Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

MIL-101(Cr)-Functionalized TEDA-BAIL: An Efficient and Recyclable Catalyst for the Synthesis of Pyrimido[4,5-b]quinolinetrione Derivatives

Author(s): Zohreh Mahmoudi, Hassan Kabirifard* and Mohammad Ali Ghasemzadeh

Volume 10, Issue 1, 2023

Published on: 06 March, 2023

Page: [3 - 18] Pages: 16

DOI: 10.2174/1389200223666220517124125

Price: $65

Abstract

Background: In this study, a heterogeneous catalyst containing MIL-101(Cr) functionalized TEDA-BAIL was used to carry out an efficient four-component reaction between aromatic aldehydes, barbituric acid, dimedone, and aryl amines, resulting in the synthesis of a new class of pyrimido[4,5-b]quinolinetrione derivatives.

Methods: Pyrimido[4,5-b]quinolinetrione derivatives were synthesized through a one-pot fourcomponent reaction between aromatic aldehydes, barbituric acid, dimedone, and aryl amines, in the presence of triethylenediamine-based ionic liquid@MIL-101(Cr) composite as a catalyst under reflux conditions. The TEDA-BAIL@MIL-101(Cr), which is a recyclable catalyst, was fully characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) and Transmission electron microscopy (TEM).

Results: Four-component synthesis of pyrimido[4,5-b]quinolinetriones was catalyzed by TEDABAIL@ MIL-101(Cr) with aromatic aldehydes, barbituric acid, dimedone, and aryl amines under reflux conditions. The obtained experimental results revealed that the employed synthesis approach is a simple method that offers several advantages, including sustainability, facile separation from the reaction medium, and reusability of the catalyst after six consecutive runs without loss of activity.

Conclusion: The presented method is an efficient synthesis route for the synthesis of pyrimido[4,5- b]quinolinetriones in the presence of TEDA-BAIL@MIL-101(Cr) under reflux conditions. This procedure provides multiple advantages, such as ease of execution, high yield, clean reaction conditions, shorter reaction time, and catalyst sustainability.

Keywords: Multicomponent reaction, ionic liquid, metal-organic framework, heterogeneous catalyst, TEDA-BAIL@MIL-101(Cr), pyrimido[4, 5-b]quinolinetrione.

Graphical Abstract

[1]
Elkholy, Y.M.; Morsy, M.A. Facile synthesis of 5, 6, 7, 8-tetrahydropyrimido [4, 5-b]-quinoline derivatives. Molecules, 2006, 11(11), 890-903.
[http://dx.doi.org/10.3390/11110890] [PMID: 18007394]
[2]
de la Cruz, J.P.; Carrasco, T.; Ortega, G.; Sanchez de la Cuesta, F. Inhibition of ferrous-induced lipid peroxidation by pyrimido-pyrimidine derivatives in human liver membranes. Lipids, 1992, 27(3), 192-194.
[http://dx.doi.org/10.1007/BF02536177] [PMID: 1522764]
[3]
Tenser, R.B.; Gaydos, A.; Hay, K.A. Inhibition of herpes simplex virus reactivation by dipyridamole. Antimicrob. Agents Chemother., 2001, 45(12), 3657-3659.
[http://dx.doi.org/10.1128/AAC.45.12.3657-3659.2001] [PMID: 11709364]
[4]
Sanghvi, Y.S.; Larson, S.B.; Matsumoto, S.S.; Nord, L.D.; Smee, D.F.; Willis, R.C.; Avery, T.L.; Robins, R.K.; Revankar, G.R. Antitumor and antiviral activity of synthetic alpha- and beta-ribonucleosides of certain substituted pyrimido[5,4-d]pyrimidines: A new synthetic strategy for exocyclic aminonucleosides. J. Med. Chem., 1989, 32(3), 629-637.
[http://dx.doi.org/10.1021/jm00123a022] [PMID: 2918511]
[5]
Donelson, J.L.; Gibbs, R.A.; De, S.K. An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzschfour component condensation. J. Mol. Catal. A, 2006, 256(1-2), 309-311.
[6]
Holla, B.S.; Mahalinga, M.; Karthikeyan, M.S.; Akberali, P.M.; Shetty, N.S. Synthesis of some novel pyrazolo[3,4-d]pyrimidine derivatives as potential antimicrobial agents. Bioorg. Med. Chem., 2006, 14(6), 2040-2047.
[http://dx.doi.org/10.1016/j.bmc.2005.10.053] [PMID: 16310361]
[7]
Khalafi-Nezhad, A.; Panahi, F. Synthesis of new dihydropyrimido[4,5-b]quinolinetrionederivatives using a four-component coupling reaction. Synthesis, 2011, 53(6), 984-992.
[http://dx.doi.org/10.1055/s-0030-1258446]
[8]
Suresh, C.J.; Hanmant, M.K.; Santosh, V.G.; Bhusare, S.R. A convenient one-pot multi-component synthesis of dihydropyrimido[4,5-b]quinolinetriones and evaluation of their anticancer activity. World J. Pharm. Pharm. Sci., 2015, 4(5), 1106-1116.
[9]
Nikoofar, K.; Heidari, H.; Shahedi, Y. Investigation the catalytic activity of nanofibrillated and nanobacterial cellulose sulfuric acid in synthesis of dihydropyrimidoquinolinetriones. Res. Chem. Intermed., 2018, 44(7), 4533-4546.
[http://dx.doi.org/10.1007/s11164-018-3402-4]
[10]
Kinik, F.P.; Uzun, A.; Keskin, S. Ionic liquid/metal-organic framework composites: From synthesis to applications. ChemSusChem, 2017, 10(14), 2842-2863.
[http://dx.doi.org/10.1002/cssc.201700716] [PMID: 28556605]
[11]
Ghasemzadeh, M.A.; Abdollahi-Basir, M.H.; Mirhosseini-Eshkevari, B. Multi-component synthesis of spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-trionesusing zinc terephthalate metalorganic frameworks. Green Chem. Lett. Rev., 2018, 11(1), 47-53.
[http://dx.doi.org/10.1080/17518253.2018.1434565]
[12]
Ghasemzadeh, M.A.; Mirhosseini‐Eshkevari, B.M.; Abdollahi‐Basir, H. MIL‐53(Fe) metal-organic frameworks (MOFs) as anefficient and reusable catalyst for the one‐pot four‐component synthesis of pyrano[2,3‐c]pyrazoles Appl. Organomet. Chem., 2019, 33(1), 4671-4679.
[http://dx.doi.org/10.1002/aoc.4679]
[13]
Panahi, L.; Naimi-Jamal, M.R.; Mokhtari, J.; Morsali, A. Mechanochemically synthesized nanoporousmetal-organic framework Cu2(BDC)2(DABCO): An efficient heterogeneous catalyst for preparation of carbamates. Microporous Mesoporous Mater., 2017, 244(1), 208-217.
[http://dx.doi.org/10.1016/j.micromeso.2016.10.031]
[14]
Röder, R.; Preiß, T.; Hirschle, P.; Steinborn, B.; Zimpel, A.; Höhn, M.; Rädler, J.O.; Bein, T.; Wagner, E.; Wuttke, S.; Lächelt, U. Multifunctional nanoparticles by coordinative self-assembly of His-Tagged units with metal-organic frameworks. J. Am. Chem. Soc., 2017, 139(6), 2359-2368.
[http://dx.doi.org/10.1021/jacs.6b11934] [PMID: 28075125]
[15]
Zhang, Y.; Dai, T.; Zhang, F.; Zhang, J.; Chu, G.; Quan, C. Fe3O4@UiO‐66‐NH2core-shell nanohybrid as stable heterogeneous catalyst for Knoevenagel condensation. Chin. J. Catal., 2016, 37(12), 2106-2113.
[http://dx.doi.org/10.1016/S1872-2067(16)62562-7]
[16]
Azarifar, D.; Ghorbani-Vaghei, R.; Daliran, S.; Oveisi, A.R. A multifunctional zirconium-based metal-organic framework for the one-pot tandem photooxidative Passerini three-component reaction of alcohols. ChemCatChem, 2017, 9(11), 1992-2000.
[http://dx.doi.org/10.1002/cctc.201700169]
[17]
Rostamnia, S.; Xin, H.; Nouruzi, N. Metal-organic frameworks as a very suitable reaction inductor for selective solvent-free multicomponent reaction: IRMOF-3 as a heterogeneous nanocatalyst for Kabachnik-Fields three-component reaction. Microporous Mesoporous Mater., 2013, 179(12), 99-103.
[http://dx.doi.org/10.1016/j.micromeso.2013.05.009]
[18]
Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J.M.; Orellana-Tavra, C.; Del Pozo, V.; Fairen-Jimenez, D.; Forgan, R.S. Mechanistic investigation into the selective anticancer cytotoxicity and immune system response of surface-functionalized, dichloroacetate-loaded, UiO-66 nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(6), 5255-5268.
[http://dx.doi.org/10.1021/acsami.7b17756] [PMID: 29356507]
[19]
Zuowang, W.; Chen, C.; Wan, H.; Wang, L.; Li, Z.; Li, B.; Guo, Q.; Guan, G. Fabrication of magnetic NH2-MIL-88B (Fe) confined Brønstedionic liquid as an efficient catalyst in biodiesel synthesis. Energy Fuels, 2016, 30(12), 10739-10746.
[http://dx.doi.org/10.1021/acs.energyfuels.6b01212]
[20]
Zhang, Z.H.; Liu, B.; Xu, L.; Jiao, H. Combination effect of ionic liquid components on the structure and properties in 1,4-benzenedicarboxylate based zinc metal-organic frameworks. Dalton Trans., 2015, 44(41), 17980-17989.
[http://dx.doi.org/10.1039/C5DT02672E] [PMID: 26402432]
[21]
Fujie, K.; Otsubo, K.; Ikeda, R.; Yamada, T.; Kitagawa, H. Low temperature ionic conductor: Ionic liquid incorporated within a metal-organic framework. Chem. Sci. (Camb.), 2015, 6(7), 4306-4310.
[http://dx.doi.org/10.1039/C5SC01398D] [PMID: 29218200]
[22]
Han, M.; Gu, Z.; Chen, C.; Wu, Z.; Que, Y.; Wang, Q.; Wan, H.; Guan, G. Efficient confinement of ionic liquids in MIL-100(Fe) frameworks by the “impregnation-reaction-encapsulation” strategy for biodiesel production. RSC Advances, 2016, 6(43), 37110-37117.
[http://dx.doi.org/10.1039/C6RA00579A]
[23]
Hajipour, A.R.; Rafiee, F. Recent progress in ionic liquids and their applications in organic synthesis. Org. Prep. Proced. Int., 2015, 47(4), 249-308.
[http://dx.doi.org/10.1080/00304948.2015.1052317]
[24]
Yue, C.; Fang, D.; Liu, L.; Yi, T.F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J. Mol. Liq., 2011, 163(3), 99-121.
[http://dx.doi.org/10.1016/j.molliq.2011.09.001]
[25]
Du, X.; Du, J.; Zhang, J.; Guo, X.; Lu, W.; Yang, Z. Synthesis of ionic liquids [BMIM]BF4 and [BMIM]PF6 undermicrowave irradiation by one-pot. Adv. Mater., 2012, 496, 84-87.
[26]
Goli-Jolodar, O.; Shirini, F.; Seddighi, M. Introduction of a novel basic ionic liquid containing dual basic functional groups for the efficient synthesis of spiro-4H-pyrans. J. Mol. Liq., 2016, 224, 1092-1101.
[http://dx.doi.org/10.1016/j.molliq.2016.10.093]
[27]
Shaterian, H.R.; Mohammadnia, M.; Moradi, F. Acidic ionic liquids catalyzed three-component synthesis of 12-aryl-12H-indeno[1,2-b]naphtho[3,2-e]pyran-5,11,13-trione and 13-aryl-indeno[1,2-b]naphtha[1,2-e]pyran-12(13H)-one derivatives. J. Mol. Liq., 2012, 172, 88-92.
[http://dx.doi.org/10.1016/j.molliq.2012.05.018]
[28]
Luo, Q.X.; Song, X.D.; Ji, M.; Park, S.E.; Hao, C.Y.; Li, Q. Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Appl. Catal. A Gen., 2014, 478, 81-90.
[http://dx.doi.org/10.1016/j.apcata.2014.03.041]
[29]
Luo, Q.X.; Ji, M.; Lu, M.H.; Hao, C.; Qiu, J.S.; Li, Y.Q. Organic electron-rich N-heterocyclic compound as a chemical bridge: Building a Brønstedacidic ionic liquid confined in MIL-101 nanocages. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(22), 6530-6534.
[http://dx.doi.org/10.1039/c3ta10975e]
[30]
Tamboli, A.H.; Bandal, H.A.; Kim, H. Solvent free synthesis of cyclic ureas and urethanes by carbonylation method in the basic dicationic ionic liquid catalysts. Chem. Eng. J., 2016, 306, 826-831.
[http://dx.doi.org/10.1016/j.cej.2016.08.013]
[31]
Ma, J.; Ying, Y.; Guo, X.; Huang, H.; Liu, D.; Zhong, C. Fabrication of mixed-matrix membrane containing selective and facilitated CO2 transport metal-organic framework composite with task-specific ionic liquid for efficient CO2 separation. J. Mater. Chem., 2016, 4(19), 7281-7288.
[http://dx.doi.org/10.1039/C6TA02611G]
[32]
Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev., 2012, 112(2), 933-969.
[http://dx.doi.org/10.1021/cr200304e] [PMID: 22098087]
[33]
Li, S.; Huo, F. Metal-organic framework composites: From fundamentals to applications. Nanoscale, 2015, 7(17), 7482-7501.
[http://dx.doi.org/10.1039/C5NR00518C] [PMID: 25871946]
[34]
Zhu, Q.L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev., 2014, 43(16), 5468-5512.
[http://dx.doi.org/10.1039/C3CS60472A] [PMID: 24638055]
[35]
Singh, M.P.; Singh, R.K.; Chandra, S. Ionic liquids confined in porous matrices: Physicochemical properties and applications. Prog. Mater. Sci., 2014, 64(16), 73-120.
[http://dx.doi.org/10.1016/j.pmatsci.2014.03.001]
[36]
Dhumal, N.R.; Singh, M.P.; Anderson, J.A.; Kiefer, J.H.; Kim, J. Molecular interactions of a Cu-based metal-organic framework with a confined imidazolium-based ionic liquid: A combined density functional theory and experimental vibrational spectroscopy study. J. Phys. Chem. C, 2016, 120(6), 3295-3304.
[http://dx.doi.org/10.1021/acs.jpcc.5b10123]
[37]
Mahmoudi, Z.; Ghasemzadeh, M.A.; Kabirifard, H. Fabrication of UiO-66 nanocages confined Brønsted ionic liquids as an efficient catalyst for the synthesis of dihydropyrazolo[4',3':5,6]pyrano[2,3-d]pyrimidines. J. Mol. Struct, 2019, 1194(6), 1-10.
[38]
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743), 2040-2042.
[http://dx.doi.org/10.1126/science.1116275] [PMID: 16179475]
[39]
Liang, X.; Wang, Y.; Gong, G.; Yang, J. Novel multi-SO3H functional ionic liquid for the conjugate addition of amines to electron deficient alkenes. Catal. Commun., 2008, 10(3), 281-284.
[http://dx.doi.org/10.1016/j.catcom.2008.09.006]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy