Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

The Hepatotoxicity of Nigella sativa Oil Linked to the Route of Administration

Author(s): Marwa El-Zeftawy, Doaa Ghareeb* and Mahmoud Balbaa

Volume 13, Issue 3, 2023

Published on: 13 October, 2022

Article ID: e190522205005 Pages: 11

DOI: 10.2174/2210315512666220519092602

Price: $65

Abstract

Background: Even Nigella sativa oil (NSO) has several pharmacological effects; the route of administration is critical to obtain the desired activity in which intraperitoneal injection (IP) of oil recruits macrophages and induces inflammation.

Objective: The current study aimed to determine the best administration route of NSO in rats either oral or IP.

Methods: The components of NSO, routine blood analyses, hepatic oxidative stress and proinflammatory parameters, and liver histopathological study were evaluated.

Results: NSO contained 32.14% E,E,Z- 1, 3 , 12- nonadecatriene- 5, 14 diol, 25% thymoquinone (TQ) and 3.74% dimethyl sulfoxide (DMSO). In addition, the rats who received IP injection of NSO showed an increase in hepatic enzymes, lipid profiles, oxidative stress, and inflammatory markers. This was associated with hepatic up-regulation of the A disintegrin and metalloproteinase 17 (ADAM- 17) genes, which are corroborated by a reduction in hepatic tissue inhibitor of metalloproteinase 3 (TIMP-3) concentration. These indications were seen in rats given a small amount of DMSO (NSO vehicle), indicating that NSO-oral delivery was safer than IP.

Conclusion: NSO-IP administration promotes the hepatic oxidative stress-inflammation axis; thus, NSO is a generally safe chemical, especially when administered orally to experimental animals.

Keywords: Thymoquinone, GC-MS analysis, ADAM-17, TNF-α, TIMP-3.

Graphical Abstract

[1]
Balbaa, M.; El-Zeftawy, M.; Abdulmalek, S.A.; Shahin, Y.R. Health-promoting activities of Nigella sativa fixed oil. Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications; Springer, 2021, pp. 361-379.
[http://dx.doi.org/10.1007/978-3-030-48798-0_23]
[2]
Islam, M.N.; Hossain, K.S.; Sarker, P.P.; Ferdous, J.; Hannan, M-A.; Rahman, M-M.; Chu, D.T.; Uddin, M-J. Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother. Res., 2021, 35(3), 1329-1344.
[http://dx.doi.org/10.1002/ptr.6895] [PMID: 33047412]
[3]
Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J. Herb. Med., 2021, 25, 100404.
[http://dx.doi.org/10.1016/j.hermed.2020.100404] [PMID: 32983848]
[4]
Zielińska, M.; Dereń, K.; Polak-Szczybyło, E.; Stępień, A.E. The role of bioactive compounds of Nigella sativa in rheumatoid arthritis therapy-current reports. Nutrients, 2021, 13(10), 3369.
[http://dx.doi.org/10.3390/nu13103369] [PMID: 34684370]
[5]
Balbaa, M.; El-Zeftawy, M.; Abdulmalek, S.A. Therapeutic screening of herbal remedies for the management of diabetes. Molecules, 2021, 26(22), 1-18.
[http://dx.doi.org/10.3390/molecules26226836] [PMID: 34833928]
[6]
Balbaa, M.; Abdulmalek, S.A.; Khalil, S. Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: Role of Nigella sativa oil and antidiabetic drugs. PLoS One, 2017, 12(5), e0172429.
[http://dx.doi.org/10.1371/journal.pone.0172429] [PMID: 28505155]
[7]
Balbaa, M.; El-Zeftawy, M.; Ghareeb, D.; Taha, N.; Mandour, A.W. Nigella sativa relieves the altered insulin receptor signaling in streptozotocin-induced diabetic rats fed with a high-fat diet. Oxid. Med. Cell. Longev., 2016, 2016, 2492107.
[http://dx.doi.org/10.1155/2016/2492107] [PMID: 27579151]
[8]
Shahin, Y.R.; Elguindy, N.M.; Abdel Bary, A.; Balbaa, M. The protective mechanism of Nigella sativa against diethylnitrosamine-induced hepatocellular carcinoma through its antioxidant effect and EGFR/ERK1/2 signaling. Environ. Toxicol., 2018, 33(8), 885-898.
[http://dx.doi.org/10.1002/tox.22574] [PMID: 29923357]
[9]
Altan, M.F.; Kanter, M.; Donmez, S.; Kartal, M.E.; Buyukbas, S. Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behavior and structure in streptozotocin-induced diabetic rats. Acta Histochem., 2007, 109(4), 304-314.
[http://dx.doi.org/10.1016/j.acthis.2007.02.006] [PMID: 17395251]
[10]
Trinder, P. Enzymatic methods for glucose determination. Ann. Clin. Biochem., 1969, 6, 24-26.
[http://dx.doi.org/10.1177/000456326900600108]
[11]
Aziz, R.; Mahboob, T. Pre-eclampsia and lipid profile. Pak. J. Med. Sci., 2007, 23(5), 751-754.
[12]
Flegg, H.M. An investigation of the determination of serum cholesterol by an enzymatic method. Ann. Clin. Biochem., 1973, 10(1-6), 79-84.
[http://dx.doi.org/10.1177/000456327301000125]
[13]
Gotto, J.; Antonio, M. Lipoprotein metabolism and the etiology of hyperlipidemia. Hosp. Pract., 1988, 23(sup1), 4-13.
[http://dx.doi.org/10.1080/21548331.1988.11703633]
[14]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[15]
Wilson, P.W.F.; Zech, L.A.; Gregg, R.E.; Schaefer, E.J.; Hoeg, J.M.; Sprecher, D.L.; Brewer, H.B., Jr Estimation of VLDL cholesterol in hyperlipidemia. Clin. Chim. Acta, 1985, 151(3), 285-291.
[http://dx.doi.org/10.1016/0009-8981(85)90091-9] [PMID: 3863729]
[16]
Witt, I.; Trendelenburg, C. Gemeinsame studie zur erstellung von richtwerten für klinische-chemische kenngrössen im kindesalter. J. Clin. Chem. Clin. Biochem., 1982, 20(4), 235-242.
[PMID: 6122709]
[17]
Henry, J.B.; AuBuchon, J.P. Clinical diagnosis and management by laboratory methods. Arch. Pathol. Lab. Med., 1997, 121(9), 1016.
[18]
Łukaszewicz-Hussain, A.; Moniuszko-Jakoniuk, J.; Rogalska, J. Assessment of lipid peroxidation in rat tissues in subacute chlorfenvinphos administration. Pol. J. Environ. Stud., 2007, 16(2), 233-236.
[19]
Menaka, K.B.; Ramesh, A.; Thomas, B.; Kumari, N.S. Estimation of nitric oxide as an inflammatory marker in periodontitis. J. Indian Soc. Periodontol., 2009, 13(2), 75-78.
[http://dx.doi.org/10.4103/0972-124X.55842] [PMID: 20407654]
[20]
Lu, P.S.; Inbaraj, B.S.; Chen, B.H. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. J. Sci. Food Agric., 2018, 98(1), 51-63.
[http://dx.doi.org/10.1002/jsfa.8437] [PMID: 28516478]
[21]
Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci., 2011, 50(5), 600-613.
[PMID: 22330705]
[22]
Al-Ali, A.; Alkhawajah, A-A.; Randhawa, M.A.; Shaikh, N.A. Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J. Ayub Med. Coll. Abbottabad, 2008, 20(2), 25-27.
[PMID: 19385451]
[23]
Abukhader, M.M. The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J. Pharm. Sci., 2012, 74(3), 195-200.
[http://dx.doi.org/10.4103/0250-474X.106060] [PMID: 23440704]
[24]
Andersen, M.E.; Black, M.B.; Campbell, J.L.; Pendse, S.N.; Clewell, H.J., III; Pottenger, L.H.; Bus, J.S.; Dodd, D.E.; Kemp, D.C.; McMullen, P.D. Combining transcriptomics and PBPK modeling indicates a primary role of hypoxia and altered circadian signaling in dichloromethane carcinogenicity in mouse lung and liver. Toxicol. Appl. Pharmacol., 2017, 332, 149-158.
[http://dx.doi.org/10.1016/j.taap.2017.04.002] [PMID: 28392392]
[25]
Schlosser, P.M.; Bale, A.S.; Gibbons, C.F.; Wilkins, A.; Cooper, G.S. Human health effects of dichloromethane: key findings and scientific issues. Environ. Health Perspect., 2015, 123(2), 114-119.
[http://dx.doi.org/10.1289/ehp.1308030] [PMID: 25325283]
[26]
Hirata, T.; Cho, Y.M.; Toyoda, T.; Akagi, J.I.; Suzuki, I.; Nishikawa, A.; Ogawa, K. Lack of in vivo mutagenicity of 1,2-dichloropropane and dichloromethane in the livers of gpt delta rats administered singly or in combination. J. Appl. Toxicol., 2017, 37(6), 683-691.
[http://dx.doi.org/10.1002/jat.3416] [PMID: 27896817]
[27]
Cavas, M.; Beltrán, D.; Navarro, J.F. Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats. Toxicol. Lett., 2005, 157(3), 221-232.
[http://dx.doi.org/10.1016/j.toxlet.2005.02.003] [PMID: 15917147]
[28]
Park, Y.; Smith, R.D.; Combs, A.B.; Kehrer, J.P. Prevention of acetaminophen-induced hepatotoxicity by dimethyl sulfoxide. Toxicology, 1988, 52(1-2), 165-175.
[http://dx.doi.org/10.1016/0300-483X(88)90202-8] [PMID: 3188030]
[29]
Kucuk, C.; Ok, E.; Yilmaz, Z.; Sozuer, E.; Muhtaroglu, S.; Arar, M. The effects of dimethylsulfoxide in experimental obstructive jaundice. Acta Chir. Belg., 2003, 103(4), 392-395.
[http://dx.doi.org/10.1080/00015458.2003.11679450] [PMID: 14524158]
[30]
Nasrallah, F.A.; Garner, B.; Ball, G.E.; Rae, C. Modulation of brain metabolism by very low concentrations of the commonly used drug delivery vehicle dimethyl sulfoxide (DMSO). J. Neurosci. Res., 2008, 86(1), 208-214.
[http://dx.doi.org/10.1002/jnr.21477] [PMID: 17853437]
[31]
Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of quinones in toxicology. Chem. Res. Toxicol., 2000, 13(3), 135-160.
[http://dx.doi.org/10.1021/tx9902082] [PMID: 10725110]
[32]
Koka, P.S.; Mondal, D.; Schultz, M.; Abdel-Mageed, A.B.; Agrawal, K.C. Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen species. Exp. Biol. Med. (Maywood), 2010, 235(6), 751-760.
[http://dx.doi.org/10.1258/ebm.2010.009369] [PMID: 20511679]
[33]
Cavaletti, G.; Oggioni, N.; Sala, F.; Pezzoni, G.; Cavalletti, E.; Marmiroli, P.; Petruccioli, M.G.; Frattola, L.; Tredici, G. Effect on the peripheral nervous system of systemically administered dimethylsulfoxide in the rat: A neurophysiological and pathological study. Toxicol. Lett., 2000, 118(1-2), 103-107.
[http://dx.doi.org/10.1016/S0378-4274(00)00269-1] [PMID: 11137315]
[34]
Jacob, S.W.; de la Torre, J.C. Pharmacology of dimethyl sulfoxide in cardiac and CNS damage. Pharmacol. Rep., 2009, 61(2), 225-235.
[http://dx.doi.org/10.1016/S1734-1140(09)70026-X] [PMID: 19443933]
[35]
Morris, C.; de Wreede, L.; Scholten, M.; Brand, R.; van Biezen, A.; Sureda, A.; Dickmeiss, E.; Trneny, M.; Apperley, J.; Chiusolo, P.; van Imhoff, G.W.; Lenhoff, S.; Martinelli, G.; Hentrich, M.; Pabst, T.; Onida, F.; Quinn, M.; Kroger, N.; de Witte, T.; Ruutu, T. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for blood and marrow transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion, 2014, 54(10), 2514-2522.
[http://dx.doi.org/10.1111/trf.12759] [PMID: 24964911]
[36]
Al‐Naqeeb, G.; Ismail, M. Regulation of apolipoprotein A‐1 and apolipoprotein B100 genes by thymoquinone rich fraction and thymoquinone in HepG2 cells. J. Food Lipids, 2009, 16(2), 245-258.
[http://dx.doi.org/10.1111/j.1745-4522.2009.01144.x]
[37]
Bang, U.C.; Watanabe, T.; Bendtsen, F. The relationship between the use of statins and mortality, severity, and pancreatic cancer in Danish patients with chronic pancreatitis. Eur. J. Gastroenterol. Hepatol., 2018, 30(3), 346-351.
[http://dx.doi.org/10.1097/MEG.0000000000001060] [PMID: 29309396]
[38]
Braganza, J.M.; Lee, S.H.; McCloy, R.F.; McMahon, M.J. Chronic pancreatitis. Lancet, 2011, 377(9772), 1184-1197.
[http://dx.doi.org/10.1016/S0140-6736(10)61852-1] [PMID: 21397320]
[39]
Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev., 2018, 2018, 5730395.
[http://dx.doi.org/10.1155/2018/5730395] [PMID: 29599897]
[40]
Akash, M.S.H.; Rehman, K.; Liaqat, A. Tumor necrosis factor‐alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem., 2018, 119(1), 105-110.
[http://dx.doi.org/10.1002/jcb.26174] [PMID: 28569437]
[41]
Tracey, D.; Klareskog, L.; Sasso, E.H.; Salfeld, J.G.; Tak, P.P. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Ther., 2008, 117(2), 244-279.
[http://dx.doi.org/10.1016/j.pharmthera.2007.10.001] [PMID: 18155297]
[42]
Lisi, S.; D’Amore, M.; Sisto, M. ADAM17 at the interface between inflammation and autoimmunity. Immunol. Lett., 2014, 162(1 Pt A), 159-169.
[http://dx.doi.org/10.1016/j.imlet.2014.08.008] [PMID: 25171914]
[43]
Scheller, J.; Chalaris, A.; Garbers, C.; Rose-John, S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol., 2011, 32(8), 380-387.
[http://dx.doi.org/10.1016/j.it.2011.05.005] [PMID: 21752713]
[44]
Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim. Biophys. Acta, 2010, 1803(1), 55-71.
[http://dx.doi.org/10.1016/j.bbamcr.2010.01.003] [PMID: 20080133]
[45]
Black, R.A. TIMP3 checks inflammation. Nat. Genet., 2004, 36(9), 934-935.
[http://dx.doi.org/10.1038/ng0904-934] [PMID: 15340428]
[46]
Cardellini, M.; Menghini, R.; Martelli, E.; Casagrande, V.; Marino, A.; Rizza, S.; Porzio, O.; Mauriello, A.; Solini, A.; Ippoliti, A.; Lauro, R.; Folli, F.; Federici, M. TIMP3 is reduced in atherosclerotic plaques from subjects with type 2 diabetes and increased by SirT1. Diabetes, 2009, 58(10), 2396-2401.
[http://dx.doi.org/10.2337/db09-0280] [PMID: 19581416]
[47]
de Carvalho Vidigal, F.; Guedes Cocate, P.; Gonçalves Pereira, L.; de Cássia Gonçalves Alfenas, R. The role of hyperglycemia in the induction of oxidative stress and inflammatory process. Nutr. Hosp., 2012, 27(5), 1391-1398.
[PMID: 23478683]
[48]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[49]
Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Invest., 2005, 115(5), 1111-1119.
[http://dx.doi.org/10.1172/JCI25102] [PMID: 15864338]
[50]
Lin, Y.; Berg, A.H.; Iyengar, P.; Lam, T.K.; Giacca, A.; Combs, T.P.; Rajala, M.W.; Du, X.; Rollman, B.; Li, W.; Hawkins, M.; Barzilai, N.; Rhodes, C.J.; Fantus, I.G.; Brownlee, M.; Scherer, P.E. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J. Biol. Chem., 2005, 280(6), 4617-4626.
[http://dx.doi.org/10.1074/jbc.M411863200] [PMID: 15536073]
[51]
Flückiger, R.; Cocuzzi, E.; Nagaraj, R.H.; Shoham, M.; Kern, T.S.; Medof, M.E. DAF in diabetic patients is subject to glycation/inactivation at its active site residues. Mol. Immunol., 2018, 93, 246-252.
[http://dx.doi.org/10.1016/j.molimm.2017.06.036] [PMID: 28886871]
[52]
Bosquet, A.; Girona, J.; Guaita-Esteruelas, S.; Heras, M.; Saavedra-García, P.; Martínez-Micaelo, N.; Masana, L.; Rodríguez-Calvo, R. FABP4 inhibitor BMS309403 decreases saturated-fatty-acid-induced endoplasmic reticulum stress-associated inflammation in skeletal muscle by reducing p38 MAPK activation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2018, 1863(6), 604-613.
[http://dx.doi.org/10.1016/j.bbalip.2018.03.004] [PMID: 29550588]
[53]
Al‐Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.; Edris, A.E. Potential protective effect of Nigella sativa crude oils towards fatty liver in rats. Eur. J. Lipid Sci. Technol., 2013, 115(7), 774-782.
[http://dx.doi.org/10.1002/ejlt.201200256]
[54]
Alsina-Sanchis, E.; Mülfarth, R.; Moll, I.; Mogler, C.; Rodriguez-Vita, J.; Fischer, A. Intraperitoneal oil application causes local inflammation with depletion of resident peritoneal macrophages. Mol. Cancer Res., 2021, 19(2), 288-300.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0650] [PMID: 33139505]
[55]
Zaoui, A.; Cherrah, Y.; Mahassini, N.; Alaoui, K.; Amarouch, H.; Hassar, M. Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine, 2002, 9(1), 69-74.
[http://dx.doi.org/10.1078/0944-7113-00084] [PMID: 11924767]
[56]
Selamoglu, Z.S.; Ozdemir, I.; Ciftci, O.; Gulhan, M.F.; Savci, A. Ozdemir, I.: Ciftci, O.: Gulhan, M. F.: Savci, A. Antioxidant effect of ethanolic extract of propolis in liver of L-NAME treated rats. Adv. Clin. Exp. Med., 2015, 24(2), 227-232.
[http://dx.doi.org/10.17219/acem/40461] [PMID: 25931353]
[57]
Ekhteiari Salmas, R.; Durdagi, S.; Gulhan, M.F.; Duruyurek, M.; Abdullah, H.I.; Selamoglu, Z. The effects of pollen, propolis, and caffeic acid phenethyl ester on tyrosine hydroxylase activity and total RNA levels in hypertensive rats caused by nitric oxide synthase inhibition: experimental, docking and molecular dynamic studies. J. Biomol. Struct. Dyn., 2018, 36(3), 609-620.
[http://dx.doi.org/10.1080/07391102.2017.1288660] [PMID: 28132600]
[58]
Erdemli, M.E.; Ekhteiari Salmas, R.; Durdagi, S.; Akgul, H.; Demirkol, M.; Aksungur, Z.; Selamoglu, Z. Biochemical changes induced by grape seed extract and low level laser therapy administration during intraoral wound healing in rat liver: an experimental and in silico study. J. Biomol. Struct. Dyn., 2018, 36(4), 993-1008.
[http://dx.doi.org/10.1080/07391102.2017.1305297] [PMID: 28279122]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy