Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Image Analysis and Diagnosis of Skin Diseases - A Review

Author(s): Xuhui Li, Xinyu Zhao, Haoran Ma and Bin Xie*

Volume 19, Issue 3, 2023

Published on: 22 August, 2022

Article ID: e160522204826 Pages: 44

DOI: 10.2174/1573405618666220516114605

Price: $65

Abstract

Background: Skin disease image analysis has drawn extensive attention from researchers, which can help doctors efficiently diagnose skin disease from medical images. Existing reviews have focused only on the specific task of skin disease diagnosis based on a single medical image type.

Discussion: This paper presents the latest and comprehensive review of image analysis methods in skin diseases, and summarizes over 350 contributions to the field, most of which appeared in the last three years. We first sort out representative publicly available skin datasets and summarize their characteristics. Thereafter, aiming at the typical problems exposed by datasets, we organize the image preprocessing and data enhancement part. Further, we review the single tasks of skin disease image analysis in the literature, such as classification, detection or segmentation, and analyze the improvement direction of their corresponding methods. Additionally, popular multi-task models based on structure and loss function are also investigated.

Conclusions: Challenges involved from the aspects of the dataset and model structure have been discussed.

Keywords: computer-aided diagnosis, skin disease, deep learning, classification, segmentation, multi-task

Graphical Abstract

[1]
Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J Invest Dermatol 2014; 134(6): 1527-34.
[http://dx.doi.org/10.1038/jid.2013.446] [PMID: 24166134]
[2]
Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol 2018; 138(7): 1529-38.
[http://dx.doi.org/10.1016/j.jid.2018.01.028] [PMID: 29428356]
[3]
Wernli KJ, Henrikson NB, Morrison CC, Nguyen M, Pocobelli G, Blasi PR. Screening for skin cancer in adults: Updated evidence report and systematic review for the US preventive services task force. JAMA 2016; 316(4): 436-47.
[http://dx.doi.org/10.1001/jama.2016.5415] [PMID: 27458949]
[4]
Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis 2004; 60(2): 91-110.
[http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94]
[5]
van de Weijer J, Schmid C, Verbeek J, Larlus D. Learning color names for real-world applications. IEEE Trans Image Process 2009; 18(7): 1512-23.
[http://dx.doi.org/10.1109/TIP.2009.2019809] [PMID: 19482579]
[6]
Carli P, Quercioli E, Sestini S, et al. Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology. Br J Dermatol 2003; 148(5): 981-4.
[http://dx.doi.org/10.1046/j.1365-2133.2003.05023.x] [PMID: 12786829]
[7]
Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E, Delfino M. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol 1998; 134(12): 1563-70.
[http://dx.doi.org/10.1001/archderm.134.12.1563] [PMID: 9875194]
[8]
Menzies SW, Bischof L, Talbot H, et al. The performance of SolarScan: An automated dermoscopy image analysis instrument for the diagnosis of primary melanoma. Arch Dermatol 2005; 141(11): 1388-96.
[http://dx.doi.org/10.1001/archderm.141.11.1388] [PMID: 16301386]
[9]
Abbasi NR, Shaw HM, Rigel DS, et al. Early diagnosis of cutaneous melanoma: Revisiting the ABCD criteria. JAMA 2004; 292(22): 2771-6.
[http://dx.doi.org/10.1001/jama.292.22.2771] [PMID: 15585738]
[10]
Henning JS, Dusza SW, Wang SQ, et al. The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J Am Acad Dermatol 2007; 56(1): 45-52.
[http://dx.doi.org/10.1016/j.jaad.2006.09.003] [PMID: 17190620]
[11]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[http://dx.doi.org/10.1007/BF00994018]
[12]
Ho TK. Random decision forests Proceedings of 3rd international conference on document analysis and recognition. 278-82.
[13]
Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 1992; 46(3): 175-85.
[14]
Kamiński B, Jakubczyk M, Szufel P. A framework for sensitivity analysis of decision trees. Cent Eur J Oper Res 2018; 26(1): 135-59.
[http://dx.doi.org/10.1007/s10100-017-0479-6] [PMID: 29375266]
[15]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 115-8.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[16]
Zhao S, Xie B, Li Y, et al. Smart identification of psoriasis by images using convolutional neural networks: A case study in China. J Eur Acad Dermatol Venereol 2020; 34(3): 518-24.
[http://dx.doi.org/10.1111/jdv.15965] [PMID: 31541556]
[17]
Liao H, Luo J. A deep multi-task learning approach to skin lesion classification. arXiv 2018.
[18]
Codella NCF, Gutman D, Celebi ME, et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). IEEE Int Symp Biomed Imag 2018; 2018: 168-72.
[19]
Zhang J, Xie Y, Wu Q, et al. Skin lesion classification in dermoscopy images using synergic deep learning. Int Conf Med Image Comput Comput-Assist Interven 2018; 2018: 12-20.
[20]
Xie B, He X, Zhao S, et al. XiangyaDerm: A Clinical Image Dataset of Asian Race for Skin Disease Aided Diagnosis//Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention. Cham: Springer 2019; pp. 22-31.
[21]
Pal A, Chaturvedi A, Garain U, et al. CapsDeMM: Capsule network for detection of munro’s microabscess in skin biopsy images. Int Conf Med Imag Comput Comput-Assist Interven 2018; 2018: 389-97.
[22]
Marghoob A, Braun R. An Atlas of Dermoscopy. USA: CRC Press 2012.
[23]
Day GR, Barbour RH. Automated melanoma diagnosis: Where are we at? Skin Res Technol 2000; 6(1): 1-5.
[http://dx.doi.org/10.1034/j.1600-0846.2000.006001001.x] [PMID: 11428935]
[24]
Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 2018; 29(8): 1836-42.
[http://dx.doi.org/10.1093/annonc/mdy166] [PMID: 29846502]
[25]
Pellacani G, Seidenari S. Comparison between morphological parameters in pigmented skin lesion images acquired by means of epiluminescence surface microscopy and polarized-light videomicroscopy. Clin Dermatol 2002; 20(3): 222-7.
[http://dx.doi.org/10.1016/S0738-081X(02)00231-6] [PMID: 12074856]
[26]
Kopf AW, Elbaum M, Provost N. The use of dermoscopy and digital imaging in the diagnosis of cutaneous malignant melanoma. Skin Res Technol 1997; 3(1): 1-7.
[http://dx.doi.org/10.1111/j.1600-0846.1997.tb00152.x]
[27]
Menzies SW. Automated epiluminescence microscopy: Human vs. machine in the diagnosis of melanoma. Arch Dermatol 1999; 135(12): 1538-40.
[http://dx.doi.org/10.1001/archderm.135.12.1538] [PMID: 10606065]
[28]
Benvenuto-Andrade C, Dusza SW, Agero AL, et al. Differences between polarized light dermoscopy and immersion contact dermoscopy for the evaluation of skin lesions. Arch Dermatol 2007; 143(3): 329-38.
[http://dx.doi.org/10.1001/archderm.143.3.329] [PMID: 17372097]
[29]
Binder M, Schwarz M, Winkler A, et al. Epiluminescence microscopy. A useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch Dermatol 1995; 131(3): 286-91.
[http://dx.doi.org/10.1001/archderm.1995.01690150050011] [PMID: 7887657]
[30]
The international skin imaging collaboration (ISIC). 2020. Available from: https://www.isic-archive.com/ (Accessed on: 2, 2020).
[31]
Dermofit. A cognitive prosthesis to aid focal skin lesion diagnosis. Available from: https://homepages.inf.ed.ac.uk/rbf/DERMOFIT/
[32]
ADDI Project. PH2. Available from: https://www.fc.up.pt/addi/
[33]
Goyal M, Knackstedt T, Yan S, Hassanpour S. Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities. Comput Biol Med 2020; 127: 104065.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104065] [PMID: 33246265]
[34]
MED_NODE Database. Dermatology database used in MEDNODE. Available from: http://www.cs.rug.nl/~imaging/databases/melanoma_naevi/
[35]
Derm101. Available from: http://www.derm101.com/
[36]
SD-198. Recognition of clinical skin disease images. Available from: http://xiaopingwu.cn/assets/projects/sd-198/
[37]
Dermnet.. Skin Disease Atlas. Available from: http://www.dermnet.com/
[38]
Atlasderm.. Dermatology Atlas. Available from: http://www.atlasdermatologico.com.br/
[39]
Danderm. Available from: http://www.danderm.dk/
[42]
Molemap. Available from: https://www.molemap.net.au/
[43]
Rubin's pathology: Clinicopathologic foundations of medicine. Pennsylvania, USA: Lippincott Williams & Wilkins. 2008.
[44]
Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: A review. IEEE Rev Biomed Eng 2009; 2: 147-71.
[http://dx.doi.org/10.1109/RBME.2009.2034865] [PMID: 20671804]
[46]
Poynton C. Digital video and HD: Algorithms and Interfaces. Elsevier 2012.
[47]
Pratt W. Spatial transform coding of color images. IEEE Trans Commun Technol 1971; 19(6): 980-92.
[http://dx.doi.org/10.1109/TCOM.1971.1090769]
[48]
Ahmad T, Farou Z. Supervised learning methods for skin segmentation based on pixel color classification. Cent-Eur J New Technol Res Educ Pract 2021. [Epub ahead of print]
[49]
Barata C, Celebi ME, Marques JS. Improving dermoscopy image classification using color constancy. IEEE J Biomed Health Inform 2015; 19(3): 1146-52.
[PMID: 25073179]
[50]
Hua Ng J, Goyal M, Hewitt B, et al. The effect of color constancy algorithms on semantic segmentation of skin lesions. Med Imag 2019; 10953: 10953.
[51]
Gómez DD, Butakoff C, Ersbøll BKÆ, Stoecker W. Independent histogram pursuit for segmentation of skin lesions. IEEE Trans Biomed Eng 2008; 55(1): 157-61.
[http://dx.doi.org/10.1109/TBME.2007.910651] [PMID: 18232357]
[52]
Celebi ME, Iyatomi H, Schaefer G, Stoecker WV. Lesion border detection in dermoscopy images. Comput Med Imaging Graph 2009; 33(2): 148-53.
[http://dx.doi.org/10.1016/j.compmedimag.2008.11.002] [PMID: 19121917]
[53]
Norton KA, Iyatomi H, Celebi ME, et al. Three-phase general border detection method for dermoscopy images using non-uniform illumination correction. Skin Res Technol 2012; 18(3): 290-300.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00569.x] [PMID: 22092500]
[54]
Iyatomi H, Celebi ME, Schaefer G, Tanaka M. Automated color calibration method for dermoscopy images. Comput Med Imaging Graph 2011; 35(2): 89-98.
[http://dx.doi.org/10.1016/j.compmedimag.2010.08.003] [PMID: 20933366]
[55]
Schaefer G, Rajab MI, Celebi ME, Iyatomi H. Colour and contrast enhancement for improved skin lesion segmentation. Comput Med Imaging Graph 2011; 35(2): 99-104.
[http://dx.doi.org/10.1016/j.compmedimag.2010.08.004] [PMID: 21035303]
[56]
Melinscak M, Prentasic P, Loncaric S. Retinal vessel segmentation using deep neural networks. VISAPP 2015; (1): 577-82.
[http://dx.doi.org/10.5220/0005313005770582]
[57]
Bisla D, Choromanska A, Stein JA, et al. Skin lesion segmentation and classification with deep learning system. arXiv 2019; 2019: 1-6.
[58]
Jafari MH, Karimi N, Nasr-Esfahani E, et al. Skin lesion segmentation in clinical images using deep learning. Int Conf Pattern Recogn (ICPR) 2016; 2016: 337-42.
[59]
Vala HJ, Baxi A. A review on Otsu image segmentation algorithm. Int J Adv Res Comput Eng Technol 2013; 2(2): 387-9. [IJARCET]
[60]
Huang ZK, Chau KW. A new image thresholding method based on Gaussian mixture model. Appl Math Comput 2008; 205(2): 899-907.
[http://dx.doi.org/10.1016/j.amc.2008.05.130]
[61]
Khan HA, Iskandar DNF, Al-Asad JF, et al. Classification of skin lesion with hair and artifacts removal using black-hat morphology and total variation. Int J Comput Digital Sys 2020; 10: 2-8.
[62]
Zhao R, Ouyang W, Li H, et al. Saliency detection by multi-context deep learning. Proceedings of the IEEE conference on computer vision and pattern recognition. Boston, MA, USA. 7-12 June 2015.
[63]
Pereira S, Pinto A, Alves V, et al. Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI//BrainLes 2015. Cham: Springer 2015; pp. 131-43.
[64]
Talavera-Martinez L, Bibiloni P, Gonzalez-Hidalgo M. Hair segmentation and removal in dermoscopy images using deep learning. IEEE Access 2020; 9: 2694-704.
[http://dx.doi.org/10.1109/ACCESS.2020.3047258]
[65]
Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 2017; 39(12): 2481-95.
[http://dx.doi.org/10.1109/TPAMI.2016.2644615] [PMID: 28060704]
[66]
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 2018; 40(4): 834-48.
[http://dx.doi.org/10.1109/TPAMI.2017.2699184] [PMID: 28463186]
[67]
Yan Z, Zhan Y, Peng Z, et al. Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans Med Imaging 2016; 35(5): 1332-43.
[http://dx.doi.org/10.1109/TMI.2016.2524985] [PMID: 26863652]
[68]
Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging 2016; 35(5): 1352-63.
[http://dx.doi.org/10.1109/TMI.2016.2521800] [PMID: 26829785]
[69]
Celebi ME, Iyatomi H, Schaefer G, Stoecker WV. Approximate lesion localization in dermoscopy images. Skin Res Technol 2009; 15(3): 314-22.
[http://dx.doi.org/10.1111/j.1600-0846.2009.00357.x] [PMID: 19624428]
[70]
Wang H, Chen X, Moss RH, et al. Watershed segmentation of dermoscopy images using a watershed technique. Skin Res Technol 2010; 16(3): 378-84.
[http://dx.doi.org/10.1111/j.1600-0846.2010.00445.x] [PMID: 20637008]
[71]
Wang H, Moss RH, Chen X, et al. Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images. Comput Med Imaging Graph 2011; 35(2): 116-20.
[http://dx.doi.org/10.1016/j.compmedimag.2010.09.006] [PMID: 20970307]
[72]
Abbas Q, Celebi ME, Garcia IF. A novel perceptually-oriented approach for skin tumor segmentation. Int J Innov Comput, Inf Control 2012; 8(3): 1837-48.
[73]
Emre Celebi M, Alp Aslandogan Y, Stoecker WV, Iyatomi H, Oka H, Chen X. Unsupervised border detection in dermoscopy images. Skin Res Technol 2007; 13(4): 454-62.
[http://dx.doi.org/10.1111/j.1600-0846.2007.00251.x] [PMID: 17908199]
[74]
Celebi ME, Kingravi HA, Iyatomi H, et al. Border detection in dermoscopy images using statistical region merging. Skin Res Technol 2008; 14(3): 347-53.
[http://dx.doi.org/10.1111/j.1600-0846.2008.00301.x] [PMID: 19159382]
[75]
ـnver HM, Ayan E. Skin lesion segmentation in dermoscopy images with combination of YOLO and grabcut algorithm. Diagnostics (Basel) 2019; 9(3): 72.
[http://dx.doi.org/10.3390/diagnostics9030072] [PMID: 31295856]
[76]
Zheng L, Zhao Y, Wang S, et al. Good practice in CNN feature transfer. arXiv 2016; 2016: 1604.00133.
[77]
Yu Z, Jiang X, Zhou F, et al. Melanoma recognition in dermoscopy images via aggregated deep convolutional features. IEEE Trans Biomed Eng 2019; 66(4): 1006-16.
[http://dx.doi.org/10.1109/TBME.2018.2866166] [PMID: 30130171]
[78]
Rastgoo M, Garcia R, Morel O, Marzani F. Automatic differentiation of melanoma from dysplastic nevi. Comput Med Imaging Graph 2015; 43: 44-52.
[http://dx.doi.org/10.1016/j.compmedimag.2015.02.011] [PMID: 25797605]
[79]
Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data 2019; 6(1): 1-48.
[http://dx.doi.org/10.1186/s40537-019-0197-0]
[80]
Nyíri T, Kiss A. Style transfer for dermatological data augmentation. Proc SAI Intell Sys Conf 2020 2020; 915-23.
[81]
Chengchuang L, Chun S, Gansen Z, et al. Review of image data augmentation in computer vision. Comput Sci Appl 2021; 11(2): 13.
[82]
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res 2002; 16(1): 321-57.
[http://dx.doi.org/10.1613/jair.953]
[83]
Zhang H, Cisse M, Dauphin YN, et al. mi xup: Beyond empirical risk minimization. arXiv 2017; 2017: 1710.09412..
[84]
Inoue H. Data augmentation by pairing samples for images classification. arXiv 2018; 2018: 1801.02929.
[85]
Yun S, Han D, Oh SJ, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features. Proc IEEE/CVF Int Conf Comput Vision 2019; 2019: 6023-32.
[86]
Shah V, Autee P, Sonawane P. Detection of melanoma from skin lesion images using deep learning techniques. Int Conf Data Sci Eng [ICDSE] 2020; 2020: 1-8.
[87]
Perez F, Vasconcelos C, Avila S, et al. Data augmentation for skin lesion analysis//OR 20 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. Cham: Springer 2018; pp. 303-11.
[88]
Pham TC, Luong CM, Visani M, et al. Deep CNN and data augmentation for skin lesion classification. Asian Conf Intell Inform Database Sys 2018; 2018: 573-82.
[89]
Al-Masni MA, Al-Antari MA, Choi MT, Han SM, Kim TS. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Programs Biomed 2018; 162: 221-31.
[http://dx.doi.org/10.1016/j.cmpb.2018.05.027] [PMID: 29903489]
[90]
Cubuk ED, Zoph B, Mane D, et al. Autoaugment: Learning augmentation policies from data. arXiv 2018; 2018: 1805.09501..
[91]
Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Adv Neural Inf Process Syst 2014; 3: 2672-80.
[92]
Cubuk ED, Zoph B, Shlens J, et al. Randaugment: Practical automated data augmentation with a reduced search space. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2019; 2019: 702-3.
[93]
Li Y, Hu G, Wang Y, et al. Differentiable automatic data augmentation. Eur Conf Comput Vision 2020; 2020: 580-95.
[94]
Shen S, Xu M, Zhang F, et al. Low-cost and high-performance data augmentation for deep-learning-based skin lesion classification arXiv 2021; 2021: 2101.02353.
[95]
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Adv Neural Inf Process Syst 2014; 2014: 27.
[96]
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Med Image Anal 2019; 58: 101552.
[http://dx.doi.org/10.1016/j.media.2019.101552] [PMID: 31521965]
[97]
Wei J, Suriawinata A, Vaickus L, et al. Generative image translation for data augmentation in colorectal histopathology. Images. Machine Learn Health Workshop PMLR 2020; 2020: 10-24.
[98]
Bissoto A, Perez F, Valle E, et al. Skin lesion synthesis with generative adversarial networks//OR 20 context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis. Cham: Springer 2018; pp. 294-302.
[99]
Rashid H, Tanveer MA, Khan HA. Skin lesion classification using GAN based data augmentation. Annu Int Conf IEEE Eng Med Biol Soc (EMBC) 2019; 2019: 916-9.
[100]
Bisla D, Choromanska A, Berman RS, et al. Towards automated melanoma detection with deep learning: Data purification and augmentation. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops arXiv 2019; 2019: 1902.06061.
[101]
Pollastri F, Bolelli F, Paredes R, Grana C. Augmenting data with GANs to segment melanoma skin lesions. Multimedia Tools Appl 2020; 79(21): 15575-92.
[http://dx.doi.org/10.1007/s11042-019-7717-y]
[102]
Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermoscopy images of common pigmented skin lesions. Sci Data 2018; 5(1): 1-9.
[http://dx.doi.org/10.1038/sdata.2018.161] [PMID: 30482902]
[103]
Goyal M, Hassanpour S, Yap MH. Region of interest detection in dermoscopy images for natural data-augmentation. arXiv 2018; 2018: 1807.10711..
[104]
Ghorbani A, Natarajan V, Coz D, et al. DermGAN: Synthetic generation of clinical skin disease images with pathology. PMLR 2020; 2020: 155-70.
[105]
Gu Y, Ge Z, Bonnington CP, Zhou J. Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification. IEEE J Biomed Health Inform 2020; 24(5): 1379-93.
[http://dx.doi.org/10.1109/JBHI.2019.2942429] [PMID: 31545748]
[106]
Yang HY, Staib LH. Dual Adversarial Autoencoder for Dermoscopy image Generative Modeling. Int Sympos Biomed Imag 2019; 2019: 1247-50.
[107]
Abdelhalim ISA, Mohamed MF, Mahdy YB. Data augmentation for skin lesion using self-attention based progressive generative adversarial network. Expert Syst Appl 2021; 165: 113922.
[http://dx.doi.org/10.1016/j.eswa.2020.113922]
[108]
Afza F, Khan MA, Sharif M, et al. Skin lesion classification: An optimized framework of optimal color features selection. Int Conf Comput Inform Sci (ICCIS) 2020; 2020: 1-6.
[109]
Mporas I, Perikos I, Paraskevas M. Color models for skin lesion classification from dermoscopy images//Advances in Integrations of Intelligent Methods. Singapore: Springer 2020; pp. 85-98.
[110]
Monisha M, Suresh A, Bapu BRT, Rashmi MR. Classification of malignant melanoma and benign skin lesion by using back propagation neural network and ABCD rule. Cluster Comput 2019; 22(5): 12897-907.
[http://dx.doi.org/10.1007/s10586-018-1798-7]
[111]
Chatterjee S, Dey D, Munshi S, Gorai S. Dermatological expert system implementing the ABCD rule of dermoscopy for skin disease identification. Expert Syst Appl 2021; 167: 114204.
[http://dx.doi.org/10.1016/j.eswa.2020.114204]
[112]
Yang J, Sun X, Liang J, et al. Clinical skin lesion diagnosis using representations inspired by dermatologist criteria. IEEE/CVF Conf Comput Vision Pattern Recogn (CVPR) 2018; 2018: 18311822.
[113]
Dhivyaa CR, Sangeetha K, Balamurugan M, Amaran S, Vetriselvi T, Johnpaul P. Skin lesion classification using decision trees and random forest algorithms. J Ambient Intell Humaniz Comput 2020; 2020: 1-13.
[http://dx.doi.org/10.1007/s12652-020-02675-8]
[114]
Milton MAA. Automated skin lesion classification using ensemble of deep neural networks in ISIC 2018: Skin lesion analysis towards melanoma detection challenge. arXiv 2019; 2019: 1901.10802.
[115]
Singhal A, Shukla R, Kankar PK, Dubey S, Singh S, Pachori RB. Comparing the capabilities of transfer learning models to detect skin lesion in humans. Proc Inst Mech Eng H 2020; 234(10): 1083-93.
[http://dx.doi.org/10.1177/0954411920939829] [PMID: 32643539]
[116]
Polevaya T, Ravodin R, Filchenkov A. Skin lesion primary morphology classification with end-to-end deep learning network. Int Conf Artif Intell Inform Commun (ICAIIC) 2019; 2019: 247-50.
[http://dx.doi.org/10.1109/ICAIIC.2019.8668980]
[117]
Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35(5): 1285-98.
[http://dx.doi.org/10.1109/TMI.2016.2528162] [PMID: 26886976]
[118]
Qin Z, Liu Z, Zhu P, Xue Y. A GAN-based image synthesis method for skin lesion classification. Comput Methods Programs Biomed 2020; 195: 105568.
[http://dx.doi.org/10.1016/j.cmpb.2020.105568] [PMID: 32526536]
[119]
Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database. IEEE Conf Comput Vision Pattern Recogn 2009; 2009: 248-55.
[120]
Jaworek-Korjakowska J, Kleczek P, Gorgon M. Melanoma thickness prediction based on convolutional neural network with VGG- 19 model transfer learning. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2019; 2019: 00333.
[http://dx.doi.org/10.1109/CVPRW.2019.00333]
[121]
Hekler A, Utikal JS, Enk AH, et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer 2019; 115: 79-83.
[http://dx.doi.org/10.1016/j.ejca.2019.04.021] [PMID: 31129383]
[122]
Kwasigroch A, Grochowski M. Mikołajczyk A. Neural architecture search for skin lesion classification. IEEE Access 2020; 8: 9061-71.
[http://dx.doi.org/10.1109/ACCESS.2020.2964424]
[123]
Brinker TJ, Hekler A, Enk AH, et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur J Cancer 2019; 111: 148-54.
[http://dx.doi.org/10.1016/j.ejca.2019.02.005] [PMID: 30852421]
[124]
Muckatira S. Properties of winning tickets on skin lesion classification. arXiv 2020; 2020: 1901.10802..
[125]
Ratul M A R, Mozaffari MH, Lee WS, et al. Skin lesions classification using deep learning based on dilated convolution BioRxiv 2020; 860700.
[126]
Tschandl P, Argenziano G, Razmara M, Yap J. Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features. Br J Dermatol 2019; 181(1): 155-65.
[http://dx.doi.org/10.1111/bjd.17189] [PMID: 30207594]
[127]
Allegretti S, Bolelli F, Pollastri F, et al. Supporting skin lesion diagnosis with content-based image retrieval. Int Conf Pattern Recogn (ICPR) 2020; 2020: 20591924.
[128]
Barata C, Celebi ME, Marques JS. Explainable skin lesion diagnosis using taxonomies. Pattern Recognit 2021; 110: 107413.
[http://dx.doi.org/10.1016/j.patcog.2020.107413]
[129]
Barata C, Marques JS, Emre Celebi M. Deep attention model for the hierarchical diagnosis of skin lesions. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2019; 2019: 00334.
[http://dx.doi.org/10.1109/CVPRW.2019.00334]
[130]
Aggarwal A, Das N, Sreedevi I. Attention-guided deep convolutional neural networks for skin cancer classification. Int Conf Image Proc Theory Tools Appl (IPTA) 2019; 2019: 1-6.
[131]
Zhang J, Xie Y, Xia Y, Shen C. Attention residual learning for skin lesion classification. IEEE Trans Med Imaging 2019; 38(9): 2092-103.
[http://dx.doi.org/10.1109/TMI.2019.2893944] [PMID: 30668469]
[132]
Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks. arXiv 2020; 2020: 2004.08955.
[133]
Lee I, Kim D, Kang S, et al. Ensemble deep learning for skeleton-based action recognition using temporal sliding lstm networks. Proc IEEE Int Conf Comput Vis 2017; 2017: 1012-20.
[http://dx.doi.org/10.1109/ICCV.2017.115]
[134]
Wang W, Sun G. Classification and research of skin lesions based on machine learning computers. Mater Cont 2020; 62(3): 1187-200.
[http://dx.doi.org/10.32604/cmc.2020.05883]
[135]
Mahbod A, Schaefer G, Ellinger I, Ecker R, Pitiot A, Wang C. Fusing fine-tuned deep features for skin lesion classification. Comput Med Imaging Graph 2019; 71: 19-29.
[http://dx.doi.org/10.1016/j.compmedimag.2018.10.007] [PMID: 30458354]
[136]
Perez F, Avila S, Valle E. Solo or ensemble? choosing a cnn architecture for melanoma classification. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2019; 2019: 1904.12724.
[137]
Harangi B, Baran A, Hajdu A. Assisted deep learning framework for multi-class skin lesion classification considering a binary classification support. Biomed Signal Process Control 2020; 62: 102041.
[http://dx.doi.org/10.1016/j.bspc.2020.102041]
[138]
Hameed N, Shabut AM, Ghosh MK, Hossain MA. Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Syst Appl 2020; 141: 112961.
[http://dx.doi.org/10.1016/j.eswa.2019.112961]
[139]
Mahbod A, Schaefer G, Wang C, Dorffner G, Ecker R, Ellinger I. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Comput Methods Programs Biomed 2020; 193: 105475.
[http://dx.doi.org/10.1016/j.cmpb.2020.105475] [PMID: 32268255]
[140]
Tang P, Liang Q, Yan X, Xiang S, Zhang D. GP-CNN-DTEL: Global-part CNN model with data-transformed ensemble learning for skin lesion classification. IEEE J Biomed Health Inform 2020; 24(10): 2870-82.
[http://dx.doi.org/10.1109/JBHI.2020.2977013] [PMID: 32142460]
[141]
Ghalejoogh GS, Kordy HM, Ebrahimi F. A hierarchical structure based on Stacking approach for skin lesion classification. Expert Syst Appl 2020; 145: 113127.
[http://dx.doi.org/10.1016/j.eswa.2019.113127]
[142]
Walker BN, Rehg JM, Kalra A, et al. Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: Laboratory and prospective observational studies. EBioMedicine 2019; 40: 176-83.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.028] [PMID: 30674442]
[143]
Sabbaghi S, Aldeen M, Garnavi R. A deep bag-of-features model for the classification of melanomas in dermoscopy images. Annu Int Conf IEEE Eng Med Biol Soc (EMBC) 2016; 2016: 1369-72.
[144]
Ahmad B, Usama M, Huang C M, et al. Discriminative feature learning for skin disease classification using deep convolutional neural network. IEEE Access 2020; PP(99): 1-1.
[145]
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. IEEE Trans Pattern Anal Machine Intell 2017; PP(99): 2999-3007.
[146]
Goceri E. Analysis of deep networks with residual blocks and different activation functions: Classification of skin diseases. Int Conf Image Proc Theory Tools Appl (IPTA) 2019; 2019: 1-6.
[147]
Shi X, Dou Q, Xue C, et al. An active learning approach for reducing annotation cost in skin lesion analysis. Int Workshop Machine Learn Medical Imag 2019; 2019: 628-36.
[148]
Bdair T, Navab N, Albarqouni S. Peer learning for skin lesion classification arXiv 2021; 2021: 2103.03703.
[149]
Bagchi S, Banerjee A, Bathula DR. Learning a meta-ensemble technique for skin lesion classification and novel class detection. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2020; 2020: 746-.
[http://dx.doi.org/10.1109/CVPRW50498.2020.00381]
[150]
Combalia M, Hueto F, Puig S, et al. Uncertainty estimation in deep neural networks for dermoscopy image classification. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops. 2020: 744-5.
[151]
Jinnai S, Yamazaki N, Hirano Y, Sugawara Y, Ohe Y, Hamamoto R. The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 2020; 10(8): 1123.
[http://dx.doi.org/10.3390/biom10081123] [PMID: 32751349]
[152]
Khamparia A, Singh PK, Rani P, et al. An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning. Trans Emerg Telecommun Technol 2020; 2020: e3963.
[153]
Hameed N, Shabut A, Hameed F, et al. An intelligent inflammatory skin lesions classification scheme for mobile devices. Int Conf Comput Electron Commun Eng (iCCECE) 2019; 2019: 83-8.
[154]
Weingast J. Scheibböck C, Wurm EMT, et al. A prospective study of mobile phones for dermatology in a clinical setting. J Telemed Telecare 2013; 19(4): 213-8.
[http://dx.doi.org/10.1177/1357633x13490890] [PMID: 24163062]
[155]
Hogan K, Cullan J, Patel V, Rajpara A, Aires D. Overcalling a teledermatology selfie: A new twist in a growing field. Dermatol Online J 2015; 21(6): 13030/qt84x5d2gg.
[http://dx.doi.org/10.5070/D3216027826] [PMID: 26158371]
[156]
Ge Z, Demyanov S, Chakravorty R, et al. Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images. Int Conf Med Image Comput Comput-Assist Interven 2017; 2017: 250-8.
[157]
Kawahara J, Daneshvar S, Argenziano G, Hamarneh G. Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J Biomed Health Inform 2018; 23(2): 538-46.
[http://dx.doi.org/10.1109/JBHI.2018.2824327] [PMID: 29994053]
[158]
Nunnari F, Bhuvaneshwara C, Ezema AO, et al. A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images. Int Cross-Domain Conf Machine Learn Knowledge Extract 2020; 2020: 1-17.
[159]
Yap J, Yolland W, Tschandl P. Multimodal skin lesion classification using deep learning. Exp Dermatol 2018; 27(11): 1261-7.
[http://dx.doi.org/10.1111/exd.13777] [PMID: 30187575]
[160]
Pacheco AGC, Krohling RA. The impact of patient clinical information on automated skin cancer detection. Comput Biol Med 2020; 116: 103545.
[http://dx.doi.org/10.1016/j.compbiomed.2019.103545] [PMID: 31760271]
[161]
Bi L, Feng DD, Fulham M, Kim J. Multi-Label classification of multi-modality skin lesion via hyper-connected convolutional neural network. Pattern Recognit 2020; 107: 107502.
[http://dx.doi.org/10.1016/j.patcog.2020.107502]
[162]
Razmjooy N, Ashourian M, Karimifard M, et al. Computer-aided diagnosis of skin cancer: A review. Curr Med Imaging 2020; 16(7): 781-93.
[http://dx.doi.org/10.2174/1573405616666200129095242]
[163]
Al Mamun M, Uddin MS. A comparative study among segmentation techniques for skin disease detection systems. Proc Int Conf Trends Comput Cogn Eng 2021. 2021: 155-67.
[http://dx.doi.org/10.1007/978-981-33-4673-4_14]
[164]
Celebi ME, Wen Q, Iyatomi H, et al. A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy Image Anal 2015; 10: 97-129.
[http://dx.doi.org/10.1201/b19107-8]
[165]
Pathan S, Prabhu KG, Siddalingaswamy PC. Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—A review. Biomed Signal Process Control 2018; 39: 237-62.
[http://dx.doi.org/10.1016/j.bspc.2017.07.010]
[166]
Chang H. Skin cancer reorganization and classification with deep neural network. arXiv 2017; 2017: 1703.00534..
[167]
Rashid Sheykhahmad F, Razmjooy N, Ramezani M. A novel method for skin lesion segmentation. Int J Inform Secur Sys Manage 2015; 4(2): 458-66.
[168]
Ali AR, Li J, O’Shea SJ, et al. A deep learning based approach to skin lesion border extraction with a novel edge detector in dermoscopy images. Int Joint Conf Neural Networks (IJCNN) 2019; 2019: 1-7.
[169]
Jayalakshmi D, Dheeba J. Border detection in skin lesion images using an improved clustering algorithm. Int J e-Collaborat (IJeC) 2020; 16(4): 15-29.
[170]
Sengupta S, Mittal N, Modi M. Improved skin lesion edge detection method using Ant Colony Optimization. Skin Res Technol 2019; 25(6): 846-56.
[http://dx.doi.org/10.1111/srt.12744] [PMID: 31228313]
[171]
Abbas AA, Abu-Almash FS. Skin lesion border detection based on optimal statistical model using optimized colour channel. J Autonom Intell 2020; 3(1): 18-26.
[172]
Bayraktar M, Kockara S, Halic T, Mete M, Wong HK, Iqbal K. Local edge-enhanced active contour for accurate skin lesion border detection. BMC Bioinformatics 2019; 20 (Suppl. 2): 91.
[http://dx.doi.org/10.1186/s12859-019-2625-8] [PMID: 30871471]
[173]
Abeysinghe D, Sotheeswaran S. Novel computational approaches for border irregularity prediction to detect melanoma in skin lesions. Int Res Conf Smart Comput Sys Eng (SCSE) 2020; 2020: 216-22.
[174]
Han SS, Park GH, Lim W, et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS One 2018; 13(1): e0191493.
[http://dx.doi.org/10.1371/journal.pone.0191493] [PMID: 29352285]
[175]
Ali AR, Li J, Yang G, O’Shea SJ. A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images. PeerJ Comput Sci 2020; 6: e268.
[http://dx.doi.org/10.7717/peerj-cs.268] [PMID: 33816919]
[176]
Ali AR, Li J, Kanwal S, et al. A novel fuzzy multilayer perceptron (F-MLP) for the detection of irregularity in skin lesion border using dermoscopy images. Front Med 2020; 2020: 7.
[177]
Zhang G, Hsu CHR, Lai H, Zheng X. Deep learning based feature representation for automated skin histopathological image annotation. Multimedia Tools Appl 2018; 77(8): 9849-69.
[http://dx.doi.org/10.1007/s11042-017-4788-5]
[178]
Bozkurt A, Kose K, Alessi-Fox C, et al. A multiresolution convolutional neural network with partial label training for annotating reflectance confocal microscopy images of skin. Int Conf Med Image Comput Comput-Assist Int 2018; 2018: 1802.02213. .
[179]
Goyal M, Yap MH, Hassanpour S. Multi-class semantic segmentation of skin lesions via fully convolutional networks arXiv 2017; 2017: 1711.10449.
[180]
Liu Z, Pan H, Gong C, et al. Multi-class skin lesion segmentation for cutaneous T-cell lymphomas on high-resolution clinical images. Int Conf Med Image Comput Comput-Assist Interven 2020; 2020: 351-61.
[181]
Moradi N, Mahdavi-Amiri N. Multi-class segmentation of skin lesions via joint dictionary learning. Biomed Signal Process Control 2021; 68: 102787.
[http://dx.doi.org/10.1016/j.bspc.2021.102787]
[182]
Moradi N, Mahdavi-Amiri N. Kernel sparse representation based model for skin lesions segmentation and classification. Comput Methods Programs Biomed 2019; 182: 105038.
[http://dx.doi.org/10.1016/j.cmpb.2019.105038] [PMID: 31437709]
[183]
Delong A, Osokin A, Isack HN, Boykov Y. Fast approximate energy minimization with label costs. Int J Comput Vis 2012; 96(1): 1-27.
[http://dx.doi.org/10.1007/s11263-011-0437-z]
[184]
Thomas SM, Lefevre JG, Baxter G, Hamilton NA. Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer. Med Image Anal 2021; 68: 101915.
[http://dx.doi.org/10.1016/j.media.2020.101915] [PMID: 33260112]
[185]
Garnavi R, Aldeen M, Celebi ME, et al. Automatic segmentation of dermoscopy images using histogram thresholding on optimal color channels. Int J Med Med Sci 2010; 1(2): 126-34.
[186]
Salih O, Viriri S. Skin lesion segmentation using stochastic region-merging and pixel-based Markov random field. Symmetry (Basel) 2020; 12(8): 1224.
[http://dx.doi.org/10.3390/sym12081224]
[187]
Rizzi M, Guaragnella C. Skin lesion segmentation using image bit-plane multilayer approach. Appl Sci (Basel) 2020; 10(9): 3045.
[http://dx.doi.org/10.3390/app10093045]
[188]
Razmjooy N, Mousavi BS, Soleymani F, et al. A computer-aided diagnosis system for malignant melanomas. Neural Comput Appl 2013; 23(7): 2059-71.
[http://dx.doi.org/10.1007/s00521-012-1149-1]
[189]
Patiño D, Avendaño J, Branch JW. Automatic skin lesion segmentation on dermoscopy images by the means of superpixel merging. Int Conf Med Image Comput Comput-Assist Interven 2018; 2018: 728-36.
[190]
Filali I, Belkadi M. Multi-scale contrast based skin lesion segmentation in digital images. Optik (Stuttg) 2019; 185: 794-811.
[http://dx.doi.org/10.1016/j.ijleo.2019.04.022]
[191]
Devi SS, Singh NH, Laskar RH. Fuzzy C-means clustering with histogram based cluster selection for skin lesion segmentation using non-dermoscopy images. Int J Interact Multimedia Artif Intell 2020; 6(1): 26-31.
[192]
Peruch F, Bogo F, Bonazza M, Cappelleri VM, Peserico E. Simpler, faster, more accurate melanocytic lesion segmentation through MEDS. IEEE Trans Biomed Eng 2014; 61(2): 557-65.
[http://dx.doi.org/10.1109/TBME.2013.2283803] [PMID: 24081839]
[193]
Ma Z, Tavares JMRS. A novel approach to segment skin lesions in dermoscopy images based on a deformable model. IEEE J Biomed Health Inform 2016; 20(2): 615-23.
[http://dx.doi.org/10.1109/JBHI.2015.2390032] [PMID: 25585429]
[194]
Pereira PMM, Fonseca-Pinto R, Paiva RP, et al. Skin lesion classification enhancement using border-line features–The melanoma vs. nevus problem. Biomed Signal Process Control 2020; 57: 101765.
[http://dx.doi.org/10.1016/j.bspc.2019.101765]
[195]
Hasan MJ, Uddin J, Pinku SN. A novel modified SFTA approach for feature extraction. Int Conf Electrical Eng Inf Commun Technol (ICEEICT) 2016; 2016: 1-5.
[196]
Parida P, Rout R. Transition region based approach for skin lesion segmentation. ELCVIA 2020; 19(1): 28-37.
[http://dx.doi.org/10.5565/rev/elcvia.1177]
[197]
Ruela M, Barata C, Marques JS, Rozeira J. A system for the detection of melanomas in dermoscopy images using shape and symmetry features. Comput Methods Biomech Biomed Eng Imaging Vis 2017; 5(2): 127-37.
[http://dx.doi.org/10.1080/21681163.2015.1029080]
[198]
Nasir M, Attique Khan M, Sharif M, Lali IU, Saba T, Iqbal T. An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 2018; 81(6): 528-43.
[http://dx.doi.org/10.1002/jemt.23009] [PMID: 29464868]
[199]
Asaeikheybari G, Green J, Qian X, Jiang H, Huang M-C. Medical image learning from a few/few training samples: Melanoma segmentation study. Smart Health (Amst) 2019; 14: 100088.
[http://dx.doi.org/10.1016/j.smhl.2019.100088]
[200]
McIntosh LM, Mansfield JR, Crowson AN, Mantsch HH, Jackson M. Analysis and interpretation of infrared microscopic maps: Visualization and classification of skin components by digital staining and multivariate analysis. Biospectroscopy 1999; 5(5): 265-75.
[http://dx.doi.org/10.1002/(SICI)1520-6343(1999)5:5<265:AID-BSPY1>3.0.CO;2-F]
[201]
McIntosh LM, Summers R, Jackson M, et al. Towards non-invasive screening of skin lesions by near-infrared spectroscopy. J Invest Dermatol 2001; 116(1): 175-81.
[http://dx.doi.org/10.1046/j.1523-1747.2001.00212.x] [PMID: 11168814]
[202]
Mishra R, Daescu O. Deep learning for skin lesion segmentation. IEEE Int Conf Bioinform Biomed (BIBM) 2017; 2017: 1189-94.
[203]
Zhang X. Melanoma segmentation based on deep learning. CAS 2017; 22(sup1): 267-77.
[http://dx.doi.org/10.1080/24699322.2017.1389405]
[204]
Peng Y, Wang N, Wang Y, Wang M. Segmentation of dermoscopy image using adversarial networks. Multimedia Tools Appl 2019; 78(8): 10965-81.
[http://dx.doi.org/10.1007/s11042-018-6523-2]
[205]
Kaymak R, Kaymak C, Ucar A. Skin lesion segmentation using fully convolutional networks: A comparative experimental study. Expert Syst Appl 2020; 161: 113742.
[http://dx.doi.org/10.1016/j.eswa.2020.113742]
[206]
Öztürk Ş, Özkaya U. Skin lesion segmentation with improved convolutional neural network. J Digit Imaging 2020; 33(4): 958-70.
[http://dx.doi.org/10.1007/s10278-020-00343-z] [PMID: 32378058]
[207]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proc IEEE Conf Comput Vision Pattern Recogn 2016. 2016: 770-8.
[208]
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks. Proc IEEE Conf Comput Vision Pattern Recogn 2017 2017; 2017: 4700-8.
[209]
Nasr-Esfahani E, Rafiei S, Jafari MH, et al. Dense pooling layers in fully convolutional network for skin lesion segmentation. Comput Med Imaging Graph 2019; 78: 101658.
[http://dx.doi.org/10.1016/j.compmedimag.2019.101658] [PMID: 31634739]
[210]
Wei Z, Song H, Chen L, Li Q, Han G. Attention-based DenseUnet network with adversarial training for skin lesion segmentation. IEEE Access 2019; 7: 136616-29.
[http://dx.doi.org/10.1109/ACCESS.2019.2940794]
[211]
Jiang F, Zhou F, Qin J, et al. Decision-augmented generative adversarial network for skin lesion segmentation. Int Sympos Biomed Imag 2019; 2019: 447-50.
[212]
Bi L, Feng D, Fulham M, et al. Improving skin lesion segmentation via stacked adversarial learning. Int Sympos Biomed Imag 2019; 2019: 1100-3.
[213]
Tu W, Liu X, Hu W, et al. Segmentation of lesion in dermoscopy images using dense-residual network with adversarial learning. IEEE Int Conf Image Proc (ICIP) 2019; 2019: 1430-4.
[214]
Lei B, Xia Z, Jiang F, et al. Skin lesion segmentation via generative adversarial networks with dual discriminators. Med Image Anal 2020; 64: 101716.
[http://dx.doi.org/10.1016/j.media.2020.101716] [PMID: 32492581]
[215]
Tschandl P, Sinz C, Kittler H. Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation. Comput Biol Med 2019; 104: 111-6.
[http://dx.doi.org/10.1016/j.compbiomed.2018.11.010] [PMID: 30471461]
[216]
Chaurasia A, Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation. IEEE Visual Commun Image Proc (VCIP) 2017; 2017: 1-4.
[217]
Soudani A, Barhoumi W. An image-based segmentation recommender using crowdsourcing and transfer learning for skin lesion extraction. Expert Syst Appl 2019; 118: 400-10.
[http://dx.doi.org/10.1016/j.eswa.2018.10.029]
[218]
Phillips A, Teo I, Lang J. Segmentation of prognostic tissue structures in cutaneous melanoma using whole slide images. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2019; 2019: 00332.
[http://dx.doi.org/10.1109/CVPRW.2019.00332]
[219]
PascalVOC [EB/OL]. Available from: https://hhostrobotsoxacuk/pascal/VOC/
[220]
Canalini L, Pollastri F, Bolelli F, et al. Skin lesion segmentation ensemble with diverse training strategies. Int Conf Comput Anal Images Patterns 2019; 2019: 89-101.
[221]
Bagheri F, Tarokh MJ, Ziaratban M. Skin lesion segmentation from dermoscopy images by using Mask R-CNN, Retina-Deeplab, and graph-based methods. Biomed Signal Process Control 2021; 67: 102533.
[http://dx.doi.org/10.1016/j.bspc.2021.102533]
[222]
Hasan MK, Elahi MTE, Alam MA, et al. DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation. medRxiv 2021; 2021; 21251038.
[http://dx.doi.org/10.1101/2021.02.02.21251038]
[223]
Xiao J, Xu H, Zhao W, Cheng C, Gao HH. A Prior-mask-guided Few-shot Learning for Skin Lesion Segmentation. Computing 2021; 2021: 1-23.
[http://dx.doi.org/10.1007/s00607-021-00907-z]
[224]
Jin FQ, Knight AE, Cardones AR, Nightingale KR, Palmeri ML. Semi-automated weak annotation for deep neural network skin thickness measurement. Ultrason Imaging 2021; 43(4): 167-74.
[http://dx.doi.org/10.1177/01617346211014138] [PMID: 33971769]
[225]
Messadi M, Cherifi H, Bessaid A. Segmentation and ABCD rule extraction for skin tumors classification. arXiv 2021; 2021: 2106.04372..
[226]
Lin BS, Michael K, Kalra S, et al. Skin lesion segmentation: U-Nets versus clustering. IEEE Sympos Series Comput Intell (SSCI) 2017; 2017: 1-7.
[227]
Huang C, Yu Y. Skin lesion segmentation based on deep learning. Int Conf Commun Technol (ICCT) 2020; 2020: 1360-4.
[228]
Justin S, Pattnaik M. Skin lesion segmentation by pixel by pixel approach using deep learning. IJASIS 2020; 6(1): 12-20.
[229]
Zafar K, Gilani SO, Waris A, et al. Skin lesion segmentation from dermoscopy images using convolutional neural network. Sensors (Basel) 2020; 20(6): 1601.
[http://dx.doi.org/10.3390/s20061601] [PMID: 32183041]
[230]
Li W, Raj ANJ, Tjahjadi T, et al. Digital hair removal by deep learning for skin lesion segmentation. Pattern Recognit 2021; 117: 107994.
[http://dx.doi.org/10.1016/j.patcog.2021.107994]
[231]
Ramya J, Vijaylakshmi HC, Saifuddin HM. Segmentation of skin lesion images using discrete wavelet transform. Biomed Signal Process Control 2021; 69: 102839.
[http://dx.doi.org/10.1016/j.bspc.2021.102839]
[232]
Dastane T, Rao V, Shenoy K, et al. An effective pixel-wise approach for skin colour segmentation using pixel neighbourhood technique. arXiv 2021; 2021: 2108.10971.
[233]
Filali I, Belkadi M, Aoudjit R, Lalam M. Graph weighting scheme for skin lesion segmentation in macroscopic images. Biomed Signal Process Control 2021; 68: 102710.
[http://dx.doi.org/10.1016/j.bspc.2021.102710]
[234]
Adegun A, Viriri S. Deep convolutional network-based framework for melanoma lesion detection and segmentation. Int Conf Adv Concepts Intell Vision Sys 2020; 2020: 51-62.
[235]
Xu Z, Sheykhahmad FR, Ghadimi N, Razmjooy N. Computer-aided diagnosis of skin cancer based on soft computing techniques. Open Med (Wars) 2020; 15(1): 860-71.
[http://dx.doi.org/10.1515/med-2020-0131] [PMID: 33336044]
[236]
Razmjooy N, Sheykhahmad FR, Ghadimi N. A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med (Wars) 2018; 13(1): 9-16.
[http://dx.doi.org/10.1515/med-2018-0002] [PMID: 29577090]
[237]
Razmjooy N, Mousavi BS, Soleymani F. A hybrid neural network Imperialist Competitive Algorithm for skin color segmentation. Math Comput Model 2013; 57(3-4): 848-56.
[http://dx.doi.org/10.1016/j.mcm.2012.09.013]
[238]
Adegun AA, Viriri S, Yousaf MH. A Probabilistic-based deep learning model for skin lesion segmentation. Appl Sci (Basel) 2021; 11(7): 3025.
[http://dx.doi.org/10.3390/app11073025]
[239]
Qiu Y, Cai J, Qin X, et al. Inferring skin lesion segmentation with fully connected CRFS based on multiple deep convolutional neural networks. IEEE Acces 2020; 8: 144246-58.
[240]
Khan MA, Sharif M, Akram T. Damaševičius R, Maskeliūnas R. Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics (Basel) 2021; 11(5): 811.
[http://dx.doi.org/10.3390/diagnostics11050811] [PMID: 33947117]
[241]
Shan P, Wang Y, Fu C, Song W, Chen J. Automatic skin lesion segmentation based on FC-DPN. Comput Biol Med 2020; 123: 103762.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103762] [PMID: 32768035]
[242]
Jiang C, Zhang Y, Wang J, et al. Approximated masked global context network for skin lesion segmentation. Int Conf Artif Neural Networks 2021; 2021: 610-22.
[243]
Qamar S, Ahmad P, Shen L. Dense Encoder-Decoder–Based Architecture for Skin Lesion Segmentation. Cognit Comput 2021; 13(2): 583-94.
[http://dx.doi.org/10.1007/s12559-020-09805-6]
[244]
Chen LC, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation arXiv 2017; 2017: 1706.05587.
[245]
Xie F, Yang J, Liu J, Jiang Z, Zheng Y, Wang Y. Skin lesion segmentation using high-resolution convolutional neural network. Comput Methods Programs Biomed 2020; 186: 105241.
[http://dx.doi.org/10.1016/j.cmpb.2019.105241] [PMID: 31837637]
[246]
Sarker M, Kamal M, Rashwan HA, et al. MobileGAN: Skin lesion segmentation using a lightweight generative adversarial network. arXiv 2019; 2019: 1907.00856.
[247]
Jiang Y, Cao S, Tao S, Zhang H. Skin lesion segmentation based on multi-scale attention convolutional neural network. IEEE Access 2020; 8: 122811-25.
[http://dx.doi.org/10.1109/ACCESS.2020.3007512]
[248]
Oliveira RB, Pereira AS, Tavares JMR. S Computational diagnosis of skin lesions from dermoscopy images using combined features. Neural Comput Appl 2019; 31(10): 6091-111.
[http://dx.doi.org/10.1007/s00521-018-3439-8]
[249]
Tong X, Wei J, Sun B, Su S, Zuo Z, Wu P. ASCU-Net: Attention gate, spatial and channel attention u-net for skin lesion segmentation. Diagnostics (Basel) 2021; 11(3): 501.
[http://dx.doi.org/10.3390/diagnostics11030501] [PMID: 33809048]
[250]
Arora R, Raman B, Nayyar K, Awasthi R. Automated skin lesion segmentation using attention-based deep convolutional neural network. Biomed Signal Process Control 2021; 65: 102358.
[http://dx.doi.org/10.1016/j.bspc.2020.102358]
[251]
Ren Y, Yu L, Tian S, Cheng J, Guo Z, Zhang Y. Serial attention network for skin lesion segmentation. J Ambient Intell Humaniz Comput 2021; 2021: 1-12.
[http://dx.doi.org/10.1007/s12652-021-02933-3]
[252]
Codella NCF, Nguyen QB, Pankanti S, et al. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Develop 2017; 61(4/5): 15.
[http://dx.doi.org/10.1147/JRD.2017.2708299]
[253]
Kaya U, Fidan M. Parametric and nonparametric correlation ranking based supervised feature selection methods for skin segmentation. J Ambient Intell Humaniz Comput 2021; 2021: 1-13.
[http://dx.doi.org/10.1007/s12652-021-02936-0]
[254]
Yuan Y, Lo YC. Improving dermoscopy image segmentation with enhanced convolutional-deconvolutional networks. IEEE J Biomed Health Inform 2019; 23(2): 519-26.
[http://dx.doi.org/10.1109/JBHI.2017.2787487] [PMID: 29990146]
[255]
Kaur P, Dana KJ, Cula GO, et al. Hybrid deep learning for reflectance confocal microscopy skin disease images. Int Conf Pattern Recogn (ICPR) 2016; 2016: 1466-71.
[256]
Pour MP, Seker H. Transform domain representation-driven convolutional neural networks for skin lesion segmentation. Expert Syst Appl 2020; 144: 113129.
[http://dx.doi.org/10.1016/j.eswa.2019.113129]
[257]
Abhishek K, Hamarneh G, Drew MS. Illumination-based transformations improve skin lesion segmentation in dermoscopy images. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2020; 2020: 728-9.
[258]
Attia M, Hossny M, Nahavandi S, et al. Skin melanoma segmentation using recurrent and convolutional neural networks. Int Sympos Biomed Imag 2017; 2017: 292-6.
[259]
Khatibi T, Rezaei N, Ataei Fashtami L, Totonchi M. Proposing a novel unsupervised stack ensemble of deep and conventional image segmentation (SEDCIS) method for localizing vitiligo lesions in skin images. Skin Res Technol 2021; 27(2): 126-37.
[http://dx.doi.org/10.1111/srt.12920] [PMID: 32662570]
[260]
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997; 9(8): 1735-80.
[http://dx.doi.org/10.1162/neco.1997.9.8.1735] [PMID: 9377276]
[261]
Bi L, Kim J, Ahn E, Kumar A, Fulham M, Feng D. Dermoscopy image segmentation via multistage fully convolutional networks. IEEE Trans Biomed Eng 2017; 64(9): 2065-74.
[http://dx.doi.org/10.1109/TBME.2017.2712771] [PMID: 28600236]
[262]
Li H, He X, Zhou F, et al. Dense deconvolutional network for skin lesion segmentation. IEEE J Biomed Health Inform 2019; 23(2): 527-37.
[http://dx.doi.org/10.1109/JBHI.2018.2859898] [PMID: 30047917]
[263]
Li H, He X, Yu Z, et al. Skin lesion segmentation via dense connected deconvolutional network. Int Conf Pattern Recogn (ICPR) 2018; 2018: 671-5.
[264]
Ji W, Cai L, Chen W, et al. Segmentation of lesions in skin image based on salient object detection with deeply supervised learning. Int Conf Comput Commun (ICCC) 2018; 2018: 1567-73.
[265]
Liu L, Mou L, Zhu XX, Mandal M. Automatic skin lesion classification based on mid-level feature learning. Comput Med Imaging Graph 2020; 84: 101765.
[http://dx.doi.org/10.1016/j.compmedimag.2020.101765] [PMID: 32810817]
[266]
Bozorgtabar B, Ge Z, Chakravorty R, et al. Investigating deep side layers for skin lesion segmentation. Int Sympos Biomed Imag 2017; 2017: 256-60.
[267]
Nathan S, Kansal P. Lesion net--skin lesion segmentation using coordinate convolution and deep residual units. arXiv 2020; 2020: 2012.14249.
[268]
Huang L, Zhao Y, Yang T. Skin lesion segmentation using object scale-oriented fully convolutional neural networks Signal. Signal Image Video Process 2019; 13(3): 431-8.
[http://dx.doi.org/10.1007/s11760-018-01410-3]
[269]
Singh VK, Abdel-Nasser M, Rashwan HA, et al. FCA-net: Adversarial learning for skin lesion segmentation based on multi-scale features and factorized channel attention. IEEE Access 2019; 7: 130552-65.
[http://dx.doi.org/10.1109/ACCESS.2019.2940418]
[270]
Zhu L, Feng S, Zhu W, et al. ASNet: An adaptive scale network for skin lesion segmentation in dermoscopy images//Medical Imaging 2020. Biomedical Applications in Molecular, Structural, and Functional Imaging International Society for Optics and Photonics 2020; 11317: 113170W.
[271]
Bi L, Kim J, Ahn E, et al. Semi-automatic skin lesion segmentation via fully convolutional networks. Int Sympos Biomed Imag 2017; 2017: 561-4.
[272]
Mirikharaji Z, Hamarneh G. Star shape prior in fully convolutional networks for skin lesion segmentation. Int Conf Med Image Comput Comput-Assist Interven 2018; 2018: 737-45.
[273]
Goceri E. Deep learning based classification of facial dermatological disorders. Comput Biol Med 2021; 128: 104118.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104118] [PMID: 33221639]
[274]
Zhang J, Petitjean C, Ainouz S. Kappa loss for skin lesion segmentation in fully convolutional network. Int Sympos Biomed Imag 2020; 2020: 2001-4.
[275]
Abhishek K, Hamarneh G. Matthews correlation coefficient loss for deep convolutional networks: Application to skin lesion segmentation. Int Sympos Biomed Imag 2021; 2021: 225-9.
[276]
Hasan MK, Dahal L, Samarakoon PN, Tushar FI. Martí R. DSNet: Automatic dermoscopic skin lesion segmentation. Comput Biol Med 2020; 120: 103738.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103738] [PMID: 32421644]
[277]
Zhang N, Cai YX, Wang YY, Tian YT, Wang XL, Badami B. Skin cancer diagnosis based on optimized convolutional neural network. Artif Intell Med 2020; 102: 101756.
[http://dx.doi.org/10.1016/j.artmed.2019.101756] [PMID: 31980095]
[278]
Ribeiro V, Avila S, Valle E. Less is more: Sample selection and label conditioning improve skin lesion segmentation. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2020; 2020: 738-9.
[279]
Mirikharaji Z, Abhishek K, Izadi S, et al. D-LEMA: Deep learning ensembles from multiple annotations--application to skin lesion segmentation. arXiv 2020; 2020: 2012.07206..
[280]
Raj R, Londhe ND, Sonawane R. Automatic psoriasis lesion segmentation from raw color images using deep learning. Int Conf Bioinform Biomed (BIBM) 2020; 2020: 723-8.
[281]
Udrea A, Mitra GD. Generative adversarial neural networks for pigmented and non-pigmented skin lesions detection in clinical images. In: 2017 21st International Conference on Control Systems and Computer Science (CSCS).; May 29-31; Bucharest, Romania.. 2017; pp. 364-8.
[282]
Pal A, Garain U, Chandra A, Chatterjee R, Senapati S. Psoriasis skin biopsy image segmentation using deep convolutional neural network. Comput Methods Programs Biomed 2018; 159: 59-69.
[http://dx.doi.org/10.1016/j.cmpb.2018.01.027] [PMID: 29650319]
[283]
Bozkurt A, Gale T, Kose K, et al. Delineation of skin strata in reflectance confocal microscopy images with recurrent convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017 Jul 21-26; Honolulu, HI, USA. 25-33.
[http://dx.doi.org/10.1109/CVPRW.2017.108]
[284]
Maglogiannis I, Delibasis KK. Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy. Comput Methods Programs Biomed 2015; 118(2): 124-33.
[http://dx.doi.org/10.1016/j.cmpb.2014.12.001] [PMID: 25540998]
[285]
Czajkowska J, Badura P, Korzekwa S. Płatkowska-Szczerek A. Deep learning approach to skin layers segmentation in inflammatory dermatoses. Ultrasonics 2021; 114: 106412.
[http://dx.doi.org/10.1016/j.ultras.2021.106412] [PMID: 33784575]
[286]
Sarker MMK, Rashwan HA, Akram F, et al. SLSNet: Skin lesion segmentation using a lightweight generative adversarial network. Expert Syst Appl 2021; 183: 115433.
[http://dx.doi.org/10.1016/j.eswa.2021.115433]
[287]
Wibowo A, Purnama SR, Wirawan PW, et al. Lightweight encoder-decoder model for automatic skin lesion segmentation. Inform Med Unlocked 2021; 25: 100640.
[288]
Premaladha J, Ravichandran KS. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J Med Syst 2016; 40(4): 96.
[http://dx.doi.org/10.1007/s10916-016-0460-2] [PMID: 26872778]
[289]
Patiño D, Ceballos-Arroyo AM, Rodriguez-Rodriguez JA, et al. Melanoma detection on dermoscopy images using superpixels segmentation and shape-based features. In: Proc SPIE 11330, 15th International Symposium on Medical Information Processing and Analysis 2019. Nov 6-8; Medelin, Colombia. 1133018
[290]
Aishwarya U, Daniel IJ, Raghul R. Convolutional neural network based skin lesion classification and identification. 2020 International Conference on Inventive Computation Technologies (ICICT). 2020 Feb 26-28; Coimbatore, India. 264-70.
[291]
Sikkandar MY, Alrasheadi BA, Prakash NB, et al. Deep learning based an automated skin lesion segmentation and intelligent classification model. J Ambient Intell Humaniz Comput 2021; 12: 3245-55.
[292]
Amin J, Sharif A, Gul N, et al. Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recognit Lett 2020; 131: 63-70.
[http://dx.doi.org/10.1016/j.patrec.2019.11.042]
[293]
Al Nazi Z, Abir TA. Automatic skin lesion segmentation and melanoma detection: Transfer learning approach with U-Net and DCNN-SVM. In: Proceedings of International Joint Conference on Computational Intelligence 371-81.
[294]
Almaraz-Damian J-A, Ponomaryov V, Sadovnychiy S. Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures. Entropy 2020; 22: 484.
[295]
Prathiba M, Jose D, Saranya R. Automated melanoma recognition in dermoscopy images via very deep residual networks. IOP Conf Ser: Mater Sci Eng 2019; 561(1): 12107.
[296]
Khan MA, Akram T, Zhang YD, Sharif M. Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework. Pattern Recognit Lett 2021; 143: 58-66266.
[http://dx.doi.org/10.1016/j.patrec.2020.12.015]
[297]
Jayapriya K, Jacob IJ. Hybrid fully convolutional networks-based skin lesion segmentation and melanoma detection using deep feature. Int J Imaging Syst Technol 2020; 30(2): 348-57.
[http://dx.doi.org/10.1002/ima.22377]
[298]
Han SS, Moon IJ, Lim W, et al. Keratinocytic skin cancer detection on the face using region-based convolutional neural network. JAMA Dermatol 2020; 156(1): 29-37.
[http://dx.doi.org/10.1001/jamadermatol.2019.3807] [PMID: 31799995]
[299]
Mahbod A, Tschandl P, Langs G, Ecker R, Ellinger I. The effects of skin lesion segmentation on the performance of dermatoscopic image classification. Comput Methods Programs Biomed 2020; 197: 105725.
[http://dx.doi.org/10.1016/j.cmpb.2020.105725] [PMID: 32882594]
[300]
Maron RC, Hekler A, Krieghoff-Henning E, et al. Reducing the Impact of Confounding Factors on Skin Cancer Classification via Image Segmentation: Technical Model Study. J Med Internet Res 2021; 23(3): e21695.
[http://dx.doi.org/10.2196/21695] [PMID: 33764307]
[301]
Al-Masni MA, Kim DH, Kim TS. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Programs Biomed 2020; 190: 105351.
[http://dx.doi.org/10.1016/j.cmpb.2020.105351] [PMID: 32028084]
[302]
Xie Y, Zhang J, Xia Y, Shen C. A mutual bootstrapping model for automated skin lesion segmentation and classification. IEEE Trans Med Imaging 2020; 39(7): 2482-93.
[http://dx.doi.org/10.1109/TMI.2020.2972964] [PMID: 32070946]
[303]
Pal A, Chaturvedi A, Garain U, et al. Severity grading of psoriatic plaques using deep CNN based multi-task learning. 2016 23rd International Conference on Pattern Recognition (ICPR). Dec 4-8; Cancan, Mexico 2016; pp. 1478-83.
[304]
Vesal S, Patil SM, Ravikumar N, et al. A multi-task framework for skin lesion detection and segmentation. In: Stoyanov D, Taylor Z, Sarikaya D, Eds. Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin disease image Analysis. Cham: Springer 2018; pp. 285-93.
[305]
Yang X, Zeng Z, Yeo SY, et al. A novel multi-task deep learning model for skin lesion segmentation and classification. arXiv 2017.
[306]
Li Y, Shen L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors (Basel) 2018; 18(2): 556.
[http://dx.doi.org/10.3390/s18020556] [PMID: 29439500]
[307]
Song L, Lin J, Wang ZJ, Wang H. An end-to-end multi-task deep learning framework for skin lesion analysis. IEEE J Biomed Health Inform 2020; 24(10): 2912-21.
[http://dx.doi.org/10.1109/JBHI.2020.2973614] [PMID: 32071016]
[308]
Jin Q, Cui H, Sun C, et al. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation. Appl Soft Comput 2021; 99: 106881.
[309]
Maron RC, Haggenmüller S, von Kalle C, et al. Robustness of convolutional neural networks in recognition of pigmented skin lesions. Eur J Cancer 2021; 145: 81-91.
[http://dx.doi.org/10.1016/j.ejca.2020.11.020] [PMID: 33423009]
[310]
Wang X, Jiang X, Ding H, Zhao Y, Liu J. Knowledge-aware deep framework for collaborative skin lesion segmentation and melanoma recognition. Pattern Recognit 2021; 120: 108075.
[http://dx.doi.org/10.1016/j.patcog.2021.108075]
[311]
Liu L, Tsui YY, Mandal M. Skin lesion segmentation using deep learning with auxiliary task. J Imaging 2021; 7(4): 67.
[http://dx.doi.org/10.3390/jimaging7040067] [PMID: 34460517]
[312]
Zhang J, Mei K, Zheng Y, Fan J. Learning multi-layer coarse-to-fine representations for large-scale image classification. Pattern Recognit 2019; 91: 175-89.
[http://dx.doi.org/10.1016/j.patcog.2019.02.024]
[313]
Coppola D, Lee HK, Guan C. Interpreting mechanisms of prediction for skin cancer diagnosis using multi-task learning. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020 Jun 14-19; Seattle, WA, USA. 734-5.
[http://dx.doi.org/10.1109/CVPRW50498.2020.00375]
[314]
Alzahrani S, Al-Nuaimy W, Al-Bander B. Seven-point checklist with convolutional neural networks for melanoma diagnosis. In: 2019 8th European Workshop on Visual Information Processing (EUVIP); Oct 28-31; Roma, Italy.. 2019; pp. 211-6.
[315]
Kong Z, He M, Luo Q, et al. Multi-task classification and segmentation for explicable capsule endoscopy diagnostics. Front Mol Biosci 2021; 8: 614277.
[http://dx.doi.org/10.3389/fmolb.2021.614277] [PMID: 34490342]
[316]
Chu T, Li X, Vo HV, et al. Improving weakly supervised lesion segmentation using multi-task learning. Medical Imaging with Deep Learning. 2021.
[317]
Jin C, Yu H, Ke J, et al. Predicting treatment response from longitudinal images using multi-task deep learning. Nat Commun 2021; 12(1): 1851.
[http://dx.doi.org/10.1038/s41467-021-22188-y] [PMID: 33767170]
[318]
LabelImg. Available from: https://github.com/tzutalin/labelImg/
[319]
LabelMe. Available from: http://labelme.csail.mit.edu/Release3.0/
[320]
Tokuoka Y, Suzuki S, Sugawara Y. An inductive transfer learning approach using cycle-consistent adversarial domain adaptation with application to brain tumor segmentation. In: Proceedings of the 2019 6th International Conference on Biomedical and Bioinformatics Engineering. 2019 Nov 13-15; Shanghai, China. 44-8.
[http://dx.doi.org/10.1145/3375923.3375948]
[321]
Dupre R, Fajtl J, Argyriou V, Remagnino P. Improving dataset volumes and model accuracy with semi-supervised iterative self-learning. IEEE Trans Image Process 2019; 29: 4337-48.
[http://dx.doi.org/10.1109/TIP.2019.2913986] [PMID: 31059446]
[322]
Wei X, Wei X, Kong X, Lu S, Xing W, Lu W. FMixCutMatch for semi-supervised deep learning. Neural Netw 2021; 133: 166-76.
[http://dx.doi.org/10.1016/j.neunet.2020.10.018] [PMID: 33217685]
[323]
Berthelot D, Carlini N, Goodfellow I, et al. Mixmatch: A holistic approach to semi-supervised learning. arXiv 2019.
[324]
He Y, Shi J, Wang C, et al. Semi-supervised skin detection by network with mutual guidance. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019 Oct 27-Nov 2; Seoul, Korea (South).. 2111-0.
[http://dx.doi.org/10.1109/ICCV.2019.00220]
[325]
Liu Y, Lee J, Park M, et al. Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv 2018.
[326]
Abubakar A, Ajuji M, Usman Yahya I. Comparison of deep transfer learning techniques in human skin burns discrimination. Appl Syst Innov 2020; 3(2): 20.
[http://dx.doi.org/10.3390/asi3020020]
[327]
Hosny KM, Kassem MA, Foaud MM. Skin melanoma classification using ROI and data augmentation with deep convolutional neural networks. Multimedia Tools Appl 2020; 79(33): 24029-55.
[http://dx.doi.org/10.1007/s11042-020-09067-2]
[328]
Hekler A, Kather JN, Krieghoff-Henning E, et al. Effects of label noise on deep learning-based skin cancer classification. Front Med (Lausanne) 2020; 7: 177.
[http://dx.doi.org/10.3389/fmed.2020.00177] [PMID: 32435646]
[329]
Zunair H, Ben Hamza A. Melanoma detection using adversarial training and deep transfer learning. Phys Med Biol 2020; 65(13): 135005.
[http://dx.doi.org/10.1088/1361-6560/ab86d3] [PMID: 32252036]
[330]
Marcus G, Davis E. Rebooting AI: Building artificial intelligence we can trust. New York City: Knopf Doubleday Publishing Group 2019.
[331]
Li X, Xu Y, Xiang F, et al. Prediction of IDH mutation status of glioma based on multimodal MRI images. In: 2021 3rd International Conference on Intelligent Medicine and Image Processing; Apr 23-26; Tianjin, China. 2021; pp. 39-44.
[332]
Huang F, Zhang X, Zhao Z, Xu J, Li Z. Image–text sentiment analysis via deep multimodal attentive fusion. Knowl Base Syst 2019; 167: 26-37.
[http://dx.doi.org/10.1016/j.knosys.2019.01.019]
[333]
Zadeh A, Chen M, Poria S, et al. Tensor fusion network for multimodal sentiment analysis. arXiv 2017.
[334]
Li X, Xu Y, Xiang F, Liu Q, Huang W, Xie B. KINET: A non-invasive method for predicting ki67 index of glioma. In: 2021 IEEE International Conference on Image Processing (ICIP). 2021 Sep 19-22; Anchorage, AK, USA.. 150-4.
[http://dx.doi.org/10.1109/ICIP42928.2021.9506741]
[335]
Liu Z, Shen Y, Lakshminarasimhan VB, et al. Efficient low-rank multimodal fusion with modality-specific factors arXiv 2018.
[336]
Hou M, Tang J, Zhang J, et al. Deep multimodal multilinear fusion with high-order polynomial pooling. Adv Neural Inf Process Syst 2019; 32: 12136-45.
[337]
Zadeh A, Liang PP, Mazumder N, et al. Memory fusion network for multi-view sequential learning. Proc Conf AAAI Artif Intell 2018; 32(1): 5634-41.
[338]
Xu N, Mao W, Chen G. Multi-interactive memory network for aspect based multimodal sentiment analysis. Proc Conf AAAI Artif Intell 2019; 33(01): 371-8.
[http://dx.doi.org/10.1609/aaai.v33i01.3301371]
[339]
Zhang Z, Chen K, Wang R, et al. Neural machine translation with universal visual representation. In: International Conference on Learning Representations; Apr 30; Addis Ababa, Ethiopia. 2020.
[340]
Lu Y, Wu Y, Liu B, et al. Cross-modality person re-identification with shared-specific feature transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Jun 13-19; Seattle, WA, USA. 2020; pp. 13379-89.
[http://dx.doi.org/10.1109/CVPR42600.2020.01339]
[341]
Li X, Wang C, Tan J, et al. Adversarial multimodal representation learning for click-through rate prediction. In: Proceedings of The Web Conference 2020; Apr 20-24; Taipei, Taiwan. 2020; pp. 827-36.
[http://dx.doi.org/10.1145/3366423.3380163]
[342]
Qin Q, Hu W, Liu B. Feature projection for improved text classification. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics 2020 Jul;; 8161-71.
[http://dx.doi.org/10.18653/v1/2020.acl-main.726]
[343]
Yang H, Wang T, Yin L. Adaptive Multimodal Fusion for Facial Action Units Recognition. Proceedings of the 28th ACM International Conference on Multimedia. 2020 Oct 12-16; Seattle, WA, USA. 2982-90.
[http://dx.doi.org/10.1145/3394171.3413538]
[344]
Pérez-Rúa JM, Vielzeuf V, Pateux S, et al. Mfas: Multimodal fusion architecture search In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2019 Jun. 15-19; Long Beach, CA, USA, 6966-75.
[345]
Joze HRV, Shaban A, Iuzzolino ML, et al. MMTM: Multimodal transfer module for CNN fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Jun 13-19; Seattle, WA, USA. 2020; pp. 13289-99.
[346]
Fan X, Dai M, Liu C, et al. Effect of image noise on the classification of skin lesions using deep convolutional neural networks. Tsinghua Sci Technol 2019; 25(3): 425-34.
[http://dx.doi.org/10.26599/TST.2019.9010029]
[347]
Hu L, Wang S, Li L, et al. How functions evolve in deep convolutional neural network. In: 2018 14th IEEE International Conference on Signal Processing (ICSP); Beijing, China. 2018; pp. Aug 12-16; 1133-8.
[348]
Chen CLP, Liu Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Trans Neural Netw Learn Syst 2018; 29(1): 10-24.
[http://dx.doi.org/10.1109/TNNLS.2017.2716952] [PMID: 28742048]
[349]
Pintelas E, Liaskos M, Livieris IE, Kotsiantis S, Pintelas P. A novel explainable image classification framework: Case study on skin cancer and plant disease prediction. Neural Comput Appl 2021; 33(22): 1-19.
[http://dx.doi.org/10.1007/s00521-021-06141-0]
[350]
Fan FL, Xiong J, Li M, Wang G. On interpretability of artificial neural networks: A survey. IEEE Trans Radiat Plasma Med Sci 2021; 5(6): 741-60.
[http://dx.doi.org/10.1109/TRPMS.2021.3066428]
[351]
Stieler F, Rabe F, Bauer B. Towards domain-specific explainable AI: Model interpretation of a skin image classifier using a human approach. In: Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Jun 19-25; Nashville, TN, USA. 2021; pp. 1802-9.
[http://dx.doi.org/10.1109/CVPRW53098.2021.00199]
[352]
Jiang S, Li H, Jin Z. A visually interpretable deep learning framework for histopathological Image-based skin cancer diagnosis. IEEE J Biomed Health Inform 2021; 25(5): 1483-94.
[http://dx.doi.org/10.1109/JBHI.2021.3052044] [PMID: 33449890]
[353]
Olah C, Mordvintsev A, Schubert L. Feature visualization: How neural networks build up their understanding of images. Distill 2017.
[354]
Sanh V, Debut L, Chaumond J, et al. DistilBERT, a distilled version of BERT. arXiv 2019.
[355]
Jiao X, Yin Y, Shang L, et al. Distilling bert for natural language understanding. arXiv 2019.
[356]
Vandenhende S, Georgoulis S, Van Gansbeke W, Proesmans M, Dai D, Van Gool L. Multi-Task Learning for Dense Prediction Tasks: A Survey. IEEE Trans Pattern Anal Mach Intell 2021; 1.
[http://dx.doi.org/10.1109/TPAMI.2021.3054719] [PMID: 33497328]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy