Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Anticancer Activity of Secondary Metabolites Present in Plants of Hot Arid Region of India

Author(s): Divya Vashishth, Poonam Yadav, Monika Bhardwaj, Mansi Yadav, Pooja Kadyan and Sudhir Kumar Kataria*

Volume 13, Issue 2, 2023

Published on: 09 September, 2022

Article ID: e190522205006 Pages: 16

DOI: 10.2174/2210315512666220519093537

Price: $65

Abstract

Cancer, known to be a death havoc is increasing at an alarming pace globally. There is a need to explore novel chemicals having anticancerous potential for its treatment with minimal side effects. Natural compounds obtained from plants have less toxic properties and can be proved as a better medication against this lethal disease. Thus, the secondary metabolites having anticancer properties found in plants, fruits, and vegetables are being persistently evaluated for research in cancer treatment like anticancer drugs- vinblastine, vincristine and taxol which are derived from plants. This review summarizes the anticancer properties of chemical repertoires of plants inhabiting the hot arid regions present in India against various cancer cell lines like HepG2, MCF7, PC3, HT116, etc. The mechanism of action of flavonoids in the induction of apoptosis through suppression/promotion of various factors including Ras-ERK and PI3K-Akt signaling pathways and genes mainly such as Bax, Bcl-2, p53 involved in the proliferation of cancer cells play emphatically in combating the extent of the disease by promoting apoptosis in cancer cells. The insight about the reported mechanisms will open further avenues of the anticancer potential of novel secondary metabolites.

Keywords: Cancer, Secondary metabolites, Desert plants, Flavonoids, Signaling pathway

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Mathur, P.; Sathishkumar, K.; Chaturvedi, M.; Das, P.; Sudarshan, K.L.; Santhappan, S.; Nallasamy, V.; John, A.; Narasimhan, S.; Roselind, F.S. Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Glob. Oncol., 2020, 6(6), 1063-1075.
[http://dx.doi.org/10.1200/GO.20.00122] [PMID: 32673076]
[3]
Ames, B.N.; Gold, L.S.; Willett, W.C. The causes and prevention of cancer. Proc. Natl. Acad. Sci. USA., 1995, 92(12), 5258-5265.
[http://dx.doi.org/10.1073/pnas.92.12.5258] [PMID: 7777494]
[4]
Moschel, R.C. Carcinogens Brenner’s Encyclopedia of Genetics, 2nd ed; Maloy, S.; Hughes, K., Eds.; Academic Press, 2013, pp. 432-433.
[5]
Soffritti, M.; Minardi, F.; Maltoni, C. Physical Carcinogens. Holland-Frei Cancer Medicine, 6th ed; Kufe, D.W.; Pollock, R.E.; Weichselbaum, R.R., Eds.; BC Decker: Hamilton, ON, 2003, pp. 313-320.
[6]
Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; Cogliano, V. A review of human carcinogens--Part B: Biological agents. Lancet Oncol., 2009, 10(4), 321-322.
[http://dx.doi.org/10.1016/S1470-2045(09)70096-8] [PMID: 19350698]
[7]
Peter, H.M. Infectious agents and cancer. The Molecular Basis of Cancer E-Book;; Mendelsohn, J.; Howley, P.M., Eds.; Elsevier Health Sciences, 2014, pp. 79-102.
[8]
Liu, WJ Traditional herbal medicine research methods: Identification, analysis, bioassay, and pharmaceutical and clinical studies. John Wileys & sms, 2011.
[http://dx.doi.org/10.1002/9780470921340]
[9]
Kamboj, V.P. Herbal medicine. Curr. Sci., 2000, 78(1), 35-39.
[10]
Khan, M.S.; Ahmad, I. Herbal medicine: Current trends and future prospects. In: New Look to phytomedicine;; Khan, M.S.; Ahmad, I.; Chattopadhyay, D. Academic Press, 2019; pp. 3-13.
[11]
Ghani, U.; Batool, A.; Rafeeq, H.; Naeem, M.; ul Hassan Bukhari, S.S.; Ahsan, H.; Naeem, A.; Saddique, S.; Chand, S.A. Advancement and future directions towards herbal treatment for various diseases. Saudi J. Med. Pharm. Sci., 2019, 5(11), 931-941.
[http://dx.doi.org/10.36348/sjmps.2019.v05i11.003]
[12]
Howe, G.H.; Reed, L.J.; Ball, J.J.; Fisher, G.E.; Lasso, W.G. Classification of world desert areas.Report 69-38ES; Earth Science laboratory: United States Army Natick Laborites, Natick, MA, 1968.
[13]
Osborne, P.L. Hot deserts and environmental factors. Tropical ecosystems and ecological concepts; Cambridge University Press, 2000, pp. 18-48.
[14]
Yang, X.; Ma, N.; Dong, J. Desert ecosystems and global climate change. Tropical biology and conservation management, Tropical Biology and Conservation Management – Vol. IX. Available from: http://www.eolss.net/sample-chapters/c20/e6-142-de-07.pdf
[15]
Wickens, G.E. Arid and semi arid regions and ecosystems of the world. Ecophysiology of economic plants in arid and semi-arid lands; Springer Science & Business Media, 1998, pp. 17-101.
[http://dx.doi.org/10.1007/978-3-662-03700-3_3]
[16]
Rao, A.S. Climate and microclimate changes influencing the fauna of the hot Indian arid zone. Faunal ecology and conservation of the Great Indian Desert; Springer: Berlin, Heidelberg, 2009, pp. 13-23.
[http://dx.doi.org/10.1007/978-3-540-87409-6_2]
[17]
Bhandari, D.C.; Meghwal, P.R.; Lodha, S. Horticulture based production systems in Indian arid regions. Sustainable Horticultural Systems; Springer: Cham, 2014, pp. 19-49.
[http://dx.doi.org/10.1007/978-3-319-06904-3_2]
[18]
Behera, U.K.; France, J. Integrated farming systems and the livelihood security of small and marginal farmers in India and other developing countries. Adv. Agron., 2016, 138, 235-282.
[http://dx.doi.org/10.1016/bs.agron.2016.04.001]
[19]
Faroda, A.S.; Joshi, D.C.; Ram, B. Agro-ecological zones of North-Western hot arid region of India; Central Arid Zone Research Institute: Jodhpur, 1999.
[20]
Roy, B.B.; Dhir, R.P.; Kolarkar, A.S. Soils of Rajasthan desert and their characteristics. Proceedings of the Indian National Science Academy. Part B. Biological sciences, 1978.
[21]
Kar, A.; Garg, BK.; Singh, MP. Kathju, S-Trends in arid zone research in India; Central Arid Zone Research Institute: Jodhpur, 2009.
[22]
Sharma, A.K.; Tewari, J.C. Arid zone forestry with special reference to Indian hot arid zone. Forests and Forests Plants; Eolss Publishers Company: UK, 2009, pp. 90-130.
[23]
Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Plant secondary metabolites and their general function in plants. Lessons on caffeine, cannabis & co; Springer: Cham, 2018, pp. 3-17.
[http://dx.doi.org/10.1007/978-3-319-99546-5_1]
[24]
Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm., 2015, 9(3), 293-304.
[25]
Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2(7), 377-392.
[26]
Velu, G.; Palanichamy, V.; Rajan, A.P. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. Bioorganic Phase in Natural Food: An Overview; Springer: Cham, 2018, pp. 135-156.
[http://dx.doi.org/10.1007/978-3-319-74210-6_8]
[27]
Alvarez, M.A. Plant secondary metabolism. Plant biotechnology for health; Springer: Cham, 2014, pp. 15-31.
[http://dx.doi.org/10.1007/978-3-319-05771-2_3]
[28]
Bartnik, M.; Facey, P.C. Glycosides. Pharmacognosy; Academic Press, 2017, pp. 101-161.
[http://dx.doi.org/10.1016/B978-0-12-802104-0.00008-1]
[29]
Alamgeer; Hasan, U.H.; Uttra, A.M.; Qasim, S.; Ikram, J.; Saleem, M.; Niazi, Z.R. Phytochemicals targeting matrix metalloproteinases regulating tissue degradation in inflammation and rheumatoid arthritis. Phytomedicine, 2020, 66, 153134.
[http://dx.doi.org/10.1016/j.phymed.2019.153134] [PMID: 31812101]
[30]
Waller, G.R.; Nowacki, E.K. Metabolic (catabolic) modifications of alkaloids by plants. Alkaloid biology and metabolism in plants; Springer: Boston, MA, 1978, pp. 183-249.
[http://dx.doi.org/10.1007/978-1-4684-0772-3_6]
[31]
Kurek, J. Introductory chapter: Alkaloids-their importance in nature and for human life.Alkaloids-Their Importance in Nature and Human Life; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.85400]
[32]
Ofir, R. “Desert Chemotypes”: The Potential of Desert Plants-Derived Metabolome to Become a Sustainable Resource for Drug Leads. Med. Res. Arch., 2020, 8(7), 1-15.
[http://dx.doi.org/10.18103/mra.v8i7.2169]
[33]
Mansour, M.M. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant., 2000, 43(4), 491-500.
[http://dx.doi.org/10.1023/A:1002873531707]
[34]
Chalker-Scott, L.; Fuchigami, L.H. The role of phenolic compounds in plant stress responses. Low temperature stress physiology in crops; CRC Press, 2018, pp. 67-80.
[http://dx.doi.org/10.1201/9781351074186-6]
[35]
Mahajan, M.; Kuiry, R.; Pal, P.K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants, 2020, 18, 100255.
[http://dx.doi.org/10.1016/j.jarmap.2020.100255]
[36]
Gershenzon, J. Changes in the levels of plant secondary metabolites under water and nutrient stress. Phytochemical adaptations to stress; Springer: Boston, MA, 1984, pp. 273-320.
[http://dx.doi.org/10.1007/978-1-4684-1206-2_10]
[37]
Verma, V.A.; Kasera, P.K. Variations in secondary metabolites in some arid zone medicinal plants in relation to season and plant growth. Indian J. Plant. Physiol., 2007, 12(2), 203.
[38]
Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol., 2002, 5(3), 218-223.
[http://dx.doi.org/10.1016/S1369-5266(02)00256-X] [PMID: 11960739]
[39]
Ma, D.; Sun, D.; Wang, C.; Li, Y.; Guo, T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem., 2014, 80, 60-66.
[http://dx.doi.org/10.1016/j.plaphy.2014.03.024] [PMID: 24727789]
[40]
Gharibi, S.; Sayed Tabatabaei, B.E.; Saeidi, G.; Talebi, M.; Matkowski, A. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry, 2019, 162, 90-98.
[http://dx.doi.org/10.1016/j.phytochem.2019.03.004] [PMID: 30875522]
[41]
Lebri, M.; Tilaoui, M.; Bahi, C. Phytochemical analysis and in vitro anticancer effect of aqueous extract of Abrus precatorius Linn. Pharma Chem., 2015, 7(8), 112-117.
[42]
Revathi, S.; Govindarajan, R.K.; Rameshkumar, N.; Hakkim, F.L.; Mohammed, A-B.; Krishnan, M.; Kayalvizhi, N. Anti-cancer, anti-microbial and anti-oxidant properties of Acacia nilotica and their chemical profiling. Biocatal. Agric. Biotechnol., 2017, 11, 322-329.
[http://dx.doi.org/10.1016/j.bcab.2017.08.005]
[43]
Al-Shehri, M.; Moustafa, M. Anticancer, antibacterial, and phytochemicals derived from extract of Aerva javanica (Burm. f.) Juss. ex Schult. grown naturally in Saudi Arabia. Trop. Conserv. Sci., 2019, 12, 1940082919864262.
[http://dx.doi.org/10.1177/1940082919864262]
[44]
Singh, S.; Verma, M.; Malhotra, M.; Prakash, S.; Singh, T.D. Cytotoxicity of alkaloids isolated from Argemone mexicana on SW480 human colon cancer cell line. Pharm. Biol., 2016, 54(4), 740-745.
[http://dx.doi.org/10.3109/13880209.2015.1073334] [PMID: 26439487]
[45]
Beit-Yannai, E.; Ben-Shabat, S.; Goldschmidt, N.; Chapagain, B.P.; Liu, R.H.; Wiesman, Z. Antiproliferative activity of steroidal saponins from Balanites aegyptiaca-an in vitro study. Phytochem. Lett., 2011, 4(1), 43-47.
[http://dx.doi.org/10.1016/j.phytol.2010.11.004]
[46]
El-Beltagi, H.S.; Mohamed, H.I.; Megahed, B.M.; Gamal, M.; Safwat, G. Evaluation of some chemical constituents, antioxidant, antibacterial and anticancer activities of Beta vulgaris L. root. Fresenius Environ. Bull., 2018, 27(9), 6369-6378.
[47]
Ahmed, H.; Moawad, A.; Owis, A.; AbouZid, S.; Ahmed, O. Flavonoids of Calligonum polygonoides and their cytotoxicity. Pharm. Biol., 2016, 54(10), 2119-2126.
[http://dx.doi.org/10.3109/13880209.2016.1146778] [PMID: 26922854]
[48]
Rathee, P.; Rathee, D.; Rathee, D.; Rathee, S. In-vitro cytotoxic activity of β-Sitosterol triacontenate isolated from Capparis decidua (Forsk.). Edgew. Asian Pac. J. Trop. Med., 2012, 5(3), 225-230.
[http://dx.doi.org/10.1016/S1995-7645(12)60029-7] [PMID: 22305789]
[49]
Kulisic-Bilusic, T.; Schmöller, I.; Schnäbele, K.; Siracusa, L.; Ruberto, G. The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem., 2012, 132(1), 261-267.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.074] [PMID: 26434289]
[50]
Nawaz, M.P.; Mohamed, S.R.; Ramamurthy, V.; Rafi, K.M.; Ayeshamariam, A. Anticancer activities of Ag NPS biosynthesized by using Cassia auriculata. IOSR-JAP., 2018, 10(4), 19-26.
[51]
Alsayari, A.; Kopel, L.; Ahmed, M.S.; Soliman, H.S.M.; Annadurai, S.; Halaweish, F.T. Isolation of anticancer constituents from Cucumis prophetarum var. prophetarum through bioassay-guided fractionation. BMC Complement. Altern. Med., 2018, 18(1), 274.
[http://dx.doi.org/10.1186/s12906-018-2295-5] [PMID: 30301463]
[52]
Shobha, G.; Soumya, C.; Shashidhara, K.S.; Moses, V. Phytochemical profile, antibacterial and antidiabetic effects of crude aqueous leaf extract of Datura stramonium. Pharmacophore., 2014, 5(2), 273-278.
[53]
Alper, M. Investigation of potential anti-cancer and anti-inflammatory effects of Datura stramonium ethanolic extracts against selected human cancer cell lines. Fresenius Environ. Bull., 2019, 28(12), 8993-9003.
[54]
Bano, S.; Siddiqui, B.S.; Farooq, A.D.; Begum, S.; Siddiqui, F.; Kashif, M.; Azhar, M. In vitro growth inhibition and cytotoxicity of Euphorbia caducifolia against four human cancer cell lines and its phytochemical characterisation. Nat. Prod. Res., 2017, 31(24), 2936-2940.
[http://dx.doi.org/10.1080/14786419.2017.1305380] [PMID: 28403658]
[55]
Anitha, P.; Geegi, P.G.; Yogeswari, J.; Anthoni, S.A. In vitro anticancer activity of ethanolic extract of Euphorbia hirta (L.). Sci Technol Arts Res., 2014, 3(1), 01-7.
[56]
Gulecha, V.; Sivakuma, T. Anticancer activity of Tephrosia purpurea and Ficus religiosa using MCF 7 cell lines. Asian Pac. J. Trop. Med., 2011, 4(7), 526-529.
[http://dx.doi.org/10.1016/S1995-7645(11)60139-9] [PMID: 21803302]
[57]
Khasawneh, M.A.; Koch, A.; Elwy, H.M.; Hamza, A.A.; Schneider-Stock, R. Leptadenia pyrotechnica induces p53-dependent apoptosis in colon cancer cells. Nat. Prod. Chem. Res., 2015, 3, 1-8.
[58]
Kulshrestha, S.; Khan, S.H. Identification and characterization of secondary metabolite isolated from the stem bark of Prosopis cineraria (Linn.) Druce and their in vitro anticancer activity against A549 human lung cancer cell line. JPR, 2018, 12, 611-618.
[59]
Darmanin, S.; Wismayer, P.S.; Camilleri Podesta, M.T.; Micallef, M.J.; Buhagiar, J.A. An extract from Ricinus communis L. leaves possesses cytotoxic properties and induces apoptosis in SK-MEL-28 human melanoma cells. Nat. Prod. Res., 2009, 23(6), 561-571.
[http://dx.doi.org/10.1080/14786410802228579] [PMID: 19384733]
[60]
Shirisha, R.; Varalakshmi, K.N. Tamarindus indica Bark Extract and its Bioactive Fraction Induce Apoptosis in HeLa and PA-1 Cells. Indian J. Pharm. Sci., 2017, 78(6), 725-731.
[61]
Srivastava, A.N.; Ahmad, R.; Khan, M.A. Evaluation and comparison of the in vitro cytotoxic activity of Withania somnifera Methanolic and ethanolic extracts against MDA-MB-231 and Vero cell lines. Sci. Pharm., 2015, 84(1), 41-59.
[http://dx.doi.org/10.3797/scipharm.1507-13] [PMID: 27110497]
[62]
Afzal, S.; Batool, M.; Ch, B.A.; Ahmad, A.; Uzair, M.; Afzal, K. Immunomodulatory, cytotoxicity, and antioxidant activities of roots of Ziziphus mauritiana. Pharmacogn. Mag., 2017, 13(50)(Suppl. 2), S262-S265.
[http://dx.doi.org/10.4103/pm.pm_398_16] [PMID: 28808390]
[63]
Batool, M.; Afzal, S.; Afzal, K.; Ahmed, B.; Abbas, K.; Muhammad, S.A.; Qadir, M.I. Short communication-Anticancer activity of Ziziphus mauritiana roots against human breast cancer cell line. Pak. J. Pharm. Sci., 2019, 32(4), 1715-1716.
[PMID: 31608895]
[64]
Hartmann, T. Diversity and variability of plant secondary metabolism: A mechanistic view. Proceedings of the 9th International Symposium on Insect-Plant Relationships, 1996, pp. 177-188.
[http://dx.doi.org/10.1007/978-94-009-1720-0_42]
[65]
Lu, JJ.; Bao, JL.; Chen, XP.; Huang, M.; Wang, YT. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med., 2012, 2012, 485042.
[http://dx.doi.org/10.1155/2012/485042]
[66]
Al-Ghazzawi, A.M. Anti-cancer activity of new benzyl isoquinoline alkaloid from Saudi plant Annona squamosa. BMC Chem., 2019, 13(1), 13.
[http://dx.doi.org/10.1186/s13065-019-0536-4] [PMID: 31384762]
[67]
Jagetia, G.C.; Baliga, M.S. Evaluation of anticancer activity of the alkaloid fraction of Alstonia scholaris (Sapthaparna) in vitro and in vivo. Phytother. Res., 2006, 20(2), 103-109.
[http://dx.doi.org/10.1002/ptr.1810] [PMID: 16444661]
[68]
Kandi, S.; Godishala, V.; Rao, P.; Ramana, KV. Biomedical significance of terpenes: An insight. Biomed. Biotechnol, 2015, 3(1), 8-10.
[69]
Ansari, I.A.; Akhtar, M.S. Current insights on the role of terpenoids as anticancer agents: A perspective on cancer prevention and treatment. Natural Bioactive Compounds; Springer: Singapore, 2019, pp. 53-80.
[http://dx.doi.org/10.1007/978-981-13-7205-6_3]
[70]
Joyce, C. Taxol: Search for a cancer drug. Bioscience, 1993, 43(3), 133-136.
[http://dx.doi.org/10.2307/1312015]
[71]
Sun, X.B.; Wang, S.M.; Li, T.; Yang, Y.Q. Anticancer activity of linalool terpenoid: Apoptosis induction and cell cycle arrest in prostate cancer cells. Trop. J. Pharm. Res., 2015, 14(4), 619-625.
[http://dx.doi.org/10.4314/tjpr.v14i4.9]
[72]
Ghosh, K. Anticancer effect of lemongrass oil and citral on cervical cancer cell lines. Pharmacogn. Commun., 2013, 3(4), 41-48.
[73]
Li, D.Q.; Pan, S.H.; Zhu, X.W.; Tan, L.; Cao, Y.F. Anticancer activity and chemical composition of leaf essential oil from Solidago canadensis L. in China. In: Advanced Materials Research; Trans Tech Publications Ltd, 2012; 347, pp. 1584-1589.
[74]
Yi, W.; Fischer, J.; Akoh, C.C. Study of anticancer activities of muscadine grape phenolics in vitro. J. Agric. Food Chem., 2005, 53(22), 8804-8812.
[http://dx.doi.org/10.1021/jf0515328] [PMID: 16248588]
[75]
Vijayalakshmi, A.; Kumar, P.R.; Sakthi Priyadarsini, S.; Meenaxshi, C. In vitro antioxidant and anticancer activity of flavonoid fraction from the aerial parts of Cissus quadrangularis Linn. against human breast carcinoma cell lines. J. Chem., 2013, 2013(4)
[76]
Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A.; Devarajan, T. Evaluation of bioactive compounds, pharmaceutical quality, and anticancer activity of curry leaf (Murraya koenigii L.). Evid. Based Complement. Alternat. Med., 2014, 2014, 873803.
[http://dx.doi.org/10.1155/2014/873803] [PMID: 24693327]
[77]
Li, Y.L.; Gan, G.P.; Zhang, H.Z.; Wu, H.Z.; Li, C.L.; Huang, Y.P.; Liu, Y.W.; Liu, J.W. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J. Ethnopharmacol., 2007, 113(1), 115-124.
[http://dx.doi.org/10.1016/j.jep.2007.05.016] [PMID: 17606345]
[78]
Yan, L.L.; Zhang, Y.J.; Gao, W.Y.; Man, S.L.; Wang, Y. In vitro and in vivo anticancer activity of steroid saponins of Paris polyphylla var. yunnanensis. Exp. Oncol., 2009, 31(1), 27-32.
[PMID: 19300413]
[79]
Babu, P.V.; Liu, D. Flavonoids and cardiovascular health. Complementary and Alternative Therapies and the Aging Population; Academic Press, 2009, pp. 371-392.
[http://dx.doi.org/10.1016/B978-0-12-374228-5.00018-4]
[80]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[81]
Miron, A.; Aprotosoaie, A.C.; Trifan, A.; Xiao, J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann. N. Y. Acad. Sci., 2017, 1398(1), 152-167.
[http://dx.doi.org/10.1111/nyas.13384] [PMID: 28632894]
[82]
Zińczuk, J.; Maciejczyk, M.; Zaręba, K.; Pryczynicz, A.; Dymicka-Piekarska, V.; Kamińska, J.; Koper-Lenkiewicz, O.; Matowicka-Karna, J.; Kędra, B.; Zalewska, A.; Guzińska-Ustymowicz, K. Pro-oxidant enzymes, redox balance and oxidative damage to proteins, lipids and DNA in colorectal cancer tissue. Is oxidative stress dependent on tumour budding and inflammatory infiltration? Cancers (Basel), 2020, 12(6), 1636.
[http://dx.doi.org/10.3390/cancers12061636] [PMID: 32575703]
[83]
Chang, W.S.; Lee, Y.J.; Lu, F.J.; Chiang, H.C. Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Res., 1993, 13(6A), 2165-2170.
[PMID: 8297130]
[84]
Kim, H.P.; Mani, I.; Iversen, L.; Ziboh, V.A. Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandins Leukot. Essent. Fatty Acids, 1998, 58(1), 17-24.
[http://dx.doi.org/10.1016/S0952-3278(98)90125-9] [PMID: 9482162]
[85]
Kobayashi, T.; Nakata, T.; Kuzumaki, T. Effect of flavonoids on cell cycle progression in prostate cancer cells. Cancer Lett., 2002, 176(1), 17-23.
[http://dx.doi.org/10.1016/S0304-3835(01)00738-8] [PMID: 11790449]
[86]
Li, J.; Cheng, Y.; Qu, W.; Sun, Y.; Wang, Z.; Wang, H.; Tian, B. Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-kappa B pathways in bladder cancer cells. Basic Clin. Pharmacol. Toxicol., 2011, 108(2), 84-93.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00613.x] [PMID: 21054790]
[87]
Wang, I.K.; Lin-Shiau, S.Y.; Lin, J.K. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur. J. Cancer, 1999, 35(10), 1517-1525.
[http://dx.doi.org/10.1016/S0959-8049(99)00168-9] [PMID: 10673981]
[88]
Choi, E.J.; Kim, G.H. Apigenin induces apoptosis through a mitochondria/caspase-pathway in human breast cancer MDA-MB-453 cells. J. Clin. Biochem. Nutr., 2009, 44(3), 260-265.
[http://dx.doi.org/10.3164/jcbn.08-230] [PMID: 19430615]
[89]
Chan, F.L.; Choi, H.L.; Chen, Z.Y.; Chan, P.S.; Huang, Y. Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett., 2000, 160(2), 219-228.
[http://dx.doi.org/10.1016/S0304-3835(00)00591-7] [PMID: 11053652]
[90]
Chidambara Murthy, K.N.; Kim, J.; Vikram, A.; Patil, B.S. Differential inhibition of human colon cancer cells by structurally similar flavonoids of citrus. Food Chem., 2012, 132(1), 27-34.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.014] [PMID: 26434259]
[91]
Lee, H.J.; Nagappan, A.; Park, H.S.; Hong, G.E.; Yumnam, S.; Raha, S.; Saralamma, V.V.; Lee, W.S.; Kim, E.H.; Kim, G.S. Flavonoids isolated from Citrus platymamma induce mitochondrial-dependent apoptosis in AGS cells by modulation of the PI3K/AKT and MAPK pathways. Oncol. Rep., 2015, 34(3), 1517-1525.
[http://dx.doi.org/10.3892/or.2015.4122] [PMID: 26165353]
[92]
Anwar, A.; Uddin, N.; Siddiqui, B.S.; Siddiqui, R.A.; Begum, S.; Choudhary, M.I. A natural flavonoid lawsonaringenin induces cell cycle arrest and apoptosis in HT-29 colorectal cancer cells by targeting multiple signalling pathways. Mol. Biol. Rep., 2018, 45(5), 1339-1348.
[http://dx.doi.org/10.1007/s11033-018-4294-5] [PMID: 30088202]
[93]
Seo, H.W.; No, H.; Cheon, H.J.; Kim, J.K. Sappanchalcone, a flavonoid isolated from Caesalpinia sappan L., induces caspase-dependent and AIF-dependent apoptosis in human colon cancer cells. Chem. Biol. Interact., 2020, 327, 109185.
[http://dx.doi.org/10.1016/j.cbi.2020.109185] [PMID: 32590072]
[94]
Juliano, RL Addressing cancer signal transduction pathways with antisense and siRNA oligonucleotides. NAR Cancer, 2020, 2(3), zcaa025.
[http://dx.doi.org/10.1093/narcan/zcaa025]
[95]
Song, G.; Ouyang, G.; Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med., 2005, 9(1), 59-71.
[http://dx.doi.org/10.1111/j.1582-4934.2005.tb00337.x] [PMID: 15784165]
[96]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[97]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[98]
Raha, S.; Yumnam, S.; Hong, G.E.; Lee, H.J.; Saralamma, V.V.; Park, H.S.; Heo, J.D.; Lee, S.J.; Kim, E.H.; Kim, J.A.; Kim, G.S. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int. J. Oncol., 2015, 47(3), 1061-1069.
[http://dx.doi.org/10.3892/ijo.2015.3095] [PMID: 26201693]
[99]
Kim, W.K.; Bang, M.H.; Kim, E.S.; Kang, N.E.; Jung, K.C.; Cho, H.J.; Park, J.H. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J. Nutr. Biochem., 2005, 16(3), 155-162.
[http://dx.doi.org/10.1016/j.jnutbio.2004.10.010] [PMID: 15741050]
[100]
Phillips, P.A.; Sangwan, V.; Borja-Cacho, D.; Dudeja, V.; Vickers, S.M.; Saluja, A.K. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett., 2011, 308(2), 181-188.
[http://dx.doi.org/10.1016/j.canlet.2011.05.002] [PMID: 21676539]
[101]
Yang, S.; Si, L.; Jia, Y.; Jian, W.; Yu, Q.; Wang, M.; Lin, R. Kaempferol exerts anti-proliferative effects on human ovarian cancer cells by inducing apoptosis, G0/G1 cell cycle arrest and modulation of MEK/ERK and STAT3 pathways. J. BUON, 2019, 24(3), 975-981.
[PMID: 31424650]
[102]
Lee, H.S.; Cho, H.J.; Yu, R.; Lee, K.W.; Chun, H.S.; Park, J.H. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int. J. Mol. Sci., 2014, 15(2), 2722-2737.
[http://dx.doi.org/10.3390/ijms15022722] [PMID: 24549175]
[103]
Song, Y.H.; Sun, H.; Zhang, A.H.; Yan, G.L.; Han, Y.; Wang, X.J. Plant-derived natural products as leads to anti-cancer drugs. J. Med. Plant Herb. Ther. Res., 2014, 2, 6-15.
[104]
Nirmala, L.; Padmini Amma, Z.D.; Jalaj, A.V. Plant secondary metabolites as nutraceuticals. Plant Metabolites: Methods, Applications and Prospects; Springer: Singapore, 2020, pp. 239-253.
[http://dx.doi.org/10.1007/978-981-15-5136-9_11]
[105]
Verma, A.; Kumar, P.; Saresh, N.V. Secondary metabolites: Harvesting short term benefits from arid zone agroforestry systems in India. Agrofor. Syst., 2021, 95(3), 515-532.
[http://dx.doi.org/10.1007/s10457-021-00599-6]
[106]
Harlev, E.; Nevo, E.; Lansky, E.P.; Lansky, S.; Bishayee, A. Anticancer attributes of desert plants: A review. Anticancer Drugs, 2012, 23(3), 255-271.
[http://dx.doi.org/10.1097/CAD.0b013e32834f968c] [PMID: 22217921]
[107]
Fakhri, S.; Moradi, S.Z.; Farzaei, M.H.; Bishayee, A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Seminars in cancer biology; Academic Press, 2020.
[108]
Cardoso, J.C.; Oliveira, M.E.; Cardoso, F.D. Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Hortic. Bras., 2019, 37(2), 124-132.
[http://dx.doi.org/10.1590/s0102-053620190201]
[109]
Seca, A.M.L.; Pinto, D.C.G.A. Biological potential and medical use of secondary metabolites. Medicines (Basel), 2019, 6(2), 66.
[http://dx.doi.org/10.3390/medicines6020066] [PMID: 31212776]
[110]
Bhanot, A; Sharma, R; Noolvi, MN Natural sources as potential anti-cancer agents: A review. Inter. J. Phytomed., 2011, 3(1), 09-26.
[111]
Upadhyay, R.K. Plant pigments as dietary anticancer agents. Int. J. Green Pharm., 2018, 12(1), 93-107.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy