Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Novel Drugs for Diabetes Also Have Dramatic Benefits on Hard Outcomes of Heart and Kidney Disease

Author(s): Jonathan C.H. Chan and Michael C.Y. Chan*

Volume 18, Issue 6, 2022

Published on: 22 June, 2022

Article ID: e110522204572 Pages: 7

DOI: 10.2174/1573403X18666220511114443

Price: $65

Abstract

Background: Diabetes is a major risk factor for developing cardiovascular disease. Patients with both diabetes and cardiovascular disease have even higher mortality. The convergence of cardiology and diabetology therapy is an important step in treating patients and advancing research.

Results: Major landmark trials and meta-analyses involving Sodium Glucose Cotransporter 2 inhibitors have shown dramatic clinical cardiorenal benefits in patients both with and without type 2 diabetes. In type 2 diabetes patients, Glucagon-like peptide-1 receptor agonists have been shown to improve major cardiac outcomes.

Conclusion: This hot topic of research and clinical use of glucose lowering drugs intersects the fields of cardiovascular, renal, and diabetic medicine. The numerous cardiorenal benefits have led to the rapid adoption in clinical guidelines of these glucose lowering drugs in patients with Type 2 diabetes, cardiovascular disease, or renal disease.

Keywords: Cardiovascular disease, diabetes, cardiovascular outcome trial, SGLT2 inhibitor, GLP-1 receptor agonist, cardiorenal protection, heart failure, chronic kidney disease.

Graphical Abstract

[1]
Rana JS, Khan SS, Lloyd-Jones DM, Sidney S. Changes in mortality in top 10 causes of death from 2011 to 2018. J Gen Intern Med 2020.
[http://dx.doi.org/10.1007/s11606-020-06070-z] [PMID: 32705476]
[2]
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Di Angelantonio E, Kaptoge S, Wormser D, et al. Association of cardiometabolic multimorbidity with mortality. JAMA 2015; 314(1): 52-60.
[http://dx.doi.org/10.1001/jama.2015.7008] [PMID: 26151266]
[4]
O’Meara E, McDonald M, Chan M, et al. CCS/CHFS heart failure guidelines: Clinical trial update on functional mitral regurgitation, SGLT2 inhibitors, ARNI in HFpEF, and tafamidis in amyloidosis. Can J Cardiol 2020; 36(2): 159-69.
[http://dx.doi.org/10.1016/j.cjca.2019.11.036] [PMID: 32036861]
[5]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[6]
Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360(2): 129-39.
[http://dx.doi.org/10.1056/NEJMoa0808431] [PMID: 19092145]
[7]
Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358(24): 2545-59.
[http://dx.doi.org/10.1056/NEJMoa0802743] [PMID: 18539917]
[8]
The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC Study 30-Year Follow-up. Diabetes Care 2016; 39(5): 686-93.
[http://dx.doi.org/10.2337/dc15-1990]
[9]
Kalra S. Sodium glucose Co-Transporter-2 (SGLT2) inhibitors: A review of their basic and clinical pharmacology. Diabetes Ther 2014; 5(2): 355-66.
[http://dx.doi.org/10.1007/s13300-014-0089-4] [PMID: 25424969]
[10]
Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic Transl Sci 2020; 5(6): 632-44.
[http://dx.doi.org/10.1016/j.jacbts.2020.02.004] [PMID: 32613148]
[11]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[12]
Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375(4): 323-34.
[http://dx.doi.org/10.1056/NEJMoa1515920] [PMID: 27299675]
[13]
Rådholm K, Figtree G, Perkovic V, et al. Canagliflozin and heart failure in type 2 diabetes mellitus: Results from the CANVAS program. Circulation 2018; 138(5): 458-68.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034222] [PMID: 29526832]
[14]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[15]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[16]
Wiviott SD, Raz I, Bonaca MP, et al. The design and rationale for the Dapagliflozin Effect on Cardiovascular Events (DECLARE)-TIMI 58 Trial. Am Heart J 2018; 200: 83-9.
[http://dx.doi.org/10.1016/j.ahj.2018.01.012] [PMID: 29898853]
[17]
Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393(10166): 31-9.
[http://dx.doi.org/10.1016/S0140-6736(18)32590-X] [PMID: 30424892]
[18]
Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019; 7(11): 845-54.
[http://dx.doi.org/10.1016/S2213-8587(19)30256-6] [PMID: 31495651]
[19]
Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 2020; 383(15): 1425-35.
[http://dx.doi.org/10.1056/NEJMoa2004967] [PMID: 32966714]
[20]
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381(21): 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]
[21]
Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383(15): 1413-24.
[http://dx.doi.org/10.1056/NEJMoa2022190] [PMID: 32865377]
[22]
EMPagliflozin outcomE tRial in patients with chrOnic heaRt Failure with Preserved ejection fraction (EMPEROR-Preserved). 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03057951 (Accessed on Apr 14, 2022).
[23]
Neale T. Empagliflozin succeeds in HFpEF: EMPEROR-preserved top-line results. 2021. Available from: https://www.tctmd.com/news/empagliflozin-succeeds-hfpef-emperor-preserved-top-line-results (Accessed on Apr 14, 2022).
[24]
Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 2020.
[http://dx.doi.org/10.1056/NEJMoa2030183] [PMID: 33200892]
[25]
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380(24): 2295-306.
[http://dx.doi.org/10.1056/NEJMoa1811744] [PMID: 30990260]
[26]
Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020; 383(15): 1436-46.
[http://dx.doi.org/10.1056/NEJMoa2024816] [PMID: 32970396]
[27]
Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345(12): 861-9.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[28]
McGill JB, Subramanian S. Safety of sodium-glucose co-transporter 2 inhibitors. Am J Med 2019; 132: S49-57.
[http://dx.doi.org/10.1016/j.amjmed.2019.08.006]
[29]
McIntosh CHS, Widenmaier S, Kim SJ. Pleiotropic Actions of the Incretin Hormones Vitamins & Hormones. Elsevier 2010; 84: pp. 21-79.
[http://dx.doi.org/10.1016/B978-0-12-381517-0.00002-3]
[30]
Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29(1): 46-52.
[http://dx.doi.org/10.1007/BF02427280] [PMID: 3514343]
[31]
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
[32]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
[33]
Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2019; 381(9): 841-51.
[http://dx.doi.org/10.1056/NEJMoa1901118] [PMID: 31185157]
[34]
Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019; 394(10193): 121-30.
[http://dx.doi.org/10.1016/S0140-6736(19)31149-3] [PMID: 31189511]
[35]
Brochu B, Chan M. Treatment of diabetes and heart failure: A paradigm shift for cardiologists? Curr Opin Cardiol 2019; 34(2): 207-12.
[http://dx.doi.org/10.1097/HCO.0000000000000599] [PMID: 30608252]
[36]
McDonald M, Virani S, Chan M, et al. CCS/CHFS heart failure guidelines update: Defining a new pharmacologic standard of care for heart failure with reduced ejection fraction. Can J Cardiol 2021; 37(4): 531-46.
[http://dx.doi.org/10.1016/j.cjca.2021.01.017] [PMID: 33827756]
[37]
Danne T, Garg S, Peters AL, et al. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Dia Care 2019; 42(6): 1147-54.
[http://dx.doi.org/10.2337/dc18-2316] [PMID: 30728224]
[38]
Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018; 61(3): 722-6.
[http://dx.doi.org/10.1007/s00125-017-4509-7] [PMID: 29197997]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy