Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Exploration of Curcumin against Various Biological Disorders: Mechanism of Action and Pharmacotherapeutics

Author(s): Mritunjay Kumar, Swati Verma, Rishabha Malviya*, Sonali Sundram, Akanksha Sharma and Neelesh Mishra

Volume 13, Issue 2, 2023

Published on: 03 September, 2022

Article ID: e120522204702 Pages: 11

DOI: 10.2174/2210315512666220512205625

Price: $65

Abstract

Synthetic drug usage has risen substantially, although plant-based medicines are more appropriate in terms of adverse effects. Through the classical era, humans relied on Phyto moieties to cure several illnesses, the most common of which is curcumin, the main phenol derived from the various varieties of turmeric. Its therapeutic and medicinal qualities are described in the Vedic Scriptures and Chinese medicine. Curcumin has been widely researched for its pleiotropic action, which includes anti-inflammatory, and anti-oxidant properties. The manuscript aims to describe the sources, properties, and pharmacological activities of curcumin. Turmeric is grown in India, and curcumin is a major phytoconstituent of turmeric. It has pharmacological activities like anti-oxidant, analgesic, anticarcinogenic, chemo-preventive, anti-inflammatory, chemo-therapeutic, antifungal, antibacterial, antitumor, neuroprotective, anti-diabetic, anti-apoptotic, and immunomodulatory activities. Curcumin has been recommended in various research to have anti-cancer effects on several biochemical pathways associated with metastatic disease, cell cycle regulation, and so on. It can be concluded from the findings of the pieces of literature that curcumin is an important phytoconstituent and has the potential to treat various biological disorders. Curcumin’s anti-tumor efficacy is the most prominent research activity being carried out by researchers worldwide. In the present review, the authors have summarized the important pharmacological activities of curcumin, and the mechanism of action involved to forecast the pharmacotherapeutic effect like for anti-cancer effects (suppression of NF-KB, intrinsic and extrinsic pathways, PKC inhibition and many more), for anti-viral effect (Interfering Genomic Replication, Inhibiting Virus attachment, Activation of cellular signaling Pathways, etc.), for Anti-diabetic (AMPK activation, Decreased liver fat deposition, etc.), for neuroprotective effect (Increased p-Akt and p-mToR levels, Reducing p-p338, LC-II/LC-I, p-38 levels, etc.) and for other activities also like antibacterial, immunomodulatory, anti-inflammatory and anti-oxidant.

Keywords: curcumin, pharmacological activity, anticancer, anti-inflammatory, natural product

Graphical Abstract

[1]
Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; DE Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 2015, 10(5), 1615-1623.
[http://dx.doi.org/10.3892/etm.2015.2749] [PMID: 26640527]
[2]
Mullaicharam, A.R.; Maheswaran, A. Pharmacological effects of curcumin. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(2), 92-99.
[http://dx.doi.org/10.4103/2231-0738.95930]
[3]
Takahashi, M.; Ishiko, T.; Kamohara, H.; Hidaka, H.; Ikeda, O.; Ogawa, M.; Baba, H. Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) blocks the chemotaxis of neutrophils by inhibiting signal transduction through IL-8 receptors. Mediators Inflamm., 2007, 2007, 10767.
[http://dx.doi.org/10.1155/2007/10767] [PMID: 17710245]
[4]
Farooqui, T.; Farooqui, A.A. Curcumin: Historical background, chemistry, pharmacological action, and potential therapeutic value;; curcumin for neurological and psychiatric disorders, 2019, pp. 23-44.
[5]
Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1-26.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[6]
Tuorkey, M.J. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv. Med. Appl. Sci., 2014, 6(4), 139-146.
[http://dx.doi.org/10.1556/imas.6.2014.4.1] [PMID: 25598986]
[7]
Abadi, A.J.; Mirzaei, S.; Mahabady, M.K.; Hashemi, F.; Zabolian, A.; Hashemi, F.; Raee, P.; Aghamiri, S.; Ashrafizadeh, M.; Aref, A.R.; Hamblin, M.R.; Hushmandi, K.; Zarrabi, A.; Sethi, G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother. Res., 2022, 36(1), 189-213.
[http://dx.doi.org/10.1002/ptr.7305] [PMID: 34697839]
[8]
Mohan, P.R.K.G.; Sreelakshmi, C.V.; Muraleedharan, R.J.; Joseph, R. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc., 2012, 62, 77-84.
[http://dx.doi.org/10.1016/j.vibspec.2012.05.002]
[9]
Rocks, N.; Bekaert, S.; Coia, I.; Paulissen, G.; Gueders, M.; Evrard, B.; Van Heugen, J.C.; Chiap, P.; Foidart, J.M.; Noel, A.; Cataldo, D. Curcumin-cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. Br. J. Cancer, 2012, 107(7), 1083-1092.
[http://dx.doi.org/10.1038/bjc.2012.379] [PMID: 22929882]
[10]
Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[11]
Rachmawati, H.; Edityaningrum, C.A.; Mauludin, R. Molecular inclusion complex of curcumin-β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech, 2013, 14(4), 1303-1312.
[http://dx.doi.org/10.1208/s12249-013-0023-5] [PMID: 23990077]
[12]
Fernandez, M.A.; Silva, O.F.; Vico, R.V.; De Rossi, R.H. Complex systems that incorporate cyclodextrins to get materials for some specific applications; Carb. Res, 2019, pp. 12-34.
[http://dx.doi.org/10.1016/j.carres.2019.05.006]
[13]
Ghanghoria, R.; Kesharwani, P.; Agashe, H.B.; Jain, N.K. Transdermal delivery of cyclodextrin-solubilized curcumin. Drug Deliv. Transl. Res., 2013, 3(3), 272-285.
[http://dx.doi.org/10.1007/s13346-012-0114-y] [PMID: 25788135]
[14]
Siddiqui, F.A.; Prakasam, G.; Chattopadhyay, S.; Rehman, U.; Padder, R.A.; Ansari, M.A.; Irshad, R.; Mangalhara, K.; Bamezai, R.N.K.; Hussain, M.; Mansoor Ali, S.; Iqbal, M.A. Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci. Rep., 2018, 8(1), 1-9.
[http://dx.doi.org/10.1038/s41598-018-25524-3] [PMID: 29311619]
[15]
Krup, V.; Prakash, L.H.; Harini, A. Pharmacological activities of turmeric (Curcuma longa Linn): A review. J. Homeop. Ayurv. Med., 2013, 2(133), 2167-1206.
[http://dx.doi.org/10.4172/2167-1206.1000133]
[16]
Vutakuri, N. Curcumin-breast cancer therapeutic agent to replace allopathic treatments with extensive side effects. J. Young Investig., 2018, 35(2), 38-44.
[http://dx.doi.org/10.22186/jyi.35.2.38-44]
[17]
Johnson, N.W.; Warnakulasuriya, S.; Gupta, P.C.; Dimba, E.; Chindia, M.; Otoh, E.C.; Sankaranarayanan, R.; Califano, J.; Kowalski, L. Global oral health inequalities in incidence and outcomes for oral cancer: Causes and solutions. Adv. Dent. Res., 2011, 23(2), 237-246.
[http://dx.doi.org/10.1177/0022034511402082] [PMID: 21490236]
[18]
Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol., 2009, 45(4-5), 309-316.
[http://dx.doi.org/10.1016/j.oraloncology.2008.06.002] [PMID: 18804401]
[19]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(1), 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[20]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J. Biol. Chem., 1995, 270(42), 24995-25000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[21]
Hussain, A.R.; Ahmed, M.; Al-Jomah, N.A.; Khan, A.S.; Manogaran, P.; Sultana, M.; Abubaker, J.; Platanias, L.C.; Al-Kuraya, K.S.; Uddin, S. Curcumin suppresses constitutive activation of nuclear factor-kappa B and requires functional Bax to induce apoptosis in Burkitt’s lymphoma cell lines. Mol. Cancer Ther., 2008, 7(10), 3318-3329.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0541] [PMID: 18852135]
[22]
Lee, K.H.; Chow, Y.L.; Sharmili, V.; Abas, F.; Alitheen, N.B.; Shaari, K.; Israf, D.A.; Lajis, N.H.; Syahida, A. BDMC33, A curcumin derivative suppresses inflammatory responses in macrophage-like cellular system: Role of inhibition in NF-κB and MAPK signaling pathways. Int. J. Mol. Sci., 2012, 13(3), 2985-3008.
[http://dx.doi.org/10.3390/ijms13032985] [PMID: 22489138]
[23]
Marín, Y.E.; Wall, B.A.; Wang, S.; Namkoong, J.; Martino, J.J.; Suh, J.; Lee, H.J.; Rabson, A.B.; Yang, C.S.; Chen, S.; Ryu, J.H. Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells. Melanoma Res., 2007, 17(5), 274-283.
[http://dx.doi.org/10.1097/CMR.0b013e3282ed3d0e] [PMID: 17885582]
[24]
Liu, A.C.; Zhao, L.X.; Lou, H.X. Curcumin alters the pharmacokinetics of warfarin and clopidogrel in Wistar rats but has no effect on anticoagulation or antiplatelet aggregation. Planta Med., 2013, 79(11), 971-977.
[http://dx.doi.org/10.1055/s-0032-1328652] [PMID: 23807811]
[25]
Lin, J.K. Molecular targets of curcumin. Adv. Exp. Med. Biol., 2007, 595, 227-243.
[http://dx.doi.org/10.1007/978-0-387-46401-5_10] [PMID: 17569214]
[26]
Conboy, L.; Foley, A.G.; O’Boyle, N.M.; Lawlor, M.; Gallagher, H.C.; Murphy, K.J.; Regan, C.M. Curcumin-induced degradation of PKC delta is associated with enhanced dentate NCAM PSA expression and spatial learning in adult and aged Wistar rats. Biochem. Pharmacol., 2009, 77(7), 1254-1265.
[http://dx.doi.org/10.1016/j.bcp.2008.12.011] [PMID: 19161989]
[27]
Yance, D.R., Jr; Sagar, S.M. Targeting angiogenesis with integrative cancer therapies. Integr. Cancer Ther., 2006, 5(1), 9-29.
[http://dx.doi.org/10.1177/1534735405285562] [PMID: 16484711]
[28]
Karunagaran, D.; Rashmi, R.; Kumar, T.R. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr. Cancer Drug Targets, 2005, 5(2), 117-129.
[http://dx.doi.org/10.2174/1568009053202081] [PMID: 15810876]
[29]
Yang, J.Y.; Zhong, X.; Yum, H.W.; Lee, H.J.; Kundu, J.K.; Na, H.K.; Surh, Y.J. Curcumin inhibits STAT3 signaling in the colon of dextran sulfate sodium-treated mice. J. Cancer Prev., 2013, 18(2), 186-191.
[http://dx.doi.org/10.15430/JCP.2013.18.2.186] [PMID: 25337545]
[30]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[31]
Bolken, T.C.; Hruby, D.E. Discovery and development of antiviral drugs for biodefense: Experience of a small biotechnology company. Antiviral Res., 2008, 77(1), 1-5.
[http://dx.doi.org/10.1016/j.antiviral.2007.07.003] [PMID: 17765333]
[32]
Paintsil, E.; Cheng, Y.C. Biological properties of curcumin-cellular and moleculari mechanisms of action. Crit. Rev. Food Sci. Nutr., 2009, 44(2), 97-111.
[33]
Joe, B.; Vijaykumar, M.; Lokesh, B.R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr., 2004, 44(2), 97-111.
[http://dx.doi.org/10.1080/10408690490424702] [PMID: 15116757]
[34]
Takeuchi, T.; Ishidoh, T.; Iijima, H.; Kuriyama, I.; Shimazaki, N.; Koiwai, O.; Kuramochi, K.; Kobayashi, S.; Sugawara, F.; Sakaguchi, K.; Yoshida, H.; Mizushina, Y. Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase λ. Genes Cells, 2006, 11(3), 223-235.
[http://dx.doi.org/10.1111/j.1365-2443.2006.00937.x] [PMID: 16483311]
[35]
Leu, T.H.; Su, S.L.; Chuang, Y.C.; Maa, M.C. Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem. Pharmacol., 2003, 66(12), 2323-2331.
[http://dx.doi.org/10.1016/j.bcp.2003.08.017] [PMID: 14637190]
[36]
Fang, J.; Lu, J.; Holmgren, A. Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. J. Biol. Chem., 2005, 280(26), 25284-25290.
[http://dx.doi.org/10.1074/jbc.M414645200] [PMID: 15879598]
[37]
Skrzypczak-Jankun, E.; Zhou, K.; McCabe, N.P.; Selman, S.H.; Jankun, J. Structure of curcumin in complex with lipoxygenase and its significance in cancer. Int. J. Mol. Med., 2003, 12(1), 17-24.
[http://dx.doi.org/10.3892/ijmm.12.1.17] [PMID: 12792803]
[38]
Gupta, K.K.; Bharne, S.S.; Rathinasamy, K.; Naik, N.R.; Panda, D. Dietary antioxidant curcumin inhibits microtubule assembly through tubulin binding. FEBS J., 2006, 273(23), 5320-5332.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05525.x] [PMID: 17069615]
[39]
Chen, D.Y.; Shien, J.H.; Tiley, L.; Chiou, S.S.; Wang, S.Y.; Chang, T.J.; Lee, Y.J.; Chan, K.W.; Hsu, W.L. Curcumin inhibits infuenza virus infection and haemagglutination activity. Food Chem., 2010, 119(4), 1346-1351.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.011]
[40]
Narayan, V.; Ravindra, K.C.; Chiaro, C.; Cary, D.; Aggarwal, B.B.; Henderson, A.J.; Prabhu, K.S. Celastrol inhibits Tat-mediated human immunodeficiency virus (HIV) transcription and replication. J. Mol. Biol., 2011, 410(5), 972-983.
[http://dx.doi.org/10.1016/j.jmb.2011.04.013] [PMID: 21763500]
[41]
Mounce, B.C.; Cesaro, T.; Carrau, L.; Vallet, T.; Vignuzzi, M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res., 2017, 142, 148-157.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[42]
Hung, W.C.; Chen, F.Y.; Lee, C.C.; Sun, Y.; Lee, M.T.; Huang, H.W. Membrane-thinning effect of curcumin. Biophys. J., 2008, 94(11), 4331-4338.
[http://dx.doi.org/10.1529/biophysj.107.126888] [PMID: 18310254]
[43]
Ingólfsson, H.I.; Thakur, P.; Herold, K.F.; Hobart, E.A.; Ramsey, N.B.; Periole, X.; de Jong, D.H.; Zwama, M.; Yilmaz, D.; Hall, K.; Maretzky, T.; Hemmings, H.C., Jr; Blobel, C.; Marrink, S.J.; Koçer, A.; Sack, J.T.; Andersen, O.S. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol., 2014, 9(8), 1788-1798.
[http://dx.doi.org/10.1021/cb500086e] [PMID: 24901212]
[44]
Feinberg, M.B.; Baltimore, D.; Frankel, A.D. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc. Natl. Acad. Sci., 1991, 88, 4045-4049.
[http://dx.doi.org/10.1073/pnas.88.9.4045]
[45]
Rechtman, M.M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1alpha. FEBS Lett., 2010, 584(11), 2485-2490.
[http://dx.doi.org/10.1016/j.febslet.2010.04.067] [PMID: 20434445]
[46]
Aedo-Aguilera, V.; Carrillo-Beltrán, D.; Calaf, G.M.; Muñoz, J.P.; Guerrero, N.; Osorio, J.C.; Tapia, J.C.; León, O.; Contreras, H.R.; Aguayo, F. Curcumin decreases epithelial-mesenchymal transition by a Pirin dependent mechanism in cervical cancer cells. Oncol. Rep., 2019, 42(5), 2139-2148.
[http://dx.doi.org/10.3892/or.2019.7288] [PMID: 31436299]
[47]
Li, C.J.; Zhang, L.J.; Dezube, B.J.; Crumpacker, C.S.; Pardee, A.B. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc. Natl. Acad. Sci. USA., 1993, 90(5), 1839-1842.
[http://dx.doi.org/10.1073/pnas.90.5.1839] [PMID: 8446597]
[48]
Barthelemy, S.; Vergnes, L.; Moynier, M.; Guyot, D.; Labidalle, S.; Bahraoui, E. Curcumin and curcumin derivatives inhibit Tatmediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res. Virol., 1998, 149(1), 43-52.
[http://dx.doi.org/10.1016/S0923-2516(97)86899-9] [PMID: 9561563]
[49]
Sui, Z.; Salto, R.; Li, J.; Craik, C.; Ortiz de Montellano, P.R. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg. Med. Chem., 1993, 1(6), 415-422.
[http://dx.doi.org/10.1016/S0968-0896(00)82152-5] [PMID: 8087563]
[50]
Mazumder, A.; Raghavan, K.; Weinstein, J.; Kohn, K.W.; Pommier, Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem. Pharmacol., 1995, 49(8), 1165-1170.
[http://dx.doi.org/10.1016/0006-2952(95)98514-A] [PMID: 7748198]
[51]
Balasubramanyam, K.; Varier, R.A.; Altaf, M.; Swaminathan, V.; Siddappa, N.B.; Ranga, U.; Kundu, T.K. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem., 2004, 279(49), 51163-51171.
[http://dx.doi.org/10.1074/jbc.M409024200] [PMID: 15383533]
[52]
James, J.S. Curcumin: Clinical trial finds no antiviral effect. AIDS Treat. News, 1996, 242(242), 1-2.
[PMID: 11363190]
[53]
Chen, D.Y.; Shien, J.H.; Tiley, L.; Shyan-Song, S.Y.; Wang, T.J.; Chang, Y.J.; Chan, K.W.; Hsu, W.L. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem., 2010, 119(4), 1346-1351.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.011]
[54]
Zandi, K.; Ramedani, E.; Mohammadi, K.; Tajbakhsh, S.; Deilami, I.; Rastian, Z.; Fouladvand, M.; Yousefi, F.; Farshadpour, F. Evaluation of antiviral activities of curcumin derivatives against HSV-1 in vero cell line. Nat. Prod. Commun., 2010, 5(12), 1935-1938.
[http://dx.doi.org/10.1177/1934578X1000501220] [PMID: 21299124]
[55]
Kutluay, S.B.; Doroghazi, J.; Roemer, M.E.; Triezenberg, S.J. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology, 2008, 373(2), 239-247.
[http://dx.doi.org/10.1016/j.virol.2007.11.028] [PMID: 18191976]
[56]
Bourne, K.Z.; Bourne, N.; Reising, S.F.; Stanberry, L.R. Plant products as topical microbicide candidates: Assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Res., 1999, 42(3), 219-226.
[http://dx.doi.org/10.1016/S0166-3542(99)00020-0] [PMID: 10443534]
[57]
Si, X.; Wang, Y.; Wong, J.; Zhang, J.; McManus, B.M.; Luo, H. Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J. Virol., 2007, 81(7), 3142-3150.
[http://dx.doi.org/10.1128/JVI.02028-06] [PMID: 17229707]
[58]
Kim, H.J.; Yoo, H.S.; Kim, J.C.; Park, C.S.; Choi, M.S.; Kim, M.; Choi, H.; Min, J.S.; Kim, Y.S.; Yoon, S.W.; Ahn, J.K. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J. Ethnopharmacol., 2009, 124(2), 189-196.
[http://dx.doi.org/10.1016/j.jep.2009.04.046] [PMID: 19409970]
[59]
Kim, K.; Kim, K.H.; Kim, H.Y.; Cho, H.K.; Sakamoto, N.; Cheong, J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett., 2010, 584(4), 707-712.
[http://dx.doi.org/10.1016/j.febslet.2009.12.019] [PMID: 20026048]
[60]
Divya, C.S.; Pillai, M.R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog., 2006, 45(5), 320-332.
[http://dx.doi.org/10.1002/mc.20170] [PMID: 16526022]
[61]
Prusty, B.K.; Das, B.C. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int. J. Cancer, 2005, 113(6), 951-960.
[http://dx.doi.org/10.1002/ijc.20668] [PMID: 15514944]
[62]
Dutta, K.; Ghosh, D.; Basu, A. Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system. J. Neuroimmune Pharmacol., 2009, 4(3), 328-337.
[http://dx.doi.org/10.1007/s11481-009-9158-2] [PMID: 19434500]
[63]
Borra, S.K.; Mahendra, J.; Gurumurthy, P.; Jayamathi, P.; Iqbal, S.S.; Mahendra, L. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals. J. Clin. Diagn. Res., 2014, 8(10), CC01-CC05.
[http://dx.doi.org/10.7860/JCDR/2014/8517.4967] [PMID: 25478334]
[64]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[65]
Jovanovic, S.V.; Steenken, S.; Boone, C.W.; Simic, M.G. H-atom transfer is a preferred antioxidant mechanism of curcumin. J. Am. Chem. Soc., 1999, 121(41), 9677-9681.
[http://dx.doi.org/10.1021/ja991446m]
[66]
Motterlini, R.; Foresti, R.; Bassi, R.; Green, C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med., 2000, 28(8), 1303-1312.
[http://dx.doi.org/10.1016/S0891-5849(00)00294-X] [PMID: 10889462]
[67]
deRojas-Walker, T.; Tamir, S.; Ji, H.; Wishnok, J.S.; Tannenbaum, S.R. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem. Res. Toxicol., 1995, 8(3), 473-477.
[http://dx.doi.org/10.1021/tx00045a020] [PMID: 7578935]
[68]
Graziewicz, M.; Wink, D.A.; Laval, F. Nitric oxide inhibits DNA ligase activity: Potential mechanisms for NO-mediated DNA damage. Carcinogenesis, 1996, 17(11), 2501-2505.
[http://dx.doi.org/10.1093/carcin/17.11.2501] [PMID: 8968069]
[69]
Mourtas, S.; Lazar, A.N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S.G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem., 2014, 80, 175-183.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.050] [PMID: 24780594]
[70]
Fang, L.; Gou, S.; Liu, X.; Cao, F.; Cheng, L. Design, synthesis and anti-Alzheimer properties of dimethylaminomethyl-substituted curcumin derivatives. Bioorg. Med. Chem. Lett., 2014, 24(1), 40-43.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.011] [PMID: 24342238]
[71]
Lee, H.K.; Kumar, P.; Fu, Q.; Rosen, K.M.; Querfurth, H.W. The insulin/Akt signaling pathway is targeted by intracellular β-amyloid. Mol. Biol. Cell, 2009, 20(5), 1533-1544.
[http://dx.doi.org/10.1091/mbc.e08-07-0777] [PMID: 19144826]
[72]
Lazar, A.N.; Mourtas, S.; Youssef, I.; Parizot, C.; Dauphin, A.; Delatour, B.; Antimisiaris, S.G.; Duyckaerts, C. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. Nanomedicine, 2013, 9(5), 712-721.
[http://dx.doi.org/10.1016/j.nano.2012.11.004] [PMID: 23220328]
[73]
Belkacemi, A.; Doggui, S.; Dao, L.; Ramassamy, C. Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev. Mol. Med., 2011, 13, e34.
[http://dx.doi.org/10.1017/S1462399411002055] [PMID: 22051121]
[74]
Mehta, K.; Pantazis, P.; McQueen, T.; Aggarwal, B.B. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs, 1997, 8(5), 470-481.
[http://dx.doi.org/10.1097/00001813-199706000-00010] [PMID: 9215611]
[75]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. The molecule targets and therapeutic uses of Curcumin in health Sand Disease. Advances in experimental medicine and biology, 2007, 105-125. Springer.
[76]
Wal, P.; Saraswat, N.; Pal, R.S.; Wal, A.; Chaubey, M. A detailed insight of the anti-inflammatory effects of curcumin with the assessment of parameters, sources of ros and associated mechanisms. Open Med. J., 2019, 6(1), 64-76.
[http://dx.doi.org/10.2174/1874220301906010064]
[77]
Siddiqui, A.M.; Cui, X.; Wu, R.; Dong, W.; Zhou, M.; Hu, M.; Simms, H.H.; Wang, P. The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-γ. Crit. Care Med., 2006, 34(7), 1874-1882.
[http://dx.doi.org/10.1097/01.CCM.0000221921.71300.BF] [PMID: 16715036]
[78]
Jacob, A.; Wu, R.; Zhou, M.; Wang, P. Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ; activation. PPAR Res., 2007, 2007, 89369.
[http://dx.doi.org/10.1155/2007/89369] [PMID: 18274631]
[79]
Saja, K.; Babu, M.S.; Karunagaran, D.; Sudhakaran, P.R. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int. Immunopharmacol., 2007, 7(13), 1659-1667.
[http://dx.doi.org/10.1016/j.intimp.2007.08.018] [PMID: 17996675]
[80]
Surh, Y.J.; Chun, K.S. Cancer chemopreventive effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 149-172.
[http://dx.doi.org/10.1007/978-0-387-46401-5_5] [PMID: 17569209]
[81]
Surh, Y.J.; Chun, K.S.; Cha, H.H.; Han, S.S.; Keum, Y.S.; Park, K.K.; Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res., 2001, 480-481, 243-268.
[http://dx.doi.org/10.1016/S0027-5107(01)00183-X] [PMID: 11506818]
[82]
Hong, J.; Bose, M.; Ju, J.; Ryu, J.H.; Chen, X.; Sang, S.; Lee, M.J.; Yang, C.S. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: Effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis, 2004, 25(9), 1671-1679.
[http://dx.doi.org/10.1093/carcin/bgh165] [PMID: 15073046]
[83]
Zhang, F.; Altorki, N.K.; Mestre, J.R.; Subbaramaiah, K.; Dannenberg, A.J. Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis, 1999, 20(3), 445-451.
[http://dx.doi.org/10.1093/carcin/20.3.445] [PMID: 10190560]
[84]
Li, Y.; Zhang, S.; Geng, J.X.; Hu, X.Y. Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac. J. Cancer Prev., 2013, 14(8), 4599-4602.
[http://dx.doi.org/10.7314/APJCP.2013.14.8.4599] [PMID: 24083709]
[85]
Pal, S.; Choudhuri, T.; Chattopadhyay, S.; Bhattacharya, A.; Datta, G.K.; Das, T.; Sa, G. Mechanisms of curcumin-induced apoptosis of Ehrlich’s ascites carcinoma cells. Biochem. Biophys. Res. Commun., 2001, 288(3), 658-665.
[http://dx.doi.org/10.1006/bbrc.2001.5823] [PMID: 11676493]
[86]
Biswas, S.; Rahman, I. Modulation of steroid activity in chronic inflammation: A novel anti-inflammatory role for curcumin. Mol. Nutr. Food Res., 2008, 52(9), 987-994.
[http://dx.doi.org/10.1002/mnfr.200700259] [PMID: 18327875]
[87]
Jagetia, G.C.; Aggarwal, B.B. “Spicing up” of the immune system by curcumin. J. Clin. Immunol., 2007, 27(1), 19-35.
[http://dx.doi.org/10.1007/s10875-006-9066-7] [PMID: 17211725]
[88]
Yadav, V.S.; Mishra, K.P.; Singh, D.P.; Mehrotra, S.; Singh, V.K. Immunomodulatory effects of curcumin. Immunopharmacol. Immunotoxicol., 2005, 27(3), 485-497.
[http://dx.doi.org/10.1080/08923970500242244] [PMID: 16237958]
[89]
Srivastava, R.M.; Singh, S.; Dubey, S.K.; Misra, K.; Khar, A. Immunomodulatory and therapeutic activity of curcumin. Int. Immunopharmacol., 2011, 11(3), 331-341.
[http://dx.doi.org/10.1016/j.intimp.2010.08.014] [PMID: 20828642]
[90]
Antony, S.; Kuttan, R.; Kuttan, G. Immunomodulatory activity of curcumin. Immunol. Invest., 1999, 28(5-6), 291-303.
[http://dx.doi.org/10.3109/08820139909062263] [PMID: 10574627]
[91]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[92]
Saifi, B.; Haftcheshmeh, S.M.; Feligioni, M.; Izadpanah, E.; Rahimi, K.; Hassanzadeh, K.; Mohammadi, A.; Sahebkar, A. An overview of the therapeutic effects of curcumin in reproductive disorders with a focus on the antiinflammatory and immunomodulatory activities. Phytother. Res., 2022, 36(2), 808-823.
[http://dx.doi.org/10.1002/ptr.7360] [PMID: 35041229]
[93]
Den Hartogh, D.J.; Gabriel, A.; Tsiani, E. Antidiabetic properties of curcumin II: Evidence from in vivo studies. Nutrients, 2019, 12(1), 1-27.
[http://dx.doi.org/10.3390/nu12010058] [PMID: 31881654]
[94]
Li, B.; Li, X.; Lin, H.; Zhou, Y. Curcumin as a promising antibacterial agent: Effects on metabolism and biofilm formation in S. mutans. Biomed Res. Int., 2018, 2018, 4508709.
[http://dx.doi.org/10.1155/2018/4508709] [PMID: 29682545]
[95]
Zhang, D.W.; Fu, M.; Gao, S.H.; Liu, J.L. Curcumin and diabetes: A systematic review. Evid. Based Complement. Alternat. Med., 2013, 2013, 636053.
[http://dx.doi.org/10.1155/2013/636053] [PMID: 24348712]
[96]
Kang, C.; Kim, E. Synergistic effect of curcumin and insulin on muscle cell glucose metabolism. Food Chem. Toxicol., 2010, 48(8-9), 2366-2373.
[http://dx.doi.org/10.1016/j.fct.2010.05.073] [PMID: 20561944]
[97]
Pari, L.; Murugan, P. Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren. Fail., 2007, 29(7), 881-889.
[http://dx.doi.org/10.1080/08860220701540326] [PMID: 17994458]
[98]
Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[99]
Rivera-Mancia, S.; Trujillo, J.; Chaverri, J.P. Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies. J. Nutr. Intermed. Metab., 2018, 14, 29-41.
[http://dx.doi.org/10.1016/j.jnim.2018.05.001]
[100]
Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial mechanism of curcumin: A review. Chem. Biodivers., 2020, 17(8), e2000171.
[http://dx.doi.org/10.1002/cbdv.202000171] [PMID: 32533635]
[101]
Shlar, I.; Droby, S.; Choudhary, R.; Rodov, V. The mode of antimicrobial action of curcumin depends on the delivery system: Monolithic nanoparticles vs. supramolecular inclusion complex. RSC Advances, 2017, 7(67), 42559-42569.
[http://dx.doi.org/10.1039/C7RA07303H]
[102]
Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health, 2016, 32(2), 246-250.
[http://dx.doi.org/10.1177/0748233713498458] [PMID: 24097361]
[103]
Praditya, D.; Kirchhoff, L.; Brüning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective properties of the golden spice curcumin. Front. Microbiol., 2019, 10, 912.
[http://dx.doi.org/10.3389/fmicb.2019.00912] [PMID: 31130924]
[104]
Zhao, Z.; Li, X.; Li, Q. Curcumin accelerates the repair of sciatic nerve injury in rats through reducing Schwann cells apoptosis and promoting myelinization. Biomed. Pharmacother., 2017, 92, 1103-1110.
[http://dx.doi.org/10.1016/j.biopha.2017.05.099] [PMID: 28622711]
[105]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.; Zeng, Z.; Wu, C.; Zhu, H.; Xu, H. The potential protective effect of curcumin on amyloid-β-42 induced cytotoxicity in HT-22 cells. BioMed Res. Int., 2018, 2018, 8134902.
[http://dx.doi.org/10.1155/2018/8134902] [PMID: 29568765]
[106]
Mythri, R.B.; Harish, G.; Dubey, S.K.; Misra, K.; Bharath, M.M. Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: Implications for Parkinson’s disease. Mol. Cell. Biochem., 2011, 347(1-2), 135-143.
[http://dx.doi.org/10.1007/s11010-010-0621-4] [PMID: 20972609]
[107]
Zbarsky, V.; Datla, K.P.; Parkar, S.; Rai, D.K.; Aruoma, O.I.; Dexter, D.T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic. Res., 2005, 39(10), 1119-1125.
[http://dx.doi.org/10.1080/10715760500233113] [PMID: 16298737]
[108]
Arai, T.; Fukae, J.; Hatano, T.; Kubo, S.; Ohtsubo, T.; Nakabeppu, Y.; Mori, H.; Mizuno, Y.; Hattori, N. Up-regulation of hMUTYH, a DNA repair enzyme, in the mitochondria of substantia nigra in Parkinson’s disease. Acta Neuropathol., 2006, 112(2), 139-145.
[http://dx.doi.org/10.1007/s00401-006-0081-9] [PMID: 16773329]
[109]
Wang, J.; Du, X.X.; Jiang, H.; Xie, J.X. Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochem. Pharmacol., 2009, 78(2), 178-183.
[http://dx.doi.org/10.1016/j.bcp.2009.03.031] [PMID: 19464433]
[110]
Rajeswari, A.; Sabesan, M. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology, 2008, 16(2), 96-99.
[http://dx.doi.org/10.1007/s10787-007-1614-0] [PMID: 18408903]
[111]
Jung, K.K.; Lee, H.S.; Cho, J.Y.; Shin, W.C.; Rhee, M.H.; Kim, T.G.; Kang, J.H.; Kim, S.H.; Hong, S.; Kang, S.Y. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci., 2006, 79(21), 2022-2031.
[http://dx.doi.org/10.1016/j.lfs.2006.06.048] [PMID: 16934299]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy