Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

A Bird’s Eye View on Evaluation of Anti-Plasmodial Efficacy of Natural Products Isolated from Marine Sources

Author(s): Ravi Kumar Dhanalakshmi, Venkatesan Dharani, Valayutham Ravichandiran, Subhendu Bhowmik* and Vajiravelu Sivamurugan*

Volume 19, Issue 2, 2023

Published on: 09 September, 2022

Article ID: e160522204856 Pages: 21

DOI: 10.2174/1573407218666220516143742

Price: $65

Abstract

Malaria is one of the deadliest vectors of spreading diseases, which causes enormous health concerns in the tropical world, especially in sub-Saharan countries. Despite tremendous efforts around the globe, malaria is one of the leading causes of death in those areas. In addition, the appearance of resistance to the currently available drugs is making the situation more alarming, which highlights the urgency for continued research to stay prepared, and evaluation of natural products could be the best approach in this direction. In drug discovery, nature plays an important role. Most currently marketed drugs are either modified or non-modified or synthetic compounds with a natural product as a pharmacophore. Even in the case of antimalarial drugs, starting from the discovery of quinine to the currently utilized artemisinin, most of the effective antimalarial drugs are derived from terrestrial natural sources. However, although the ocean constitutes almost 75% of the Earth, the exploration and discovery of antimalarial drugs from marine sources are minimal. This comprehensive review assimilates antimalarial natural products from marine sources in recent times. Natural products from oceanic microbes and their plants, in particular, are regarded sources for the review.

Keywords: Alkaloids, Anti-malarial, Cyclicpeptides, Malaria, Marine natural products, Plasmodium

Graphical Abstract

[1]
Sebisubi, F.M.; Tan, G.T. Natural products with antimalarial activity (sample chapter), phytochemistry and pharmacognosy. Encyclopedia of Life Support Systems (EOLSS); Eolss Publishers: Oxford, UK, 2011.
[2]
Claudio, R.N. Lucia. M.X.L. Antiplasmodial natural products. Molecules, 2011, 16(3), 2146-2190.
[http://dx.doi.org/10.3390/molecules16032146]
[3]
Hikmawan, B.; Wahyuono, S.; Setyowati, E. Marine sponge compounds with antiplasmodial properties: Focus on in vitro study against Plasmodium falciparum. J. Appl. Pharm. Sci., 2020, 10(5), 142-157.
[http://dx.doi.org/10.7324/JAPS.2020.10519]
[4]
Uzor, P.F. Alkaloids from plants with antimalarial activity: a review of recent studies. Evid. Based Complement. Alternat. Med., 2020, 20208749083
[http://dx.doi.org/10.1155/2020/8749083] [PMID: 32104196]
[5]
Tajuddeen, N.; Van Heerden, F.R. Antiplasmodial natural products: An update. Malar. J., 2019, 18(1), 404.
[http://dx.doi.org/10.1186/s12936-019-3026-1] [PMID: 31805944]
[6]
Cahlíková, L.; Breiterová, K.; Opletal, L. Chemistry and biological activity of alkaloids from the genus lycoris (amaryllidaceae). Molecules, 2020, 25(20), 4797.
[http://dx.doi.org/10.3390/molecules25204797] [PMID: 33086636]
[7]
Knockleby, J.; Pradines, B.; Gendrot, M.; Mosnier, J.; Nguyen, T.T.; Trinh, T.T.; Lee, H.; Le, P.M. Cytotoxic and anti-plasmodial activities of Stephania dielsiana extracts and the isolated compounds. Molecules, 2020, 25(16), 3755.
[http://dx.doi.org/10.3390/molecules25163755]
[8]
Nyamwihura, R.J.; Zhang, H.; Collins, J.T.; Crown, O.; Ogungbe, I.V. Nopol-based quinoline derivatives as antiplasmodial agents. Molecules, 2021, 26(4), 1008.
[http://dx.doi.org/10.3390/molecules26041008]
[9]
Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem., 2020, 193112215
[http://dx.doi.org/10.1016/j.ejmech.2020.112215] [PMID: 32179331]
[10]
Lawong, A.; Gahalawat, S.; Okombo, J.; Striepen, J.; Yeo, T.; Mok, S.; Deni, I.; Bridgford, J.L.; Niederstrasser, H.; Zhou, A.; Posner, B.; Wittlin, S.; Gamo, F.J.; Crespo, B.; Churchyard, A.; Baum, J.; Mittal, N.; Winzeler, E.; Laleu, B.; Palmer, M.J.; Charman, S.A.; Fidock, D.A.; Ready, J.M.; Phillips, M.A. Novel antimalarial tetrazoles and amides active against the hemoglobin degradation pathway in plasmodium falciparum. J. Med. Chem., 2021, 64(5), 2739-2761.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02022] [PMID: 33620219]
[11]
Amrane, D.; Gellis, A.; Hutter, S.; Prieri, M.; Verhaeghe, P.; Azas, N.; Vanelle, P.; Primas, N. Synthesis and antiplasmodial evaluation of 4-carboxamido- and 4-alkoxy-2-trichloromethyl quinazolines. Molecules, 2020, 25(17), 3929.
[http://dx.doi.org/10.3390/molecules25173929] [PMID: 32867402]
[12]
Cheviet, T.; Wein, S.; Bourchenin, G.; Lagacherie, M.; Périgaud, C.; Cerdan, R.; Peyrottes, S. Lagacherie. M.; Périgaud C.; Cerdan R.; Peyrottes S. β-Hydroxy- and β-aminophosphonate acyclonucleosides as potent inhibitors of Plasmodium falciparum growth. J. Med. Chem., 2020, 63(15), 8069-8087.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00131] [PMID: 32687714]
[13]
Favuzza, P.; de Lera Ruiz, M.; Thompson, J.K.; Triglia, T.; Ngo, A.; Steel, R.W.J.; Vavrek, M.; Christensen, J.; Healer, J.; Boyce, C.; Guo, Z.; Hu, M.; Khan, T.; Murgolo, N.; Zhao, L.; Penington, J.S.; Reaksudsan, K.; Jarman, K.; Dietrich, M.H.; Richardson, L.; Guo, K.Y.; Lopaticki, S.; Tham, W.H.; Rottmann, M.; Papenfuss, T.; Robbins, J.A.; Boddey, J.A.; Sleebs, B.E.; Sabroux, H.J.; McCauley, J.A.; Olsen, D.B.; Cowman, A.F. Dual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycle. Cell Host Microbe, 2020, 27(4), 642-658.e12.
[http://dx.doi.org/10.1016/j.chom.2020.02.005] [PMID: 32109369]
[14]
Hartuti, E.D.; Sakura, T.; Tagod, M.S.O.; Yoshida, E.; Wang, X.; Mochizuki, K.; Acharjee, R.; Matsuo, Y.; Tokumasu, F.; Mori, M.; Waluyo, D.; Shiomi, K.; Nozaki, T.; Hamano, S.; Shiba, T.; Kita, K.; Inaoka, D.K. Identification of 3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives as novel selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Int. J. Mol. Sci., 2021, 22(13), 7236.
[http://dx.doi.org/10.3390/ijms22137236] [PMID: 34281290]
[15]
Jansongsaeng, S.; Srimongkolpithak, N.; Pengon, J.; Kamchonwongpaisan, S.; Khotavivattana, T. 5-Phenoxy primaquine analogs and the tetraoxane hybrid as antimalarial agents. Molecules, 2021, 26(13), 3991.
[http://dx.doi.org/10.3390/molecules26133991] [PMID: 34208832]
[16]
Karpina, V.R.; Kovalenko, S.S.; Kovalenko, S.M.; Drushlyak, O.G.; Bunyatyan, N.D.; Georgiyants, V.A.; Ivanov, V.V.; Langer, T.; Maes, L. A Novel Series of [1,2,4] Triazolo[4,3-a]pyridine sulfonamides as potential antimalarial agents: In silico studies, synthesis and in vitro evaluation. Molecules, 2020, 25(19), 4485.
[http://dx.doi.org/10.3390/molecules25194485] [PMID: 33007887]
[17]
Masch, A.; Nasereddin, A.; Alder, A.; Bird, M.J.; Schweda, S.I.; Preu, L.; Doerig, C.; Dzikowski, R.; Gilberger, T.W.; Kunick, C. Structure-activity relationships in a series of antiplasmodial thieno[2,3-b]pyridines. Malar. J., 2019, 18(1), 89.
[http://dx.doi.org/10.1186/s12936-019-2725-y] [PMID: 30898128]
[18]
Sabnis, R.W. Novel hexahydropyrimidine compounds for treating malaria. ACS Med. Chem. Lett., 2021, 12(5), 679-680.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00171] [PMID: 34055206]
[19]
Schweda, S.I.; Alder, A.; Gilberger, T.; Kunick, C. 4-Arylthieno[2,3-b]pyridine-2-carboxamides are a new class of antiplasmodial agents. Molecules, 2020, 25(14), 3187.
[http://dx.doi.org/10.3390/molecules25143187] [PMID: 32668631]
[20]
Kayamba, F.; Malimabe, T.; Ademola, I.K.; Pooe, O.J.; Kushwaha, N.D.; Mahlalela, M.; van Zyl, R.L.; Gordon, M.; Mudau, P.T.; Zininga, T.; Shonhai, A.; Nyamori, V.O.; Karpoormath, R. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur. J. Med. Chem., 2021. 217, 113330-, 217, 113330.
[http://dx.doi.org/10.1016/j.ejmech.2021.113330] [PMID: 33744688]
[21]
Vinindwa, B.; Dziwornu, G.A.; Masamba, W. synthesis and evaluation of chalcone-quinoline based molecular hybrids as potential anti-malarial agents. Molecules, 2021, 26(13), 4093.
[http://dx.doi.org/10.3390/molecules26134093] [PMID: 34279438]
[22]
Bhatnagar, I.; Kim, S.K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs, 2010, 8(10), 2673-2701.
[http://dx.doi.org/10.3390/md8102673]
[23]
Cardoso, J.; Nakayama, D.G.; Sousa, E.; Pinto, E. Marine-derived compounds and prospects for their antifungal application. Molecules, 2020, 25(24), 5856.
[http://dx.doi.org/10.3390/molecules25245856] [PMID: 33322412]
[24]
Nalini, S.; Sandy Richard, D.; Mohammed Riyaz, S.U.; Kavitha, G.; Inbakandan, D. Antibacterial macro molecules from marine organisms. Int. J. Biol. Macromol., 2018, 115, 696-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.110] [PMID: 29702164]
[25]
Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; Madhkali, H.; Rehman, M.U. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J., 2019, 27(6), 767-777.
[http://dx.doi.org/10.1016/j.jsps.2019.04.013] [PMID: 31516319]
[26]
Catanesi, M.; Caioni, G.; Castelli, V.; Benedetti, E.; d’Angelo, M.; Cimini, A. Benefits under the Sea: The role of marine compounds in neurodegenerative disorders. Mar. Drugs, 2021, 19(1), 24.
[http://dx.doi.org/10.3390/md19010024] [PMID: 33430021]
[27]
Santos, J.D.; Vitorino, I.; Reyes, F.; Vicente, F.; Lage, O.M. From ocean to medicine: Pharmaceutical applications of metabolites from marine bacteria. Antibiotics (Basel), 2020, 9(8), 455.
[http://dx.doi.org/10.3390/antibiotics9080455] [PMID: 32731464]
[28]
Ameen, F.; AlNadhari, S.; Al-Homaidan, A.A. Marine microorganisms as an untapped source of bioactive compounds. Saudi J. Biol. Sci., 2021, 28(1), 224-231.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.052] [PMID: 33424301]
[29]
Sweeney-Jones, A.M.K.; Gagaring, K.; Antonova-Koch, J.; Zhou, H.; Mojib, N.; Soapi, K.; Skolnick, J.; McNamara, C.W.; Kubanek, J. Antimalarial peptide and polyketide natural products from the fijian marine cyanobacterium moorea producens. Mar. Drugs, 2020, 18(3), 167.
[http://dx.doi.org/10.3390/md18030167] [PMID: 32197482]
[30]
Fattorusso, E.; Taglialatela-Scafati, O. Marine antimalarials. Mar. Drugs, 2009, 7(2), 130-152.
[http://dx.doi.org/10.3390/md7020130] [PMID: 19597577]
[31]
Duffy, S.; Avery, V.M. Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. Am. J. Trop. Med. Hyg., 2012, 86(1), 84-92.
[http://dx.doi.org/10.4269/ajtmh.2012.11-0302] [PMID: 22232455]
[32]
Mariana, C.F.; Charles, L.C.; David, E.W.; Vívian, N.G.; Melissa, R.J.; Shabana, K.; Carlos, A.R.; Luiz, H.R. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil. Mem. Inst. Oswaldo Cruz, 2017, 10, 692-697.
[33]
Pagmadulam, B.; Tserendulam, D.; Rentsenkhand, T.; Igarashi, M.; Sawa, R.; Nihei, C.I.; Nishikawa, Y. Isolation and characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils. Parasitol. Int., 2020, 74101961
[http://dx.doi.org/10.1016/j.parint.2019.101961] [PMID: 31437553]
[34]
Moyo, P.; Mugumbate, G.; Eloff, J.N.; Louw, A.I.; Maharaj, V.J.; Birkholtz, L.M. Mugumbate. G.; Eloff. J. N.; Louw. A. I.; Maharaj. V. J.; Birkholtz. L.M.; Natural products: A potential source of malaria transmission blocking drugs? Pharmaceuticals, 2020, 13(9), 1-20.
[http://dx.doi.org/10.3390/ph13090251] [PMID: 32957668]
[35]
Chawla, J.; Oberstaller, J.; Adams, J.H. Targeting gametocytes of the malaria parasite plasmodium falciparum in a functional genomics era: Next steps. Pathogens, 2021, 10(3), 346.
[http://dx.doi.org/10.3390/pathogens10030346] [PMID: 33809464]
[36]
Yoo, E.; Schulze, C.J.; Stokes, B.H.; Onguka, O.; Yeo, T.; Mok, S.; Gnädig, N.F.; Zhou, Y.; Kurita, K.; Foe, I.T.; Terrell, S.M.; Boucher, M.J.; Cieplak, P.; Kumpornsin, K.; Lee, M.C.S.; Linington, R.G.; Long, J.Z.; Uhlemann, A.C.; Weerapana, E.; Fidock, D.A.; Bogyo, M. The antimalarial natural product salinipostin a identifies essential α/β serine hydrolases involved in lipid metabolism in p. falciparum parasites. Cell Chem. Biol., 2020, 27(2), 143-157.e5.
[http://dx.doi.org/10.1016/j.chembiol.2020.01.001] [PMID: 31978322]
[37]
Schulze, C.J.; Navarro, G.; Ebert, D.; DeRisi, J.; Linington, R.G. Salinipostins A-K, long-chain bicyclic phosphotriesters as a potent and selective antimalarial chemotype. J. Org. Chem., 2015, 80(3), 1312-1320.
[http://dx.doi.org/10.1021/jo5024409] [PMID: 25584395]
[38]
Turschner, S.; Efferth, T. Drug resistance in Plasmodium: Natural products in the fight against malaria. Mini Rev. Med. Chem., 2009, 9(2), 206-2124.
[http://dx.doi.org/10.2174/138955709787316074] [PMID: 19200025]
[39]
Guantai, E.; Chibale, K. How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials? Malar. J., 2011, 10(Suppl. 1), S2.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S2]
[40]
Wells, T.N. Natural products as starting points for future anti-malarial therapies: Going back to our roots? Malar. J., 2011, 10(Suppl. 1), S3.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S3]
[41]
Ginsburg, H.; Deharo, E. A call for using natural compounds in the development of new antimalarial treatments - an introduction. Malar. J., 2011, 10(Suppl. 1), S1.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S1]
[42]
Cock, I.E.; Selesho, M.I.; van Vuuren, S.F. A review of the traditional use of southern African medicinal plants for the treatment of malaria. J. Ethnopharmacol. 2019. 245, 112176-, 245, 112176.
[http://dx.doi.org/10.1016/j.jep.2019.112176] [PMID: 31446074]
[43]
Pan, W.H.; Xu, X.Y.; Shi, N.; Tsang, S.W.; Zhang, H.J. antimalarial activity of plant metabolites. Int. J. Mol. Sci., 2018, 19(5), 1382.
[http://dx.doi.org/10.3390/ijms19051382] [PMID: 29734792]
[44]
Dkhil, M.A.; Al-Quraishy, S.; Al-Shaebi, E.M.; Abdel-Gaber, R.; Thagfan, F.A.; Qasem, M.A.A. Medicinal plants as a fight against murine blood-stage malaria. Saudi J. Biol. Sci., 2021, 28(3), 1723-1738.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.014] [PMID: 33732056]
[45]
Subramani, R.; Sipkema, D. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Mar. Drugs, 2019, 17(5), 249.
[http://dx.doi.org/10.3390/md17050249] [PMID: 31035452]
[46]
Devi, K.S.; Velmurugan, D. Molecular modeling, quantitative structure activity relationship and pharmacophore studies on anti-viral, anti-malarial and anti-inflamatory bioactive compounds from marine sources. Asian J. Pharm. Clin. Res., 2015, 8(3), 36-43.
[47]
Mamede, L.; Ledoux, A.; Jansen, O.; Frédérich, M. Natural phenolic compounds and derivatives as potential antimalarial agents. Planta Med., 2020, 86(9), 585-618.
[http://dx.doi.org/10.1055/a-1148-9000] [PMID: 32325510]
[48]
Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem., 2009, 17(9), 3229-3256.
[http://dx.doi.org/10.1016/j.bmc.2009.02.050] [PMID: 19299148]
[49]
Ravichandran, S.; Kathiresan, K.; Balaram, H. Anti-malarials from marine sponges. Mol. Biol., 2007, 2(2), 33-38.
[http://dx.doi.org/10.5897/BMBR2007.0003]
[50]
Prudhomme, J.; McDaniel, E.; Ponts, N.; Bertani, S.; Fenical, W.; Jensen, P.; Le Roch, K. Marine actinomycetes: A new source of compounds against the human malaria parasite. PLoS One, 2008, 3(6)e2335
[http://dx.doi.org/10.1371/journal.pone.0002335] [PMID: 18523554]
[51]
Aguiar, A.C.C.; Parisi, J.R.; Granito, R.N.; de Sousa, L.R.F.; Renno, A.C.M.; Gazarini, M.L. Metabolites from marine spongeS and their potential to treat malarial protozoan parasites infection: A systematic review. Mar. Drugs, 2021, 19(3), 134.
[http://dx.doi.org/10.3390/md19030134] [PMID: 33670878]
[52]
Fang, Q.; Maglangit, F.; Wu, L.; Ebel, R.; Kyeremeh, K.; Andersen, J.H.; Annang, F.; Pérez-Moreno, G.; Reyes, F.; Deng, H. Signalling and bioactive metabolites from Streptomyces sp. RK44. Molecules, 2020, 25(3), 460.
[http://dx.doi.org/10.3390/molecules25030460] [PMID: 31979050]
[53]
Yang, Z.; He, J.; Wei, X.; Ju, J.; Ma, J. Exploration and genome mining of natural products from marine Streptomyces. Appl. Microbiol. Biotechnol., 2020, 104(1), 67-76.
[http://dx.doi.org/10.1007/s00253-019-10227-0] [PMID: 31773207]
[54]
Waterman, C.; Calcul, L.; Beau, J.; Ma, W.S.; Lebar, M.D.; von Salm, J.L.; Harter, C.; Mutka, T.; Morton, L.C.; Maignan, P.; Barisic, B.; van Olphen, A.; Kyle, D.E.; Vrijmoed, L.; Pang, K.L.; Pearce, C.J.; Baker, B.J. Miniaturized cultivation of microbiota for antimalarial drug discovery. Med. Res. Rev., 2016, 36(1), 144-168.
[http://dx.doi.org/10.1002/med.21335] [PMID: 25545963]
[55]
Degotte, G.; Pirotte, B.; Francotte, P.; Frédérich, M. Overview of natural antiplasmodials from the last decade to inspire medicinal chemistry. Curr. Med. Chem., 2021, 28(30), 6199-6233.
[http://dx.doi.org/10.2174/0929867328666210329112354] [PMID: 33781183]
[56]
Gademann, K.; Kobylinska, J. Antimalarial natural products of marine and freshwater origin. Chem. Rec., 2009, 9(3), 187-198.
[http://dx.doi.org/10.1002/tcr.200900001] [PMID: 19424997]
[57]
Mayer, A.M.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009-2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2013, 11(7), 2510-2573.
[http://dx.doi.org/10.3390/md11072510] [PMID: 23880931]
[58]
Mayer, A.M.S.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2012-2013: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2017, 15(9), 273.
[http://dx.doi.org/10.3390/md15090273] [PMID: 28850074]
[59]
Mayer, A.M.S.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2014-2015: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2019, 18(1), 5.
[http://dx.doi.org/10.3390/md18010005] [PMID: 31861527]
[60]
Mayer, A.M.S.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2016-2017: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2021, 19(2), 49.
[http://dx.doi.org/10.3390/md19020049] [PMID: 33494402]
[61]
Kudo, Y.; Awakawa, T.; Du, Y.L.; Jordan, P.A.; Creamer, K.E.; Jensen, P.R.; Linington, R.G.; Ryan, K.S.; Moore, B.S. Expansion of gamma-butyrolactone signaling molecule biosynthesis to phosphotriester natural products. ACS Chem. Biol., 2020, 15(12), 3253-3261.
[http://dx.doi.org/10.1021/acschembio.0c00824] [PMID: 33232109]
[62]
Qidwai, T.; Khan, F. Antimalarial drugs and drug targets specific to fatty acid metabolic pathway of Plasmodium falciparum. Chem. Biol. Drug Des., 2012, 80(2), 155-172.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01389.x] [PMID: 22487082]
[63]
Bérubé, C.; Borgia, A.; Gagnon, D.; Mukherjee, A.; Richard, D.; Voyer, N. Total synthesis and antimalarial activity of dominicin, a cyclic octapeptide from a marine sponge. J. Nat. Prod., 2020, 83(6), 1778-1783.
[64]
Nicolaou, K.C.; Cai, Q.; Sun, H.; Qin, B.; Zhu, S. Total synthesis of trioxacarcins DC-45-A1, A, D, C, and C7-epi-C and full structural assignment of trioxacarcin C. J. Am. Chem. Soc., 2016, 138, 3118-3124.
[65]
Kubota, T.; Nakamura, K.; Kurimoto, S.I.; Sakai, K.; Fromont, J.; Gonoi, T.; Kobayashi, J. Zamamidine D. A manzamine alkaloid from an okinawan amphimedon sp. marine sponge. J. Nat. Prod., 2017, 80(4), 1196-1199.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01110] [PMID: 28207259]
[66]
Kubota, T.; Kurimoto, S.I.; Kobayashi, J. The manzamine alkaloids. Alkaloids Chem. Biol., 2020, 84, 1-124.
[http://dx.doi.org/10.1016/bs.alkal.2020.03.001] [PMID: 32416951]
[67]
Lin, L.C.; Kuo, T.T.; Chang, H.Y.; Liu, W.S.; Hsia, S.M.; Huang, T.C. manzamine a exerts anticancer activity against human colorectal cancer cells. Mar. Drugs, 2018, 16(8), 252.
[http://dx.doi.org/10.3390/md16080252] [PMID: 30060617]
[68]
Saraiva, R.G.; Dimopoulos, G. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Nat. Prod. Rep., 2020, 37(3), 338-354.
[http://dx.doi.org/10.1039/C9NP00042A] [PMID: 31544193]
[69]
Uzair, B.; Mahmood, Z.; Tabassum, S. Antiviral activity of natural products extracted from marine organisms. Bioimpacts, 2011, 1(4), 203-211.
[http://dx.doi.org/10.5681/bi.2011.029] [PMID: 23678429]
[70]
Xue, Y.; Zhao, P.; Quan, C.; Zhao, Z.; Gao, W.; Li, J.; Zu, X.; Fu, D.; Feng, S.; Bai, X.; Zuo, Y.; Li, P. Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides, 2018, 107, 17-24.
[http://dx.doi.org/10.1016/j.peptides.2018.08.002] [PMID: 30077717]
[71]
Zhao, P.; Xue, Y.; Gao, W.; Li, J.; Zu, X.; Fu, D.; Feng, S.; Bai, X.; Zuo, Y.; Li, P. Actinobacteria-Derived peptide antibiotics since 2000. Peptides, 2018, 103, 48-59.
[http://dx.doi.org/10.1016/j.peptides.2018.03.011] [PMID: 29567053]
[72]
Nweze, J.A.; Mbaoji, F.N.; Li, Y.M.; Yang, L.Y.; Huang, S.S.; Chigor, V.N.; Eze, E.A.; Pan, L.X.; Zhang, T.; Yang, D.F. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: A review of recent articles. Infect. Dis. Poverty, 2021, 10(1), 9.
[http://dx.doi.org/10.1186/s40249-021-00796-6] [PMID: 33482912]
[73]
Giordano, D.; Costantini, M.; Coppola, D.; Lauritano, C.; Núñez Pons, L.; Ruocco, N.; di Prisco, G.; Ianora, A.; Verde, C. Biotechnological applications of bioactive peptides from marine sources. Adv. Microb. Physiol., 2018, 73, 171-220.
[http://dx.doi.org/10.1016/bs.ampbs.2018.05.002] [PMID: 30262109]
[74]
Kurisawa, N.; Iwasaki, A.; Jeelani, G.; Nozaki, T.; Suenaga, K. Iheyamides A-C, antitrypanosomal linear peptides isolated from a marine dapis sp. Cyanobacterium. J. Nat. Prod., 2020, 83(5), 1684-1690.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00250] [PMID: 32352773]
[75]
Mi, Y.; Zhang, J.; He, S.; Yan, X. New peptides isolated from marine cyanobacteria, an overview over the past decade. Mar. Drugs, 2017, 15(5), 132.
[http://dx.doi.org/10.3390/md15050132] [PMID: 28475149]
[76]
Linington, R.G.; Clark, B.R.; Trimble, E.E.; Almanza, A.; Ureña, L.D.; Kyle, D.E.; Gerwick, W.H. Antimalarial peptides from marine cyanobacteria: Isolation and structural elucidation of gallinamide A. J. Nat. Prod., 2009, 72(1), 14-17.
[http://dx.doi.org/10.1021/np8003529] [PMID: 19161344]
[77]
Sathe, M.; Thavaselvam, D.; Srivastava, A.K.; Kaushik, M.P. Synthesis and antimalarial evaluation of cyclic -amino acid-containing dipeptides. Molecules, 2008, 13(2), 432-443.
[http://dx.doi.org/10.3390/molecules13020432] [PMID: 18305429]
[78]
Fotie, J.; Morgan, R.E. Depsipeptides from microorganisms: A new class of antimalarials. Mini Rev. Med. Chem., 2008, 8(11), 1088-1094.
[http://dx.doi.org/10.2174/138955708785909916] [PMID: 18855725]
[79]
Andavan, G.S.; Lemmens-Gruber, R. Cyclodepsipeptides from marine sponges: Natural agents for drug research. Mar. Drugs, 2010, 8(3), 810-834.
[http://dx.doi.org/10.3390/md8030810] [PMID: 20411126]
[80]
Fathoni, I.; Petitbois, J.G.; Alarif, W.M.; Abdel-Lateff, A.; Al-Lihaibi, S.S.; Yoshimura, E.; Nogata, Y.; Vairappan, C.S.; Sholikhah, E.N.; Okino, T. Al-Lihaibi. S.S.; Yoshimura. E.; Nogata. Y.; Vairappan. C.S.; Sholikhah. E.N.; Okino. T. bioactivities of lyngbyabellins from cyanobacteria of moorea and okeania genera. Molecules, 2020, 25(17), 3986.
[http://dx.doi.org/10.3390/molecules25173986] [PMID: 32882989]
[81]
Wang, G.; Tang, W.; Bidigare, R.R. Terpenoids as therapeutic drugs and pharmaceutical agents. Natural Products; Zhang, L; Demain, A.L., Ed.; Humana Press, 2005.
[http://dx.doi.org/10.1007/978-1-59259-976-9_9]
[82]
Yang, F.; Zou, Y.; Wang, R.P.; Hamann, M.T.; Zhang, H.J.; Jiao, W.H.; Han, B.N.; Song, S.J.; Lin, H.W. Relative and absolute stereochemistry of diacarperoxides: Antimalarial norditerpene endoperoxides from marine sponge Diacarnus megaspinorhabdosa. Mar. Drugs, 2014, 12(8), 4399-4416.
[http://dx.doi.org/10.3390/md12084399] [PMID: 25110917]
[83]
Gozari, M.; Alborz, M.; El-Seedi, H.R.; Jassbi, A.R. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur. J. Med. Chem., 2021, 210112957
[http://dx.doi.org/10.1016/j.ejmech.2020.112957] [PMID: 33160760]
[84]
Frederich, M.; Tits, M.; Angenot, L. Potential antimalarial activity of indole alkaloids. Trans. R. Soc. Trop. Med. Hyg., 2008, 102(1), 11-19.
[http://dx.doi.org/10.1016/j.trstmh.2007.10.002] [PMID: 18035385]
[85]
Surur, A.S.; Huluka, S.A.; Mitku, M.L.; Asres, K. Indole: the after next scaffold of antiplasmodial agents? Drug Des. Devel. Ther., 2020, 14(14), 4855-4867.
[http://dx.doi.org/10.2147/DDDT.S278588] [PMID: 33204071]
[86]
Ruocco, N.; Costantini, S.; Palumbo, F.; Costantini, M. Marine sponges and bacteria as challenging sources of enzyme inhibitors for pharmacological applications. Mar. Drugs, 2017, 15(6), 173.
[http://dx.doi.org/10.3390/md15060173]
[87]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36(1), 122-173.
[http://dx.doi.org/10.1039/C8NP00092A] [PMID: 30663727]
[88]
Rateb, M.; Houssen, W.; Legrave, N.; Clements, C.; Jaspars, M.; Ebel, R. Dibenzofurans from the marine sponge-derived ascomycete Super1F1-09. Bot. Mar., 2010, 53(6), 499-506.
[http://dx.doi.org/10.1515/bot.2010.064]
[89]
Ding, H.; Zhang, D.; Zhou, B.; Ma, Z. Inhibitors of BRD4 protein from a marine-derived fungus alternaria sp. NH-F6. Mar. Drugs, 2017, 15(3), 76.
[http://dx.doi.org/10.3390/md15030076] [PMID: 28300771]
[90]
Wang, M.; Zhang, J.; He, S.; Yan, X. A review study on macrolides isolated from cyanobacteria. Mar. Drugs, 2017, 15(5), 126.
[http://dx.doi.org/10.3390/md15050126] [PMID: 28445442]
[91]
Sirirak, T.; Brecker, L.; Plubrukarn, A.; Kabiramide, L. Kabiramide L, a new antiplasmodial trisoxazole macrolide from the sponge Pachastrissa nux. Nat. Prod. Res., 2013, 27(13), 1213-1219.
[http://dx.doi.org/10.1080/14786419.2012.724410] [PMID: 22967348]
[92]
Maskey, R.P.; Helmke, E.; Kayser, O.; Fiebig, H.H.; Maier, A.; Busche, A.; Laatsch, H. Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J. Antibiot. , 2004, 57(12), 771-779.
[http://dx.doi.org/10.7164/antibiotics.57.771] [PMID: 15745111]
[93]
Shao, C.L.; Linington, R.G.; Balunas, M.J.; Centeno, A.; Boudreau, P.; Zhang, C.; Engene, N.; Spadafora, C.; Mutka, T.S.; Kyle, D.E.; Gerwick, L.; Wang, C.Y.; Gerwick, W.H. Bastimolide A, a potent antimalarial polyhydroxy macrolide from the marine Cyanobacterium okeania hirsuta. J. Org. Chem., 2015, 80(16), 7849-7855.
[http://dx.doi.org/10.1021/acs.joc.5b01264] [PMID: 26222145]
[94]
Shao, C.L.; Mou, X.F.; Cao, F.; Spadafora, C.; Glukhov, E.; Gerwick, L.; Wang, C.Y.; Gerwick, W.H.; Bastimolide, B. Bastimolide B, an antimalarial 24-membered marine macrolide possessing a tert-butyl group. J. Nat. Prod., 2018, 81(1), 211-215.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00917] [PMID: 29327931]
[95]
Keller, L.; Siqueira-Neto, J.L.; Souza, J.M.; Eribez, K.; LaMonte, G.M.; Smith, J.E.; Gerwick, W.H.; Palstimolide, A. A complex polyhydroxy macrolide with antiparasitic activity. Molecules, 2020, 25(7), 1604.
[http://dx.doi.org/10.3390/molecules25071604] [PMID: 32244512]
[96]
Structure of Maduramicin. Available from: https://en.wikipedia.org/wiki/Maduramicin
[97]
Maron, M.I.; Magle, C.T.; Czesny, B.; Turturice, B.A.; Huang, R.; Zheng, W.; Vaidya, A.B.; Williamson, K.C. Maduramicin rapidly eliminates malaria parasites and potentiates the gametocytocidal activity of the pyrazoleamide PA21A050. Antimicrob. Agents Chemother., 2015, 60(3), 1492-1499.
[http://dx.doi.org/10.1128/AAC.01928-15] [PMID: 26711768]
[98]
Laurent, D.; Jullian, V.; Parenty, A.; Knibiehler, M.; Dorin, D.; Schmitt, S.; Lozach, O.; Lebouvier, N.; Frostin, M.; Alby, F.; Maurel, S.; Doerig, C.; Meijer, L.; Sauvain, M. Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp. Bioorg. Med. Chem., 2006, 14(13), 4477-4482.
[http://dx.doi.org/10.1016/j.bmc.2006.02.026] [PMID: 16513357]
[99]
Angawi, R.F.; Swenson, D.C.; Gloer, J.B.; Wicklow, D.T. Lowdenic acid: A new antifungal polyketide-derived metabolite from a new fungicolous Verticillium sp. J. Nat. Prod., 2003, 66(9), 1259-1262.
[http://dx.doi.org/10.1021/np0301285] [PMID: 14510612]
[100]
El Sayed, K.A.; Yousaf, M.; Hamann, M.T.; Avery, M.A.; Kelly, M.; Wipf, P. Microbial and chemical transformation studies of the bioactive marine sesquiterpenes (S)-(+)-curcuphenol and -curcudiol isolated from a deep reef collection of the Jamaican sponge Didiscus oxeata. J. Nat. Prod., 2002, 65(11), 1547-1553.
[http://dx.doi.org/10.1021/np020213x] [PMID: 12444675]
[101]
Lu, P.H.; Chueh, S.C.; Kung, F.L.; Pan, S.L.; Shen, Y.C.; Guh, J.H. Ilimaquinone, a marine sponge metabolite, displays anticancer activity via GADD153-mediated pathway. Eur. J. Pharmacol., 2007, 556(1-3), 45-54.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.061] [PMID: 17140562]
[102]
Farokhi, F.; Grellier, P.; Clément, M.; Roussakis, C.; Loiseau, P.M.; Genin-Seward, E.; Kornprobst, J.M.; Barnathan, G.; Wielgosz-Collin, G. Antimalarial activity of axidjiferosides, new -galactosy-lceramides from the African sponge Axinyssa djiferi. Mar. Drugs, 2013, 11(4), 1304-1315.
[http://dx.doi.org/10.3390/md11041304] [PMID: 23595058]
[103]
Meesala, S.; Gurung, P.; Karmodiya, K.; Subrayan, P.; Watve, M.G. Isolation and structure elucidation of halymeniaol, a new antimalarial sterol derivative from the red alga Halymenia floresii. J. Asian Nat. Prod. Res., 2018, 20(4), 391-398.
[http://dx.doi.org/10.1080/10286020.2017.1342636] [PMID: 28662593]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy