash, A.K.; Kumar, D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon, 2019, 5(9), e02437.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02437] [PMID: 31701036]
[92]
Yates, C.R.; Bruno, E.J.; Yates, M.E.D. Tinospora cordifolia: A review of its immunomodulatory properties. J. Diet. Suppl., 2021, 1-15. Advance online publication
[PMID: 33480818]
[93]
Tiwari, P.; Nayak, P.; Prusty, S.K.; Sahu, P.K. Phytochemistry and pharmacology of Tinospora cordifolia: A review. Syst. Rev. Pharm., 2018, 9(1), 70-78.
[http://dx.doi.org/10.5530/srp.2018.1.14]
[94]
Sagar, V.; Kumar, A.H. Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase. Biol. Eng. Med. Sci. Rep., 2020, 6(1), 6-8.
[95]
Chowdhury, P. In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J. Biomol. Struct. Dyn., 2021, 39(17), 6792-6809.
[http://dx.doi.org/10.1080/07391102.2020.1803968] [PMID: 32762511]
[96]
Murugesan, S.; Kottekad, S.; Crasta, I.; Sreevathsan, S.; Usharani, D.; Perumal, M.K.; Mudliar, S.N. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants - Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) - A molecular docking and simulation study. Comput. Biol. Med., 2021, 136, 104683.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104683] [PMID: 34329860]
[97]
Krupanidhi, S.; Abraham Peele, K.; Venkateswarulu, T.C.; Ayyagari, V.S.; Nazneen Bobby, M.; John Babu, D.; Venkata Narayana, A.; Aishwarya, G. Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: An in silico study. J. Biomol. Struct. Dyn., 2021, 39(15), 5799-5803.
[http://dx.doi.org/10.1080/07391102.2020.1787226] [PMID: 32627715]
[98]
Manne, M.; Goudar, G.; Varikasuvu, S.R.; Khetagoudar, M.C.; Kanipakam, H.; Natarajan, P.; Ummiti, M.D.; Yenagi, V.A.; Chinthakindi, S.; Dharani, P.; Thota, D.S.S.; Patil, S.; Patil, V. Cordifolioside: Potent inhibitor against M pro of SARS-CoV-2 and immunomodulatory through human TGF-β and TNF-α. 3 Biotech, 2021, 11(3), 136.
[99]
Kumar, R.; Dwivedi, N.; Singh, R.K.; Kumar, S.; Rai, V.P.; Singh, M. A review on molecular characterization of pepper for capsaicin and oleoresin. Int. J. Plant Breed. Genet., 2011, 5(2), 99-110.
[http://dx.doi.org/10.3923/ijpbg.2011.99.110]
[100]
Shaheen, N.; Akhter Sultan, R.; Abidi, S.; Azhar, I.; Mahmood, Z.A. Pharmacognostic evaluation and instrumental analysis (sem) for the standardization of Piper nigrum L., (black pepper) fruit. Pak. J. Bot., 2019, 51(5), 1859-1863.
[http://dx.doi.org/10.30848/PJB2019-5(32)]
[101]
Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine-The bioactive compound of black pepper: From isolation to medicinal formulations. Compr. Rev. Food Sci. Food Saf., 2017, 16(1), 124-140.
[http://dx.doi.org/10.1111/1541-4337.12246] [PMID: 33371546]
[102]
Lee, S.H.; Kim, H.Y.; Back, S.Y.; Han, H.K. Piperine-mediated drug interactions and formulation strategy for piperine: Recent advances and future perspectives. Expert Opin. Drug Metab. Toxicol., 2018, 14(1), 43-57.
[http://dx.doi.org/10.1080/17425255.2018.1418854] [PMID: 29250980]
[103]
Priya, N.C.; Saravana, K.P. Antiviral activities and cytotoxicity assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int. J. Pharm. Sci. Rev., 2017, 197-202.
[104]
Nag, A.; Chowdhury, R.R. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. Virusdisease, 2020, 31(3), 308-315.
[http://dx.doi.org/10.1007/s13337-020-00619-6] [PMID: 32904842]
[105]
Rajagopal, K.; Byran, G.; Jupudi, S.; Vadivelan, R. Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): An in silico approach. Inter. J. Health Amp. All. Sci., 2020, 9, 43-43.
[106]
Gurav, S.; Gurav, N. Herbal drug microscopy. In: Indian Herbal Drug Microscopy; Springer New York, 2014; pp. 15-196.
[http://dx.doi.org/10.1007/978-1-4614-9515-4_4]
[107]
Singh, R. Geetanjali, Asparagus racemosus: A review on its phytochemical and therapeutic potential. Nat. Prod. Res., 2016, 30(17), 1896-1908.
[http://dx.doi.org/10.1080/14786419.2015.1092148] [PMID: 26463825]
[108]
Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis., 2013, 3(3), 242-251.
[http://dx.doi.org/10.1016/S2222-1808(13)60049-3]
[109]
Boonsom, T.; Waranuch, N.; Ingkaninan, K.; Denduangboripant, J.; Sukrong, S. Molecular analysis of the genus Asparagus based on matK sequences and its application to identify A. racemosus, a medicinally phytoestrogenic species. Fitoterapia, 2012, 83(5), 947-953.
[http://dx.doi.org/10.1016/j.fitote.2012.04.014] [PMID: 22542919]
[110]
Upadhyay, S.; Jeena, G.S.; Kumar, S.; Shukla, R.K. Asparagus racemosus bZIP transcription factor-regulated squalene epoxidase (ArSQE) promotes germination and abiotic stress tolerance in transgenic tobacco. Plant Sci., 2020, 290, 110291.
[http://dx.doi.org/10.1016/j.plantsci.2019.110291] [PMID: 31779892]
[111]
Lalert, L.; Kruevaisayawan, H.; Amatyakul, P.; Ingkaninan, K.; Khongsombat, O. Neuroprotective effect of Asparagus racemosus root extract via the enhancement of brain-derived neurotrophic factor and estrogen receptor in ovariectomized rats. J. Ethnopharmacol., 2018, 225, 336-341.
[http://dx.doi.org/10.1016/j.jep.2018.07.014] [PMID: 30009979]
[112]
Gautam, M.; Diwanay, S.; Gairola, S.; Shinde, Y.; Patki, P.; Patwardhan, B. Immunoadjuvant potential of Asparagus racemosus aqueous extract in experimental system. J. Ethnopharmacol., 2004, 91(2-3), 251-255.
[http://dx.doi.org/10.1016/j.jep.2003.12.023] [PMID: 15120447]
[113]
Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr., 2020, 14(4), 367-382.
[http://dx.doi.org/10.1016/j.dsx.2020.04.015] [PMID: 32334392]
[114]
Chikhale, R.V.; Sinha, S.K.; Patil, R.B.; Prasad, S.K.; Shakya, A.; Gurav, N.; Prasad, R.; Dhaswadikar, S.R.; Wanjari, M.; Gurav, S.S. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J. Biomol. Struct. Dyn., 2021, 39(14), 5033-5047.
[http://dx.doi.org/10.1080/07391102.2020.1784289] [PMID: 32579064]
[115]
Pholphana, N.; Rangkadilok, N.; Saehun, J.; Ritruechai, S.; Satayavivad, J. Changes in the contents of four active diterpenoids at different growth stages in Andrographis paniculata (Burm.f.) Nees (Chuanxinlian). Chin. Med., 2013, 8(1), 2.
[http://dx.doi.org/10.1186/1749-8546-8-2] [PMID: 23320627]
[116]
Niranjan, A.; Tewari, S.K.; Lehri, A. Biological activities of Kalmegh (Andrographis paniculata Nees) and Its active principles-A review. CSIR, 2010, 1.
[117]
Shi, T.H.; Huang, Y.L.; Chen, C.C.; Pi, W.C.; Hsu, Y.L.; Lo, L.C.; Chen, W.Y.; Fu, S.L.; Lin, C.H. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem. Biophys. Res. Commun., 2020, 533(3), 467-473.
[http://dx.doi.org/10.1016/j.bbrc.2020.08.086] [PMID: 32977949]
[118]
Khanal, P.; Dey, Y.N.; Patil, R.; Chikhale, R.; Wanjari, M.M.; Gurav, S.S.; Patil, B.M.; Srivastava, B.; Gaidhani, S.N. Combination of system biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. RSC Advances, 2021, 11(9), 5065-5079.
[http://dx.doi.org/10.1039/D0RA10529E]
[119]
Sa-Ngiamsuntorn, K.; Suksatu, A.; Pewkliang, Y.; Thongsri, P.; Kanjanasirirat, P.; Manopwisedjaroen, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Pitiporn, S.; Chaopreecha, J.; Kongsomros, S.; Jearawuttanakul, K.; Wannalo, W.; Khemawoot, P.; Chutipongtanate, S.; Borwornpinyo, S.; Thitithanyanont, A.; Hongeng, S. Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J. Nat. Prod., 2021, 84(4), 1261-1270.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01324] [PMID: 33844528]
[120]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[121]
Hiremath, S. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis panicu-lata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech, 2021, 11(2), 44.
[122]
Lin, T-P.; Chen, S-Y.; Duh, P-D.; Chang, L-K.; Liu, Y-N. Inhibition of the epstein-barr virus lytic cycle by andrographolide. Biol. Pharm. Bull., 2008, 31(11), 2018-2023.
[http://dx.doi.org/10.1248/bpb.31.2018] [PMID: 18981566]
[123]
Peng, G.Y.; Zhou, F.; Ding, R.L.; di Li, H.; Yao, K. Modulation of lianbizi Injection (andrographolide) on some immune functions. Zhongguo Zhongyao Zazhi, 2002, 27, 150.
[124]
Murugan, N.A.; Pandian, C.J.; Jeyakanthan, J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J. Biomol. Struct. Dyn., 2021, 39(12), 4415-4426.
[http://dx.doi.org/10.1080/07391102.2020.1777901] [PMID: 32543978]
[125]
Pompei, R.; Flore, O.; Marccialis, M.A.; Pani, A.; Loddo, B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature, 1979, 281(5733), 689-690.
[http://dx.doi.org/10.1038/281689a0] [PMID: 233133]
[126]
Grienke, U.; Braun, H.; Seidel, N.; Kirchmair, J.; Richter, M.; Krumbholz, A.; von Grafenstein, S.; Liedl, K.R.; Schmidtke, M.; Rollinger, J.M. Computer-guided approach to access the anti-influenza activity of licorice constituents. J. Nat. Prod., 2014, 77(3), 563-570.
[http://dx.doi.org/10.1021/np400817j] [PMID: 24313801]
[127]
Wang, J.; Chen, X.; Wang, W.; Zhang, Y.; Yang, Z.; Jin, Y.; Ge, H.M.; Li, E.; Yang, G. Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease. J. Ethnopharmacol., 2013, 147(1), 114-121.
[http://dx.doi.org/10.1016/j.jep.2013.02.017] [PMID: 23454684]
[128]
Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B, 2015, 5(4), 310-315.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005] [PMID: 26579460]
[129]
Sharma, V.; Katiyar, A.; Agrawal, R.C. Glycyrrhiza glabra: Chemistry and Pharmacological Activity. In: Reference Series in Phytochemistry; Springer Science and Business Media B.V., 2018; pp. 87-100.
[130]
Chanda, D.; Prieto-Lloret, J.; Singh, A.; Iqbal, H.; Yadav, P.; Snetkov, V.; Aaronson, P.I. Glabridin-induced vasorelaxation: Evidence for a role of BKCa channels and cyclic GMP. Life Sci., 2016, 165, 26-34.
[http://dx.doi.org/10.1016/j.lfs.2016.09.018] [PMID: 27686831]
[131]
Simmler, C.; Pauli, G.F.; Chen, S.N. Phytochemistry and biological properties of glabridin. Fitoterapia, 2013, 90, 160-184.
[http://dx.doi.org/10.1016/j.fitote.2013.07.003] [PMID: 23850540]
[132]
Ramalingam, M.; Kim, H.; Lee, Y.; Lee, Y-I. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from Radix glycyrrhizae in human health and disease models. Front. Aging Neurosci., 2018, 10, 348.
[http://dx.doi.org/10.3389/fnagi.2018.00348] [PMID: 30443212]
[133]
Grienke, U.; Schmidtke, M.; Kirchmair, J.; Pfarr, K.; Wutzler, P.; Dürrwald, R.; Wolber, G.; Liedl, K.R.; Stuppner, H.; Rollinger, J.M. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. J. Med. Chem., 2010, 53(2), 778-786.
[http://dx.doi.org/10.1021/jm901440f] [PMID: 20014777]
[134]
Srivastava, V.; Yadav, A.; Sarkar, P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV-2. Mater. Today Proc., 2022, 49, 2999-3007.
[http://dx.doi.org/10.1016/j.matpr.2020.10.055] [PMID: 33078096]
[135]
Jezova, D.; Karailiev, P.; Karailievova, L.; Puhova, A.; Murck, H. Food enrichment with Glycyrrhiza glabra extract suppresses ACE2 mRNA and protein expression in rats-possible implications for COVID-19. Nutrients, 2021, 13(7), 2321.
[http://dx.doi.org/10.3390/nu13072321] [PMID: 34371831]
[136]
Maurya, V.K.; Kumar, S.; Prasad, A.K.; Bhatt, M.L.B.; Saxena, S.K. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease, 2020, 31(2), 179-193.
[http://dx.doi.org/10.1007/s13337-020-00598-8] [PMID: 32656311]
[137]
Balkrishna, A.; Pokhrel, S.; Varshney, A. Tinocordiside from Tinospora cordifolia (Giloy) may curb SARS-CoV-2 contagion by disrupting the electrostatic interactions between host ACE2 and viral S-protein receptor binding domain. Comb. Chem. High Throughput Screen., 2021, 24(10), 1795-1802.
[http://dx.doi.org/10.2174/1386207323666201110152615] [PMID: 33172372]
[138]
Patel, C.N.; Goswami, D.; Jaiswal, D.G.; Parmar, R.M.; Solanki, H.A.; Pandya, H.A. Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and molecular dynamics (MD) simulations. J. Mol. Graph. Model., 2021, 105, 107874.
[http://dx.doi.org/10.1016/j.jmgm.2021.107874] [PMID: 33647752]
[139]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098.
[PMID: 32329419]
[140]
Sinha, S.K.; Prasad, S.K.; Islam, M.A.; Gurav, S.S.; Patil, R.B.; AlFaris, N.A.; Aldayel, T.S.; AlKehayez, N.M.; Wabaidur, S.M.; Shakya, A. Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: A pharmacoinformatics study. J. Biomol. Struct. Dyn., 2021, 39(13), 4686-4700.
[http://dx.doi.org/10.1080/07391102.2020.1779132] [PMID: 32552462]
[141]
Shahzad, F.; Anderson, D.; Najafzadeh, M. The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection. Nutrients, 2020, 12(9), 1-13.
[http://dx.doi.org/10.3390/nu12092573] [PMID: 32854262]
[142]
Lindequist, U.; Niedermeyer, T.H.J.; Jülich, W.D. The pharmacological potential of mushrooms. Evid. Based Complement. Alternat. Med., 2005, 2(3), 285-299.
[http://dx.doi.org/10.1093/ecam/neh107] [PMID: 16136207]
[143]
Hetland, G.; Johnson, E.; Bernardshaw, S.V.; Grinde, B. Can medicinal mushrooms have prophylactic or therapeutic effect against COVID-19 and its pneumonic superinfection and complicating inflammation? Scand. J. Immunol., 2021, 93(1), e12937.
[http://dx.doi.org/10.1111/sji.12937] [PMID: 32657436]
[144]
Hyun, K.W.; Jeong, S.C.; Lee, D.H.; Park, J.S.; Lee, J.S. Isolation and characterization of a novel platelet aggregation inhibitory peptide from the medicinal mushroom, Inonotus obliquus. Peptides, 2006, 27(6), 1173-1178.
[http://dx.doi.org/10.1016/j.peptides.2005.10.005] [PMID: 16289471]
[145]
Glamočlija, J.; Ćirić A.; Nikolić M.; Fernandes, Â.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.F.R.; Soković M.; van Griensven, L.J.L.D. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. J. Ethnopharmacol., 2015, 162, 323-332.
[http://dx.doi.org/10.1016/j.jep.2014.12.069] [PMID: 25576897]
[146]
Ren, G.; Xu, L.; Lu, T.; Yin, J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int. J. Biol. Macromol., 2018, 115, 1202-1210.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.132] [PMID: 29704603]
[147]
Abu-Serie, M.M.; Habashy, N.H.; Attia, W.E. In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC Complement. Altern. Med., 2018, 18(1), 154.
[http://dx.doi.org/10.1186/s12906-018-2218-5] [PMID: 29747629]
[148]
Ren, J.L.; Zhang, A.H.; Wang, X.J. Traditional Chinese medicine for COVID-19 treatment. Pharmacol. Res., 2020, 155, 104743.
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[149]
Chen, J.; Wang, Y.K.; Gao, Y.; Hu, L.S.; Yang, J.W.; Wang, J.R.; Sun, W.J.; Liang, Z.Q.; Cao, Y.M.; Cao, Y.B. Protection against COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming. Biomed. Pharmacother., 2020, 129, 110281.
[http://dx.doi.org/10.1016/j.biopha.2020.110281] [PMID: 32554251]
[150]
Yang, R.; Liu, H.; Bai, C.; Wang, Y.; Zhang, X.; Guo, R.; Wu, S.; Wang, J.; Leung, E.; Chang, H.; Li, P.; Liu, T.; Wang, Y. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus disease 2019 (COVID-19): In silico and experimental study. Pharmacol. Res., 2020, 157, 104820.
[http://dx.doi.org/10.1016/j.phrs.2020.104820] [PMID: 32360484]
[151]
Ding, Y.; Zeng, L.; Li, R.; Chen, Q.; Zhou, B.; Chen, Q.; Cheng, P.; Yutao, W.; Zheng, J.; Yang, Z.; Zhang, F. leng; Yutao, W.; Zheng, J.; Yang, Z.; Zhang, F. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement. Altern. Med., 2017, 17(1), 1-11.
[http://dx.doi.org/10.1186/s12906-017-1585-7]
[152]
Runfeng, L.; Yunlong, H.; Jicheng, H.; Weiqi, P.; Qinhai, M.; Yongxia, S.; Chufang, L.; Jin, Z.; Zhenhua, J.; Haiming, J.; Kui, Z.; Shuxiang, H.; Jun, D.; Xiaobo, L.; Xiaotao, H.; Lin, W.; Nanshan, Z.; Zifeng, Y. Corrigendum to: Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res., 2021, 174, 105907.
[http://dx.doi.org/10.1016/j.phrs.2021.105907] [PMID: 34802883]
[153]
Hu, K.; Guan, W.J.; Bi, Y.; Zhang, W.; Li, L.; Zhang, B.; Liu, Q.; Song, Y.; Li, X.; Duan, Z.; Zheng, Q.; Yang, Z.; Liang, J.; Han, M.; Ruan, L.; Wu, C.; Zhang, Y.; Jia, Z.H.; Zhong, N.S. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial. Phytomedicine, 2021, 85, 153242.
[http://dx.doi.org/10.1016/j.phymed.2020.153242] [PMID: 33867046]
[154]
Huang, Y.; Zheng, W.J.; Ni, Y.S.; Li, M.S.; Chen, J.K.; Liu, X.H.; Tan, X.H.; Li, J.Q. Therapeutic mechanism of Toujie Quwen granules in COVID-19 based on network pharmacology. BioData Min., 2020, 13(1), 15.
[http://dx.doi.org/10.1186/s13040-020-00225-8] [PMID: 32983259]
[155]
Liu, M.; Gao, Y.; Yuan, Y.; Yang, K.; Shi, S.; Zhang, J.; Tian, J. Efficacy and safety of integrated traditional Chinese and Western medicine for corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. Pharmacol. Res., 2020, 158, 104896.
[http://dx.doi.org/10.1016/j.phrs.2020.104896] [PMID: 32438037]
[156]
Han, L.; Wang, Y.; Hu, K.; Tang, Z.; Song, X. The therapeutic efficacy of Huashi Baidu formula combined with antiviral drugs in the treatment of COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore), 2020, 99(42), e22715.
[http://dx.doi.org/10.1097/MD.0000000000022715] [PMID: 33080725]
[157]
Qing-lai, L.; Ai-wu, L.; Miao-yi, H.; Xiao-yu, H.; Wei-yong, W. Pharmacological mechanism and network pharmacology research of Huashibaidu formula in treating COVID-19. Nat. Product Res. Develop., 2020, 32, 909.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy